
Conjunction, Sequence, and Interval Relations in
Event Stream Processing

Samujjwal Bhandari

Department of Computer Science

Texas Tech University, Lubbock, U.S.A

samujjwal.bhandari@ttu.edu

Susan D. Urban

Department of Industrial Engineering

Texas Tech University, Lubbock, U.S.A

susan.urban@ttu.edu

Abstract—The conjunction operator can be augmented with
temporal constraints to define an arbitrary pattern of events
in event stream processing (ESP). However, using temporal
constraints to specify patterns can be complex. This research
has defined an operator hierarchy, where the top of the hierarchy
defines the conjunction operator and the leaves of the hierarchy
define more specific semantics associated with a sequence of
events. The use of the specialized operators simplifies pattern
expression and make the sequence semantics clear. Furthermore,
in an experimental study, patterns using operators from the
hierarchy outperform patterns expressed using the conjunction
operator with temporal constraints in run time performance,
further validating the usefulness of the operator hierarchy.

Keywords-event operators; sequence; event processing lan-
guage; operator semantics;

I. INTRODUCTION

REAL world applications have become increasingly event-

driven in nature, focusing on the occurrence or non-

occurrence of several activities or their combinations to re-

spond to a situation of interest using event processing systems

such as [1], [2]. The situations of interest are encoded as

complex event patterns using a specific ESP language, where

complex event patterns are specified using event operators and

other events. These complex event patterns are matched by the

event processing system to detect complex events.
Encodings of event patterns should be able to define a

situation in a unique manner. However, existing work [3], [4],

[1], [2] defines patterns in an ambiguous way. For example,

suppose in a health care application, situations of importance

are detected if i) a high temperature is detected after nausea

is detected and ii) a high temperature event is followed by

a low temperature. Both i and ii can be defined as sequential

occurrences of two events. In these situations, there are several

possibilities that can be true of the patterns. For instance,

in situation i, the nausea event occurs while there is a

high temperature. However, in case of ii, a high temperature

cannot occur at the same time as a low temperature. This

example shows that the sequence pattern may have different

interpretations. One of the possible solutions to this problem

is to use the conjunction operator with relevant temporal

constraints to restrict the detection of the event patterns.

When an interval-based event is considered, this approach can

specify all the possible patterns [5]. However, it is desirable to

specify the intended semantics in an explicit way such as by

using special operators. For example, rather than expressing

a sequential pattern, E1 followed by E2 as AND(E1, E2)
WHERE E1.te < E2.te, where te represents an ending

time of event occurrence, it would be intuitive to express the

condition as SEQ(E1, E2), where the SEQ operator explicitly

defines the intended meaning.

To address the issues of specification complexity and am-

biguous operator interpretation, this research defines an oper-

ator hierarchy based upon the conjunction and the sequence

operators. The top of the hierarchy defines the conjunction

operator. Moving down the hierarchy introduces specialized

operators to express more specific situations. Though any

pattern defined using the operators from the hierarchy can be

expressed as a combination of the conjunction operator and

appropriate temporal constraints, the use of specialized opera-

tors in defining event patterns makes the pattern specification

an easier and more expressive task.

To verify the usefulness of the operators in the operator

hierarchy, the operators have been implemented with reference

to the conjunction operator implementation and are found to

run better than their alternative versions using the conjunction

operator with temporal constraints. Moreover, the work in this

paper makes the following contributions:

1) Design of operators to incorporate different meanings for

the sequence and the conjunction operators.

2) Design of an operator hierarchy defining the relationships

pertaining to time intervals using Allen’s relations [6].

3) Experimental evaluation of operators from the operator

hierarchy to describe usefulness of the newly defined

operator hierarchy.

II. RELATED WORK

Past work on event processing, such as Snoop [3], Ode [7],

and SAMOS [8] have collectively defined a powerful set of

event operators to specify complex event patterns. However,

operators such as the sequence and the repetition operators

are not consistently defined in these languages. SEL [9] ana-

lyzes these event languages and identifies problems with the

semantics of the negation, sequence, and repetition operators.

The recent languages ([1], [2]) have adopted operators similar

to past work on event processing, but have not considered the

semantic inconsistency among the definition of event operators

as discussed in [9]. Non-overlapping sequence defined in [10]

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 1477–1482

978-1-4673-4471-5/$25.00 c© 2013, IEEE 1477

is considered to be an immediate sequence (i.e., an event A

is immediately followed by B with no event in between),

while sequence in [4] considers an arbitrary sequence (i.e.,

without restrictions on intervening events). These inconsistent

definitions of the sequence operator as an overlapping and

a non-overlapping sequence is relevant when an event is

associated with an interval. The work in [5] defines a generic

operator with a temporal constraint list to define all of the

possible relations among intervals to remove inconsistency in

the definition of event operators. However, the expression of

event patterns becomes more complex.

III. EVENT SPECIFICATION AND BASIC CONCEPTS

For any two time intervals i1 = [t1, t2] and i2 = [t3, t4],
there are thirteen possible relations defined as Allen’s interval

relations [6]. When an event e has event time i = [ts, te], e
is said to have occurred over the interval i, where the event e

started occurring at time point ts and ended at time point te.

TABLE I: Situation Monitoring Event Definition

SON() Stove is brought to ON state.
SOFF() Stove is brought to OFF state.
LO() A lid of a kettle is opened.
LC() A lid of a kettle is closed.
KP() A kettle is put on the surface.
IPOUR() An item is put in the kettle.

T(v)
Regular event to provide temperature inside
the kettle with the given value.

IP(items) TIMES(IPOUR(), 3) WITHIN 2 MINUTES

KL()
SEQ(LO(), IP(items), LC())
WHERE IP.items.has({“water”,“milk”,“tea leaves”})

TP()
AND(SON(), KL(), KP(), T(v))
WHERE TEMP.v ≥ 100

Let us define a scenario to detect an activity defining the

situation that the “tea has been prepared”. Table I defines

several events that are either observed or produced from the

external environment (external events), or are a complex com-

bination of other events (internal events). In Table I, the T(v)

event is an external event that is generated by a thermometer.

Other external events are SON(), SOFF(), LO(), LC(), KP(),

and IPOUR(). An internal event is a composition of several

external or other internal events. The IP(items) event, the

KL(), and the TP() defined in Table I are internal events. The

IP(items) event occurs when the IPOUR() event is detected

three times within a 2 minutes window. The KL() event occurs

with the sequential occurrence of the LO(), IP(items), LC(),

where items from the IP(items) event has water, milk and tea

leaves in it. The TP() is represented as a pattern defining the

occurrences of four events SON(), KL(), KP(), T(v), where the

temperature value is ≥ 100◦C.

Discussion in later sections will consider events from the

situation monitoring application (Table I) and the occurrences

of events shown in Figure 1.

IV. ISSUES AND SEMANTICS OF CONJUNCTION AND

SEQUENCE OPERATORS

This section analyzes the semantics of event operators

to identify the issues that must be addressed to define the

i)

E1 e1(0) e1(0) e1(1) e1(0) e1(1)

 E2 e2(1) e2(0) e2(0) e2(1)

 E3 e3(1,0) e3(0,1) e3(1,0) e3(0,1)

 E4 e4() e4()

 t 1 2 3 4 5 6 7 8 9 10 11 12

Fig. 1: Example Event Streams

semantics of operators in a clear and consistent way. Work

such as that of [3], [4], [1] describes various powerful event

constructs that can be categorized into conjunction, disjunc-

tion, repetition, negation, and sequence operators. Among

different event operators, this work focuses on the semantics

of the conjunction and sequence operators with interval-based

temporal representation.

Conjunction of events E and F , denoted as AND(E,F),
occurs when both E and F occur without temporal ordering

restrictions. Detection of AND(E,F) starts when either E

(or F) occurs and ends when F (or E) occurs. In case

of interval-based semantics, all thirteen possible relations

between interval are valid.

Example: The TP() event from Table I is a conjunction of

five events SON(), KL(), KP(), T(v), and SOFF(). Since the

constituent events are combined using the AND operator, the

TP() event occurs when all of the constituent events occur.

The complex event defined by a sequence operator has an

implicit temporal constraint on events. A sequence of two

events E and F , SEQ(E,F), detects the occurrence of an

event E followed by the occurrence of the event F . Detection

of SEQ(E,F) starts with the detection of an event E and

ends with the detection of an event F . Such a requirement

of event order by a sequence operator imposes temporal

restrictions on event occurrences. When events are considered

to be point-based, then SEQ(E,F) is detected if and only if

E.t < F.t, where t is the time of event occurrence. If events

are interval-based, then SEQ(E,F) is detected if and only if

E.[t1, t2] < E.[t3, t4], where t1 ≤ t2 and t3 ≤ t4. With these

temporal conditions on event detection, we have two possible

conditions: i) t2 < t3 and ii) t2 < t4. Though condition ii is

included within condition i, the condition i gives the definition

of a non-overlapping sequence operator, whereas the condition

ii gives the definition of an overlapping sequence operator. In

this section, the condition ii is used to define the sequence

operation unless otherwise mentioned.

Example: The KL() event is a sequence of LO(), IP(items),

and LC(). The KL() event occurs when all of the constituent

events occur with the constraint LO.[ts, te] < IP.[ts, te] <
LC.[ts, te].

Using the definition of sequence, SEQ(E,F) says, E must

occur before F . As discussed in this subsection, there are two

possibilities for the sequence operator defining overlapping

and non-overlapping sequences. Past work on event processing

considers either an overlapping version of a sequence operator

or a non-overlapping version. When an overlapping version of

a sequence operator is used, then the sequence operator can

be used to detect non-overlapping events, but it requires an

1478 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

explicit temporal condition to specify that the non-overlapping

sequence is intended. However, if a non-overlapping sequence

is used, it cannot be used to specify an overlapping sequence.

One of the solutions to this problem could be the use of

the temporal filter on overlapping sequence. However, an

application can demand specification of sequences of both

kinds and, to make event specification more explicit, a separate

operator for non-overlapping sequence may be suitable.

Examples: If only a non-overlapping version is defined, the

sequence of events, such as SEQ(SON(),SOFF()) is intuitively

explicit as the stove on event precedes the stove off event. Let

us encode the pattern specifying the situation that describes the

condition where a kettle loading (KL()) process is followed by

the detection of an item put (KP()) event. In this case, KL()

can start before the KP() event and ends after the KP() event.

This condition defines the sequence given as SEQ(KP(), KL()),

which has the meaning of an overlapping sequence that cannot

be encoded using the non-overlapping version.

V. OPERATOR DESIGN

This section addresses the semantic issues discussed in

Section IV to design a set of event operators in a way

such that each operator has a clear and consistent definition,

and the operators are expressible in terms of its intended

meaning. While discussing semantics of operators, only the

binary operators are considered. One can extend the semantics

of binary operators to their n-ary version using the binary

semantics. Also, for readability, events are represented using

its name only, instead of its schema.

A. Allen’s Relations, Sequence, and Conjunction

Allen’s 13 relations [6] define all of the possible relations

between two intervals when both end points of intervals

are fixed. When we have open end point relations, then

the disjunction of Allen’s relations to capture the desired

relation can be complex. Also, the disjunction of Allen’s

relations or a hierarchical representation of composite rela-

tions [11] cannot express pair-wise relations among events

due to non-transitivity of some operators such as overlaps

[5]. Regardless of difficulty in specifying complex interval

patterns, however, Allen’s operators are concise constructs

for capturing common interval relations. The use of these

relations to express event patterns also defines the meaning of

the pattern in an expressive manner. For example, the pattern

defining the situation that an event E overlaps with an event F ,

OV ERLAPS(E,F) is easier to understand than AND(E,F)
WHERE E.ts < F.ts and F.ts < E.te and E.te < F.te.

On the other hand, a pattern expressing the situation such as

an event E ends before an event F is easier to understand

as AND(E,F) WHERE E.te < F.te than the encoding

OR(BEFORE(E,F), OV ERLAPS(E,F), MEETS(E,F),
STARTS(E,F), DURING(E,F)). The paragraphs that

follow discuss the use of event operators and the use of

temporal constraints in a suitable way to balance between

understandability of expression using specific operators and

the complexity of specifying the patterns.

Consider the sequence operator (SEQ) discussed in Section

IV. To be consistent, consider that the semantics of the SEQ

operator includes overlapping or non-overlapping occurrences

of events ordered by end points. Then such a definition will

include both interpretations of SEQ events from Section IV

and this definition of SEQ corresponds to the definition of

an overlapping sequence from Section IV. When an event

pattern seeks only the overlapping sequence or only the non-

overlapping sequence, then either a sequence operator with

a required temporal restriction can be used to define the

restricted sequence, or different operators defined for each

condition can be used to specify a restricted sequence. For

example, SEQ(E,F) WHERE E.te < F.ts is the same as

Allen’s before operator. The idea of using temporal constraints

with operators or the definition of an equivalent operator

defines the hierarchy of sequence operators with respect to

Allen’s operators. Figure 3 shows the hierarchy of a sequence

operator with respect to two different forms of sequence

operations along with the relation to Allen’s operators. The

hierarchy shown in Figure 3 depicts that the sequence op-

eration combines before, meets, overlaps, starts, and during

relations from Allen’s relations. Section V-B further analyzes

and discusses the sequence hierarchy to define operators.

Conjunction

Sequence Simultaneous Inverse

Sequence

equence

Fig. 2: Conjunction Hi-

erarchy

Sequence

Non-overlapping Overlapping

before meets overlaps starts during

SEQ

Fig. 3: Sequence Hierarchy

Conjunction (AND) is one of the well understood operations

in event processing. The use of the conjunction operator

does not define temporal restrictions on event occurrences, so

the use of temporal constraints with AND can define every

possible combination of interval relations. This idea of using

temporal constraints with the conjunction operator is similar

to the work done in [5], where an operator for an interval

sequence iseq1 is defined with the temporal constraints to de-

fine arbitrary relations on intervals. The sequence operator can

be considered as a temporally restricted conjunction operator

such that SEQ(E,F) = AND(E,F) WHERE E.te < F.te.

Using the relations between the sequence operator and the

conjunction operator, the hierarchy shown in Figure 2 can be

defined. The conjunction hierarchy shown in Figure 2 defines

restrictions of conjunctive combinations of events as sequential

combinations, simultaneous combinations, or the inverse of

sequential combinations. Section V-B further discusses the

conjunction hierarchy to describe the event operators discussed

in this work.

B. Operator Hierarchy

Allen’s thirteen relations provide a powerful way to express

relationships among interval-based events. However, there are

1The paper [5] defines it as ISEQ. As this work also defines an operator
called ISEQ to denote inverse SEQ, we use iseq to denote an interval sequence
operator.

SAMUJJWAL BHANDARI, SUSAN D. URBAN: CONJUNCTION, SEQUENCE, AND INTERVAL RELATIONS IN EVENT STREAM PROCESSING 1479

213-1 (8191) total relations when Allen’s relations are com-

bined using disjunctions. When all 8191 relations are treated as

operators, then the complexity of pattern specification reduces,

although, the large number of event operators to specify an

event pattern is undesirable from a language point of view.

Further, it is not practical to define all of the operators. To cope

with this situation, this section describes an operator hierarchy

that defines a small set of event operators as shown in Figure 4.

SEQ

OSEQ BEFORE

MEETS OVERLAPS STARTS DURING

SOSEQ WOSEQ

ISEQ

IOSEQ AFTER

IMEETS IOVERLAPS ISTARTS IDURING

ISOSEQ IWOSEQ

AND

CAND

ENDS EQUALS IENDS

Fig. 4: Operator Hierarchy Defining Conjunction and Se-

quence

1) Conjunction Operators: Consider the hierarchy shown

in Figure 2. The figure shows the trichotomy between two

intervals i1 and i2 that defines sequence to describe i1 < i2,

simultaneous to describe i1 = i2, and the inverse sequence to

describe i1 > i2. This trichotomy between intervals considers

two events as simultaneous if they end at the same time

period. So, the actual relation here is described by a trichotomy

between end time-points of two intervals expressed as natural

numbers. In other words, if te1 is the end time of the interval

i1 and te2 is the end time of the interval i2, then i1 < i2
if and only if te1 < te2, i1 = i2 if and only if te1 = te2,

and i1 > i2 if and only if te1 > te2. With this idea, the

AND operator is divided into three different operators SEQ,

CAND, and ISEQ as shown in Figure 4. Conceptually, the

AND operator defines the relation that includes all of Allen’s

relations, since conjunction has no temporal constraint. The

CAND operator is meant for concurrent conjunction and,

as there are three interval relations specifying the same end

time, Figure 4 defines three of Allen’s operators, ends, equals,

and ended by as ENDS, EQUALS, and IENDS, respectively,

as specializations of a concurrent conjunction. Two other

operators SEQ and ISEQ are the inverse of each other and this

work does not discuss ISEQ in detail as its concepts can be

derived from the SEQ operator. The hierarchy shown in Figure

4 defines the equivalent event patterns shown in Table II.

Example: In Figure 1, up to time t = 12, we can observe

that CAND(E2, E4) is detected as CAND[8,10](E2, E4). Also

notice that the CAND pattern is equivalent to the equivalence

3 in Table II, where AND(E2, E4) is detected as

AND[1,5](E2, E4), AND[2,5](E2, E4),
AND[1,10](E2, E4), AND[2,10](E2, E4),
AND[5,10](E2, E4), AND[3,7](E2, E4),
AND[3,10](E2, E4), and AND[8,10](E2, E4).

Similarly other equivalences can be verified.

TABLE II: Equivalent Event Patterns

1) AND(E,F) ≡
OR(SEQ(E,F), CAND(E,F),
ISEQ(E,F))

2) SEQ(E,F) ≡ AND(E,F) WHERE E.te < F.te
3) CAND(E,F) ≡ AND(E,F) WHERE E.te = F.te

4) CAND(E,F) ≡
OR(ENDS(E,F),
EQUALS(E,F), IENDS(E,F))

5) ISEQ(E,F) ≡ AND(E,F) WHERE E.te > F.te
6) ENDS(E,F) ≡ CAND(E,F) WHERE E.ts < F.ts
7) EQUALS(E,F) ≡ CAND(E,F) WHERE E.ts = F.ts
8) IENDS(E,F) ≡ CAND(E,F) WHERE E.ts > F.ts

2) Sequence Operators: In Figure 3, there are five Allen’s

relations that are clustered within the hierarchy of the sequence

operator with respect to the definition discussed in the previous

sections. The other five Allen’s relations correspond to the

inverse of sequence that can be described similarly as the

sequence hierarchy is described. The remaining three Allen

relations correspond to concurrent conjunction as discussed in

Subsection V-B1. Figure 4 depicts that the five Allen’s rela-

tions before, meets, overlaps, starts, and during are categorized

into two different groups defining a sequence that does not

overlap (BEFORE(E,F) implied by Allen’s before relations

and an overlapping sequence (OSEQ(E,F)) implied by the

other four relations. The overlapping sequence can be further

sub-divided into two groups based upon the relationships

between the starting time points of the intervals. For the first

division, the sequence of E and F has E.ts < F.ts and for the

second division E.ts ≥ F.ts. The former sub-division is given

the name, strong overlapping sequence (SOSEQ(E,F)) where

both the start time points and the end time points satisfy the

< relation. The later sub-division is understood as a weak

overlapping sequence (WOSEQ(E,F)), where a start time

is strictly not following the < relation. Using the hierarchy

shown in Figure 4, the equivalent event patterns for sequence

operators can be similarly defined as in Table II, which

are omitted due to space constraints. Example: In Figure 1,

up to time t = 12, we can observe that SOSEQ(E1, E2)
is defined as SOSEQ[1,4](E1, E2) and SOSEQ[7,10](E1, E2)
and WOSEQ(E1, E2) is defined as WOSEQ[1,3](E1, E2). With

this, OSEQ(E1, E2) is detected as one of the SOSEQ or

the WOSEQ pattern is detected that verifies the equivalence:

OSEQ(E1, E2) ≡ SOSEQ(E1, E2) OR WOSEQ(E1, E2).

VI. EXPERIMENTS AND RESULTS

A. Experimental Setup

The experiments were conducted with 12 different pat-

tern groups having equivalent patterns corresponding to each

operator from the hierarchy with the implementation of the

AND operator and the operators from subtrees rooted at SEQ

and CAND in Figure 4. Table III shows examples of two

pattern groups, where the first group has three equivalent

patterns defined for the ENDS operator (Rule 7 - Rule 9)

and the second group has five equivalent patterns defined for

the OVERLAPS operator (Rule 35 - Rule 39). For space

reasons, discussion of all the groups with equivalent patterns

are omitted from this paper.

1480 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

TABLE III: Examples of Equivalent Pattern Groups

No. Pattern

7 ENDS(E4(), E2())

8
AND(E4(), E2()) WHERE E4.te = E2.te∧
E4.ts > E2.ts

9 CAND(E4(), E2()) WHERE E4.ts > E2.ts
35 OV ERLAPS(E5(), E2());

36
AND(E5(), E2()) WHERE E5.ts < E2.ts∧
E2.ts < E5.te ∧ E5.te < E2.te

37
SEQ(E5(), E2()) WHERE E5.ts < E2.ts∧
E2.ts < E5.te

38
OSEQ(E5(), E2()) WHERE E5.ts < E2.ts∧
E2.ts < E5.te

38 SOSEQ(E5(), E2()) WHERE E2.ts < E5.te

Each pattern was run 10 times for an episode of 3000
time units. For each run, the total time taken by all operators

(OpTime), the total time taken by the rule processor for

processing a rule after an event to be processed has been

identified by event processor (RuleTime), and the total time

taken by the event processor (RunTime) were recorded.

OpTime RuleTime RunTime

T
im

e
 i
n

 S
e

c
o

n
d

s

0
2

4
6

8

Rule 7

Rule 8

Rule 9

0
.0

0
.3

(a) Rule 7 - Rule 9

OpTime RuleTime RunTime

T
im

e
 i
n

 S
e

c
o

n
d

s

0
2

4
6

8
1

0 Rule 20

Rule 21

Rule 22

Rule 23

Rule 24

0
.0

0
.6

(b) Rule 20 - Rule 24

OpTime RuleTime RunTime

T
im

e
 i
n

 S
e

c
o

n
d

s

0
2

4
6

8
1

0 Rule 30

Rule 31

Rule 32

Rule 33

Rule 34

0
.0

0
.6

(c) Rule 30 - Rule 34

OpTime RuleTime RunTime

T
im

e
 i
n

 S
e

c
o

n
d

s

0
1

2
3

4
5

6 Rule 35

Rule 36

Rule 37

Rule 38

Rule 39

0
.0

0
.3

(d) Rule 35 - Rule 39

Fig. 5: Experimental Results of Run-Time Performance of

Operators

B. Experimental Results

Figure 5 shows the comparisons of run-time for four dif-

ferent pattern groups. In each sub-figure, the first group of

bars shows the OpTime, the second group of bars shows the

RuleTime, and the third group of bars depicts the RunTime.

Notice that each graph in Figure 5 has a graph in an inset

to show the magnified form of the OPTime. In all of the

graphs and all of the bar groups, the first bar shows the running

time for the pattern using the operators designed in this work.

Similarly, the second is associated with the equivalent pattern

using the AND operator with temporal constraints. Other bars

represent equivalent patterns, as discussed in Section V, using

the parent operator with the temporal constraints, or the use of

disjunction of the immediate children operators (See Figure 4).
From the experiments with run-time performance, the fol-

lowing results about the event operators can be observed:
a) 1: The RunTime for patterns defined using the op-

erators from the operator hierarchy is minimum compared to

all other alternatives at the higher levels of the hierarchy due

to the filtering of incoming events prior to processing them

(except for the ENDS operator), while an alternative scheme

does the post-processing of incoming events.
b) 2: The RuleTime is better than other alternatives for

the patterns using the operator set defined in this work, except

for some patterns with the graphs shown in Figure 5.

a The graph in the sub-figure 5a shows that the pattern using

the ENDS operator (Rule 7) takes more time to process

the rule than the pattern defined using the CAND operator

(third bar - sub-figure 5a – Rule 9). This is the direct

consequence of processing the event buffer required for

the ENDS operator and filtering the events after the buffer

management. Whereas, Rule 9 detection does not maintain

a buffer and events are filtered prior to the detection process.

b The RuleTime for the pattern using the SOSEQ operator

(sub-figure 5b, first bar – Rule 20) is greater than the pattern

using the OSEQ operator with temporal constraints (fourth

bar – Rule 23). Though Rule 20 spends less time in pro-

cessing event operators, Rule 20 uses expensive operations

such as pattern duplication to manage partial patterns. This

makes the RuleTime for Rule 20 greater than Rule 23.

In a similar manner, the RuleTime for the patterns using

the MEETS operator, represented by the first bar (Rule

30) in the sub-figure 5c is higher than the pattern using

the OSEQ operator (fourth bar – Rule 33) with temporal

constraints and the pattern using the SOSEQ operator (fifth

bar - Rule 34) with temporal constraints. Also, Rule 35
using the OVERLAPS operator (first bar – sub-figure 5d)

has a RuleTime greater than Rule 38 (fourth bar) using the

OSEQ operator with temporal constraints and Rule 39 (fifth

bar) using the SOSEQ operator with constraints.

c) 3: The OpTime is better for the patterns using the

operators discussed in this work than other alternative repre-

sentations for all the groups except for pattern using the ENDS

operator (Figure 5a- Rule 7). For reasons discussed above,

in case of the ENDS operator’s buffer management and post

processing filtering of events, Rule 9 runs faster than Rule 7.
d) 4: Processing with use of the new set of operators

always runs faster than the use of the AND operator with

temporal constraints for all cases of run-time comparisons.
e) 5: When a complex pattern is defined by the temporal

constraints among different groups, then it is appropriate

to define them using the closest upper level operator with

temporal constraints or the disjunction of different operators.

This result is seen from the run time comparisons of patterns

shown in the graphs represented by the third and beyond bars.
As a conclusion, with the analysis of the run time results dis-

cussed above, the set of operators from the operator hierarchy

are performing better than using other alternative approaches

SAMUJJWAL BHANDARI, SUSAN D. URBAN: CONJUNCTION, SEQUENCE, AND INTERVAL RELATIONS IN EVENT STREAM PROCESSING 1481

that use parent operators from the hierarchy with additional

temporal constraints or the disjunction of the children oper-

ators from the operator hierarchy in terms of total running

time.

VII. CONCLUSIONS

The work in this paper has identified ambiguities in the

definition of event operators in current event processing lan-

guages. The conjunction operator and its relationship with the

sequence operator is used to define several possible sequential

operations using the idea of Allen’s interval relations and a

relation hierarchy. The definition of the operator hierarchy

defines how an event operator should be selected to achieve

the required semantics, making the event specification se-

mantically clear. All the operators discussed in this paper

were evaluated by comparing the run-time performance. The

experimental results showed that the new set of operators

performs better than other alternative approaches on run-time.
There are several possible future research directions. The

repetition operator is one of the powerful constructs in event

pattern specification. Current event processing systems, how-

ever, define the repetition operator in an incomplete way.

For example, if one specifies five occurrences of an event

E, is it that we are expecting sequential repetition over the

time (semantics of SEQ) or that the repetition does not have

any temporal constraints (semantics of AND)? Other issues

related to the definition of event operators, such as event time

computation and event detection have not been addressed in

this work and are left as future work.

REFERENCES

[1] R. S. Barga, J. Goldstein, M. Ali, and M. Hong, “Consistent Streaming
Through Time : A Vision for Event Stream Processing,” in 3rd Biennial

Conference on Innovative Data Systems Reseaarch (CIDR), 2007, pp.
363–374.

[2] F. Bry and M. Eckert, “Rule-Based Composite Event Queries: The
Language XChangeEQ and Its Semantics,” in Web Reasoning and

Rule Systems, ser. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2007, vol. 4524, pp. 16–30. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-72982-2\ 2

[3] S. Chakravarthy and D. Mishra, “Snoop : An Expressive Event Spec-
ification Language For Active Databases,” Data Knowl. Eng., vol. 14,
no. 1, pp. 1–26, 1994.

[4] R. Adaikkalavan and S. Chakravarthy, “SnoopIB: Interval-Based Event
Specification and Detection for Active Databases,” in Advances

in Databases and Information Systems. Springer-Verlag Berlin
Heidelberg, 2003, pp. 190–204. [Online]. Available: http://www.
springerlink.com/content/d3n1vnj0bhp2cdpm

[5] M. Li, M. Mani, E. A. Rundensteiner, and T. Lin, “Complex
event pattern detection over streams with interval-based temporal
semantics,” in Proceedings of the 5th ACM international conference

on Distributed event-based system, ser. DEBS ’11. New York,
NY, USA: ACM, 2011, pp. 291–302. [Online]. Available: http:
//doi.acm.org/10.1145/2002259.2002297

[6] J. F. C. . Allen, “Maintaining knowledge about temporal intervals,”
Commun. ACM, vol. 26, pp. 832–843, 1983.

[7] N. H. Gehani, H. V. Jagadish, and O. Shmueli, “Composite Event
Specification in Active Databases : Model & Implementation,” in 18th

International Conference on Very Large Data Bases V, 1992, pp. 327–
338.

[8] S. Gatizu and K. R. Dittrich, “Events in an Active Object-Oriented
Database System,” pp. 1–14, 1993.

[9] D. Zhu and A. Sethi, “Sel, a new event pattern specification language
for event correlation,” in Proceedings of Tenth International Conference

on Computer Communications and Networks, 2001, pp. 586–589.
[10] B. Mozafari, K. Zeng, and C. Zaniolo, “High-performance complex

event processing over xml streams,” in Proceedings of the 2012

ACM SIGMOD International Conference on Management of Data, ser.
SIGMOD ’12. New York, NY, USA: ACM, 2012, pp. 253–264.
[Online]. Available: http://doi.acm.org/10.1145/2213836.2213866

[11] P.-s. Kam and A. W.-C. Fu, “Discovering temporal patterns for
interval-based events,” in Proceedings of the Second International

Conference on Data Warehousing and Knowledge Discovery, ser.
DaWaK 2000. London, UK, UK: Springer-Verlag, 2000, pp. 317–326.
[Online]. Available: http://dl.acm.org/citation.cfm?id=646109.679272

1482 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

