
Synthesis of Implementable Control Strategies
for Lazy Linear Hybrid Automata

Luigi Di Guglielmo
Department of Computer Science

University of Verona, Italy

Sanjit A. Seshia
Department of EECS

University of California, Berkeley, USA

Tiziano Villa
Department of Computer Science

University of Verona, Italy

Abstract—In the last few years hybrid automata have been
widely applied in the modeling and verification of hybrid systems,
but their related formal verification techniques usually rely
on un-implementable assumptions to which a concrete control
strategy cannot adhere. For this reason, once a hybrid model
of the system has been proved to be correct with respect to
the desired properties, it would be valuable to derive a correct-
by-construction implementable control strategy for such a model.
This work discusses a new methodology and a corresponding tool-
chain that allows to synthesize an implementable control strategy
for the class of hybrid automata named Lazy Linear Hybrid
Automata (LLHA). LLHA model the discrete time behavior of
control systems containing finite-precision sensors and actuators
interacting with their environment under bounded delays.

I. INTRODUCTION

HYBRID systems are dynamical systems whose behaviors

cannot be characterized faithfully using either discrete

or continuous models. They consist of a discrete part that

operates in a continuous environment, and for this reason, they

are sensitive not only to time-driven phenomena but also to

event-driven ones. The presence of mixed dynamics makes the

formal treatment of this kind of systems considerably hard.

Hybrid automata (HA) [1] are a powerful formalism for

modeling hybrid systems. It extends the usual definition of

finite state automata with continuous variables that evolve

according to dynamics characterizing each discrete state. In

the last few years, a wide spectrum of algorithmic techniques

has been studied to solve the problems of simulation and

verification for hybrid automata. Current state-of-art tools can

verify hybrid systems with complex nonlinear dynamics [2],

[3], or linear systems with a large number of continuous

variables [4], thus becoming of interest also for real test-cases

and application domains.

Another phase of the design flow where the interplay of

continuous and discrete behaviors makes things complicated

is the refinement and implementation phase. Indeed, formal

verification techniques for hybrid automata usually rely on un-

implementable assumptions, such as the synchrony hypothesis,

i.e., the capability of performing any computation in zero time

units and forcing a change in the dynamics of the hybrid

system with no delays. As a consequence, the verification

results on the correctness of the ideal model of the system

cannot be directly applied to a real implementation [5].

For this reason, new semantics for hybrid automata, which

do no rely on synchrony or other unrealistic assumptions,

have been proposed in the literature [6], [7]. By formally

verifying the correctness of the system using such semantics, it

is possible to synthesize an implementable control strategy for

the analyzed hybrid system, i.e., determine the performance

and latency bounds to be satisfied by any conservative concrete

hardware/software device that implements the system.

In [6], [8], the authors propose the Almost-ASAP semantics,

a formal semantics that imposes a controller to react within a

bounded delay, i.e., ∆, when a synchronization or a control

action has to take place. The authors use reachability analy-

sis [1] to look for the largest value ∆ for which the controller is

still correct w.r.t. the properties that the original instantaneous

model has to enforce. Such a ∆-relaxed controller represents

an implementable control strategy if ∆ > 0. The main

limitation of this approach is that the problem of synthesizing

such a value ∆ may not be decidable.

The work in [7] proposes a similar approach for synthe-

sizing implementable control strategies. The authors try to

derive an implementable control strategy from the original

instantaneous model by shrinking the guards of the latter so

that, by assuming bounded reaction delays for synchronization

and control actions, all behaviors of the former are non-

blocking (i.e., shrinkability problem). This means that all

timing requirements satisfied by the instantaneous control

strategy, such as critical deadlines, are strictly respected by

the derived one. The authors have shown that deciding the

shrinkability problem can be checked in EXPTIME.

This work focuses on the problem of automating the syn-

thesis of implementable control strategies for a relevant class

of hybrid automata, named Lazy Linear Hybrid Automata

(LLHA). Such a kind of automata takes into account all the

typical implementation aspects (e.g., discrete time behaviors,

finite precision of sensors and clock, sensing and actuation

delays), thus, once they have been proved correct, they provide

an implementable control strategy for the hybrid system.

The paper is organized as follows. Section II introduces the

fundamental definitions and semantics of LLHA which moti-

vate the assumptions at the base of the proposed methodology

for synthesis of implementable control strategies described

in Section III. Section IV describes some case studies to

which the methodology has been applied. Finally, Section V

is devoted to concluding remarks.

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 1369–1376

978-1-4673-4471-5/$25.00 c© 2013, IEEE 1369

II. BACKGROUND

In the following the class of LLHA is described. A LLHA

is meant to be a model of a closed-loop system consisting

of a digital controller interacting with a continuous environ-

ment [9]. The controller samples the state of the continuous

environment at periodic discrete-time instants. The state of

the environment consists of the values of the continuous

variables as observed by the sensors. These values are digitized

with finite precision and reported to the controller that may

decide to switch the state of the environment. In such a

case, the controller generates suitable output signals that, once

transmitted to the actuators, will effect the desired change.

Sensors will report the values of the current variables and

actuators will change the evolution of the continuous variables

with bounded delays.

A. The LLHA formal definition

Definition 1 (Lazy Linear Hybrid Automaton). A finite pre-

cision Lazy Linear Hybrid Automaton (LLHA) is a tuple

〈X,Q, init, inv, f low,E, jump,Act, P,D, ǫ, B〉. The com-

ponents of a LLHA are as follows:

• Variables. A finite set X = {x1, . . . , xn} of real-valued

variables. Ẋ stands for the set {ẋ1, . . . , ẋn} of dotted

variables and X ′ stands for the set {x′
1, . . . , x

′
n} of

primed variables.

• Control modes. A finite set Q of control modes. Q0 ⊆ Q
denotes the set of initial modes.

• Initial condition. A labeling function init that assigns

to each control mode q ∈ Q0 an initial predicate. The

initial predicate init(q) is a convex (non-)linear formula

over the variables in X .

• Invariant condition. A labeling function inv that assigns

to each control mode q ∈ Q an invariant predicate.

The invariant predicate inv(q) is a convex (non-)linear

formula over the variables in X .

• Flow condition. A labeling function flow that assigns to

each control mode q ∈ Q a flow predicate. For each i ∈
{1, . . . , n}, let Ẋ i

q ⊂ Q be the set of legal flow rates for

the variable xi in the control mode q. The flow predicate

flow(q) is of the form (ẋ1 ∈ Ẋ1
q) ∧ . . . ∧ (ẋn ∈ Ẋn

q).
• Control switches. A set E of edges (q, q′) from a source

mode q ∈ Q to a target mode q′ ∈ Q.

• Jump condition. A labeling function jump that assigns

to each control switch e ∈ E a predicate. Each jump

predicate jump(e) from the control mode q to q′, is

given by the conjunction of a guard and a reset condition.

The guard is given by a convex (non-)linear formula over

the variables in X . The reset condition is given by the

identity predicate over the variables in X ∪ X ′ (e.g.,

x′
i = xi).

• Actions. A finite set Act of actions that the automaton

uses either for internal synchronization or for synchro-

nizing with other communicating automata. An edge

labeling function action : E → Act assigns an action

to each control switch.

• Period. P represents the sampling interval of the con-

troller, i.e., control mode switches take place at times T0,

T1, T2, . . . where Tk+1 = Tk + P .

• Delay parameters. D = {g, δg, h, δh} ⊂ Q is the set of

delay parameters such that 0 ≤ g ≤ g + δg < h ≤ h +
δh ≤ P , where g denotes the actuation delay, h denotes

the sensing delay and δg , δh represent the uncertainty in

actuation and sensing delay, respectively.

• Precision. ǫi is the precision of measurement of variable

xi.

• Range. Bi = [Bimin
, Bimax

] ⊂ R is the allowed range of

the variable xi such that Bimin
, Bimax

∈ Q and Bimin
<

Bimax
.

To keep the notation compact, in what follows, q
a,ϕ
−→ q′ is

used to denote that there exists a control switch e = (q, q′)
with q 6= q′, a = action(e) and ϕ = jump(e) in A.

Unlike the conventional definition of linear hybrid au-

tomata [10], invariants and guards in LLHA can be non-linear

(i.e., polynomial). The flows in linear hybrid automata are

represented using rectangular formulas which denote closed

intervals of the form [l, r] ⊂ R with l, r ∈ Q and l < r. Under

the assumption of finite precision, in a LLHA such rectangular

formulas denote finite sets of rational values modeling the rate

of change of the different continuous variables.

B. The LLHA formal semantics

Let A be a lazy linear hybrid automaton as defined above.

The following definitions are required to specify the behavior

of A in terms of a transition relation.

Definition 2 (Valuation for continuous variables). Let X =
{x1, . . . , xn} be a set of continuous variables. A valuation V
for the variables in X is a member of Rn such that V assigns

a real value V (i) to each variable xi.

Definition 3 (State of a LLHA). A state of a lazy linear hybrid

automaton A is a triple (q, V, q̂) where q, q̂ are control modes

and V is a valuation. q is the control mode holding at the

current time instant and q̂ is the control mode that held at

the previous time instant. V captures the actual values of the

variables at the current instant. The state (q, V, q̂) is feasible

if and only if V (i) ∈ [Bmini
, Bmaxi

] for every i.

Intuitively, the state of a LLHA stores information about

current and previous control modes (i.e., q and q̂, respectively)

due to the fact that, as a result of a mode change, the change of

rates of continuous variables will occur with bounded delays.

As a consequence, the evolution of continuous variables in a

mode q will depend not only on the flow predicates of q, but

also on the flow predicate of the previous control mode q̂.

The initial state is, by convention, the triple

(qinit, Vinit, qinit). It is assumed without loss of generality

that the initial state is feasible. Let SA denote the set of states

of A.

For convenience, in what follows, it is assumed that the rate

of change of continuous variables is constant in each control

mode. Thus, each flow predicate flow(q) can be described

1370 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

by vector ρq ∈ Qn that specifies the rate ρq(i) at which

each variable xi evolves when the automaton is in the control

mode q.

Definition 4 (Transition relation of a LLHA). =⇒⊆ SA ×
(Act ∪ {τ})× SA is such that:

• Let (q, V, q̂), (q′, V ′, q̂′) ∈ SA be states and a ∈ Act.
Then (q, V, q̂)

a
=⇒ (q′, V ′, q̂′) if and only if q̂′ = q and

there exist a control switch of the form q
a,ϕ
−→ q′ in A

and t1 ∈ Qn, t2 ∈ Qn such that ∀i ∈ [1, n], t1(i) ∈
[g, g+δg], t2(i) ∈ [h, h+δh] and the following conditions

are satisfied:

1) Let vi = V (i)+ ρq̂(i) · t1(i)+ ρq(i) · (t2(i)− t1(i))
for each i. Then (〈v1〉, . . . 〈vn〉) satisfies ϕ and each

〈vi〉 represents the digitized value of the variable xi

that has been rounded using the value of ǫi.
2) V ′(i) = V (i)+ ρq̂(i) · t1(i)+ ρq(i) · (P − t1(i)) for

each i.

• Let (q, V, q̂), (q′, V ′, q̂′) ∈ SA be states. Then

(q, V, q̂)
τ

=⇒ (q′, V ′, q̂′) if and only if q′ = q̂′ = q and

there exists t1 ∈ Qn and ∀i ∈ [1, n], t1(i) ∈ [g, g + δg]
such that:

1) V ′(i) = V (i)+ ρq̂(i) · t1(i)+ ρq(i) · (P − t1(i)) for

each i.

The lazy semantics of linear hybrid automata means that if

a control mode switch took place at time Tk, then the delay

in actuating a change in flow rates lies between [Tk + g, Tk +
g+ δg]. Similarly, a control decision made at time Tk is based

on the variables values read by the controller at some time

in the interval [Tk−1 + h, Tk−1 + h + δh]. The parameters

δg and δh represent the bounded uncertainty in actuation and

sensing delay, respectively. The precision ǫi depends on the

accuracy of the sensors measuring xi from the continuous

dynamical system. Guards and state invariants are evaluated

on the digitized values 〈xi〉 of the variables xi that have been

rounded using the value of ǫi. The parameter B, instead,

reflects the range of values which can be taken by a state

variable associated with a fixed width register.
From the semantics defined above, it is possible to derive the

notions of trajectory of a LLHA and the reachability relation

between states.

Definition 5 (Trajectory of a LLHA). Let A be a lazy linear

hybrid automaton and let (q, V, q̂) be a state of A. A trajectory

of A from (q, V, q̂) is a sequence of states (qi, Vi, q̂i) with i >
0, such that (q0, V0, q̂0) = (q, V, q̂) and (qi−1, Vi−1, q̂i−1)

α
=⇒

(qi, Vi, q̂i) for some α ∈ Act ∪ {τ}.

Example 1. Figure 1(i) sketches a lazy linear hybrid automa-

ton A with two control modes q1 and q2. Let i and j be

such that i, j ∈ {1, 2} and i 6= j. Each invariant condition

inv(qi) is defined as a subset Ii of R and the LLHA can

stay in the control mode qi if the valuation of the variable

x satisfies the invariant condition. The jump condition of a

control switch eij = (qi, qj) is specified by a guard set Gij

and a reset function that, by definition of LLHA, is always

gh gh

xxGx

δδ ,|,

'|12 =∈

1

3

1

2

1

1

1 },,{

Ix

x

∈

∈ ρρρ&

1q

gh gh

xxGx

δδ ,|,

'|21 =∈

2

2

2

1

2 },{

Ix

x

∈

∈ ρρ&

2q

1−kT
hT

2

1ρ

0T kT

2

2ρ

gT

21G

x

time

initx

1

1ρ

3

1ρ

K

12G

1+kT

2

1ρ

P P

1I

2I

(i) (ii)

h

kT 1−
h

kT
δ

1−

g

kT
g

kT
δ

hkk

k

h

k

hTT

hTT

h δδ
++=

+=

−−

−−

11

11

gkk

k

g

k

gTT

gTT

g δ
δ

++=

+=

Fig. 1. Lazy linear hybrid automaton example.

the identity function. The control switch eij is enabled only

if the digitized value 〈x〉 detected by the sensor belongs to

Gij . Moreover, sensing and actuation delays (i.e., h, δh and

g, δg, respectively) are associated to the control switch. Finally,

each flow condition flow(qi) constrains the evolution of the

continuous variable x to one of the possible rates ρni allowed

in the mode (e.g., {ρ11, ρ
2
1, ρ

3
1} in q1).

Figure 1(ii) sketches part of a trajectory of such a LLHA

starting from the initial state (q1, xinit). In the example, the

trajectory keeps following the dynamics flow(q1) until the

time instant Tk. In fact, the control switch e12 is not enabled

as soon as the trajectory reaches the guard set G12 because

of the semantics of LLHA: a jump condition can be evaluated

only at periodic time points and by considering the digitized

values detected by the sensor at some instant (marked with ⋆)

in the interval [T h
k−1, T

δh
k−1

]. As shown in the figure, at Tk, the

invariant condition of the mode q1 is still satisfied, thus, the

LLHA can either switch to q2 or continue with the dynamics

of q1. Let assume that the automaton performs a control switch

(marked with •) and moves to q2. When the LLHA switches

from q1 to q2, it resets the continuous variable x according to

the predicate specified by the jump condition, i.e., the identity

function. Thus, in this case, the trajectory starts from the same

state reached at Tk. Notice that the trajectory keeps following

the dynamics of q1 due to the presence of an actuation delay

(i.e., g, δg) on the control switch. In fact, only at some time

(marked with ◦) in the interval [T g
k , T

δg
k] the trajectory changes

according to the rates specified by the flow condition of q2
(i.e., ẋ ∈ {ρ12, ρ

2
2}). Then the trajectory follows that flow rate

until the invariant I2 is violated or the jump condition G21 is

satisfied allowing the automaton to jump back in the mode q1.

Definition 6 (Reachability relation between states of a LLHA).

Let A be a lazy linear hybrid automaton. A state (q, V, q̂)
reaches a state (q′, V ′, q̂′) if there exists a finite trajectory of

states (qi, Vi, q̂i), with 0 ≤ i ≤ n, such that (q0, V0, q̂0) =
(q, V, q̂) and (qn, Vn, q̂n) = (q′, V ′, q̂′). RC(q, V, q̂) is used to

denote the set of states reachable from (q, V, q̂). RC is used

to denote the set of all the possible states reachable from the

initial ones.

LUIGI DI GUGLIELMO ET AL.: SYNTHESIS OF IMPLEMENTABLE CONTROL STRATEGIES 1371

III. SYNTHESIS OF IMPLEMENTABLE CONTROL

STRATEGIES FOR LLHA

The main contributions of this work can be summarized as

follows:

• it proposes a Bounded Model Checking (BMC) [11] for-

mulation for the problem of synthesizing implementable

control strategies for LLHA that reduces such a problem

to the state reachability problem on LLHA. A previous

BMC formulation has been given in [12]. While that work

assumes that precision and delay parameters are given,

the present paper models them as parameters that must

be synthesized. Then, by verifying the safety properties

as reachability queries, it is possible to identify values

for such parameters which make the control strategy

implementable, i.e., the control strategy is able to handle

the continuous plant by following discrete-time and finite-

precision behaviors.

• it proposes a synthesis procedure that, starting from a set

of feasible values for the different parameters, identifies

for each of them the maximum values which enable a

LLHA to satisfy its required safety properties.

The following sections describe all the details of the pro-

posed approach.

A. Problem definition

The synthesis of an implementable control strategy for a

LLHA consists of determining if there exist legal values for

the sampling period (i.e., P), and upper bounds for sensing

and actuation delays (i.e., TSD = h+ δh and TAD = g + δg,

respectively) for which the control strategy modeled in the

LLHA is able to satisfy the safety properties that the hybrid

system has to ensure.

Let A be a LLHA such that SA is the set of the possible

states, INIT be a predicate that constrains the initial state,

T R be the transition relation that models the lazy behavior

of A and ϕsafe be a function that tests whether the safety

properties for the hybrid system hold in a given state. The

synthesis problem summarized above can be formalized by a

Quantified Boolean Formula (QBF), i.e., a formula in which

propositional variables can be either quantified existentially or

universally, as follows:

∃P, TSD, TAD, ∀ n ∈ N, ∀Si ∈ SA : INIT (S0)∧
n∧

i=0

T R(Si, Si+1, P, TSD, TAD) →
n∧

i=0

ϕsafe(Si)
(1)

Intuitively, the formula states that there exist suitable values

for P , TSD and TAD for which at any step i, the state Si+1,

reachable from a previous state Si, satisfies the safety property

ϕsafe.

An efficient way to solve this problem consists of deriving

from Formula (1) a BMC problem on A. Such a BMC problem

focuses on identifying the existence of bad states, i.e., states

Si violating the safety properties and reachable from the initial

state of A:

BMC(A,ϕsafe, n, P, TSD, TAD) ≡ INIT (S0)∧
n∧

i=0

T R(Si, Si+1, P, TSD, TAD) ∧
n∨

i=0

¬ϕsafe(Si)
(2)

The identification of suitable values for the parameters n, P ,

TSD and TAD which cause the unsatisfiability of Formula (2),

will prove the validity of Formula (1) w.r.t. the chosen P ,

TSD and TAD. Notice that, given the values for n, P , TSD

and TAD, the satisfiability of Formula (2) may be proved

or disproved by applying a Satisfiability Modulo Theory

(SMT) [13] decision procedure on its propositional part.

Notice that the transition relation T R in the BMC formula

may be unrolled a finite number n of times, where n is the

reachability diameter [14] of the LLHA, i.e., the minimal

number of steps for reaching all its reachable states. Thus,

the formula checks if a bad state Si≤n is reachable from the

initial state S0. Unfortunately, such a number n may require

a very high number of copies of the transition relation in

the BMC formula making the verification unfeasible due to

memory problems.

Due to lack of space, the symbolic BMC encoding will be

described in an extended version of the paper. In what follows

a synthesis procedure is proposed for identifying the maximum

suitable values of sampling period (P), sensing and actuation

delays (TSD,TAD respectively) to let the LLHA A satisfy the

safety specification ϕsafe.

B. Synthesis procedure

The definition of the BMC formula described in the previous

section is based on a set of parameters whose values affect the

correctness of the LLHA model. The synthesis engine aims at

identifying the maximum values of such parameters for which

the discrete-time and finite-precision behaviors specified by

the LLHA are able to satisfy ϕsafe.

In particular, the parameters reported into the formula BMC
are the following:

• sampling period P . It specifies the periodicity at which it

is possible to evaluate the guards for performing a mode

switch;

• sensing delay upper-bound TSD. It specifies the maxi-

mum delay admitted for notifying the controller that a

mode switch can be performed (i.e., sensor latency);

• actuation delay upper-bound TAD. It specifies the maxi-

mum delay admitted for changing the rate due to a mode

switch (i.e., actuator latency).

At the moment, the precision ǫ of the observed values is not

explicitly modeled as a parameter. Instead, it is assumed that

it is fixed at some suitable level of granularity and that the

constant values reported in the predicates that model guard

and invariant conditions have been scaled accordingly to be

represented as integers1.

1Remember that the underlying structure used for the symbolic represen-
tation of variables is the bit-vector.

1372 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

For reducing the time required in identifying the suitable

values for the parameters summarized above, the user is asked

to specify a desired sampling period P that the control strategy

has to adopt. Then a synthesis procedure will automatically

retrieve the maximum values for TSD and TAD that preserve

the safety of the model according to the specified sampling

period.

The procedure identifies the intended values by using a

bisection method on a finite interval of feasible values for the

parameters. According to the LLHA semantics, the actuation

delay has to be smaller than the sensing delay and the sensing

delay has to be smaller than the sampling period. Thus, it is

necessary to search the suitable values of TAD and TSD in

some intervals I1 = [a, b] and I2 = [c, d] such that b < d and

b+ d < P . This is due to the fact that, in the BMC encoding,

the upper bound TAD for the actuation delay is considered

as the most distant time instant from a sampling period Ti at

which a control switch has occurred and, as a consequence,

its starting search space should be given by the interval [0, b].
Similarly, in the BMC encoding, the upper-bound TSD for the

sensing delay is considered as the most distant time instant

from a sampling period Tj , subsequent to Ti, at which a

control decision may be taken. Thus, the starting search space

for TSD should be given by the interval I2 = [0, d].
Algorithm 1 reports the pseudo-code implementing the syn-

thesis procedure for parameters, and BMCn(P, TAD, TSD)
denotes the BMC encoding of the transition relation of the

LLHA A unrolled n times (n is the reachability diameter).

At each step, the procedure divides the current subintervals

of [a, b] and [c, d] in two by computing their midpoints mid1
and mid2. Then, using a SMT solver (i.e., SMT), it verifies

whether the formula BMCn(P,mid1,mid2) is valid by fixing

TAD = mid1 and TSD = mid2. Now, according to the

verification results, the method registers the current midpoints

as candidate solutions and selects the subintervals to be used

in the next step. In particular, if mid1 and mid2 make the

formula valid, they become candidate maximal values for

TAD and TSD, resp., and the new intervals of search will

be [mid1, b] and [mid2, d], i.e., the procedure will check the

validity of the formula on new values greater than the current

midpoints. Otherwise, the procedure has to look for smaller

ones. At first, it checks the formula validity by reducing

only the current value for actuation delays. It computes the

new candidate for TAD (i.e., midnew) and, by preserving the

previous candidate mid2 for TSD, verifies the validity of the

formula BMCn(P,midnew ,mid2). If the verification returns

a positive answer, then midnew and mid2 are recorded as new

candidate maximal solutions for TAD and TSD, resp., and

the new intervals of search will be TAD ∈ [midnew,mid1]
and TSD ∈ [mid2, d]. On the contrary, the non-validity of

the formula underlines that also a smaller sensing delay is

required. For this reason the search continues on the intervals

[a,mid1] and [c,mid2]. In this way the intervals that contain

the satisfying values of the parameters are reduced in width

at least by 50% at each step. The process is continued until

the maximum number N of iterations is reached.

Algorithm 1: The synthesis procedure of parameters for

LLHA-based control strategies.

procedure find values(BMCn, P , a, b, c, d, N)
input: the BMCn formula, the sampling period P , initial

intervals [a,b] and [c,d] of feasible values for TAD and
TSD, resp., and the maximum number N of iterations

output: maximal values of TAD and TSD for which the control
strategy satisfies ϕsafe, otherwise TSD = 0 and
TAD = 0

1 it = 0;
2 TSD = 0;
3 TAD = 0;
4 mid1 = ⌊(a+ b)/2⌋;
5 mid2 = ⌊(c+ d)/2⌋;
6 while (it < N) do
7 if SMT (BMCn(P,mid1,mid2)) 99K valid then
8 a = mid1;
9 TAD = mid1;

10 c = mid2;
11 TSD = mid2;

12 else
13 b = mid1;
14 midnew = ⌊(a+ b)/2⌋;
15 if SMT (BMCn(P,midnew ,mid2)) 99K valid then
16 a = midnew ;
17 TAD = midnew;
18 c = mid2;
19 TSD = mid2;

20 else
21 d = mid2;

22 mid1 = ⌊(a+ b)/2⌋;
23 mid2 = ⌊(c+ d)/2⌋;
24 it = it+ 1;

25 return (TSD, TAD);

IV. EXPERIMENTAL RESULTS

This section reports the results obtained by applying the

proposed LLHA parameter synthesis approach on four case

studies. All experiments have been performed on a workstation

with Intel Xeon 2.53 GHz processors and 16GB RAM. The

hybrid models of the case studies have been described by

means of the CIF [15] language. The cif2uclid tool has been

implemented to automatically derive, from such models, the

LLHA descriptions and the corresponding BMC encodings

which have been automatically synthesized into equivalent

SMT formulas by using the UCLID [16] modeling environ-

ment. Several SMT solvers have been used to verify the

models and identify the maximum values for the sensing and

actuation delay parameters appearing in the LLHA models.

In particular, for each case-study the performances of the

following SMT solvers have been compared: Beaver [17],

Boolector2 [18], and Yices [19]. Notice that any available SMT

solver could be used as verification and parameter synthesis

engine.

2MiniSat and PicoSat have been used as the underlying SAT engines.

LUIGI DI GUGLIELMO ET AL.: SYNTHESIS OF IMPLEMENTABLE CONTROL STRATEGIES 1373

A. Train-Gate Controller

The train gate controller ensures that the gate is closed when

the train is approaching it. The train is assumed to move at

a constant speed v on a circular track of length dfar−away

and the gate begins to close at a constant angular speed u
when the train is at dmax distance from the gate. Once the

train has moved dmax distance away from the gate, the gate

begins to open again. The system is shown in Figure 2. The

distance d of the train is measured in meters, the angle a
of the gate in degrees and the time in seconds. The set of

parameter values used in the running example is as follows:

v = 20m/s, u = 10◦/s, dfar−away = 20000m, dmax =
400m and dsafe = 160m.

FAR

d = v

a = 0

d ≤-dmax ∧ 0 ≤ a ≤ 90

.

.

d ≥ -d
max

a ≤ 0

CLOSING

d = v

a = -u

0 ≤ a ≤ 90

.

.

NEAR-CLOSED

d = v

a = 0

∧

.

.
d ≤ -d

d = -dfar-away

a = 0

d ≥ d
max

a ≥ 90

a = 0

d ≤ dmax ∧ 0 ≤ a≤ 90

.

OPENING

d = v

a = u

0 ≤ a ≤ 90

.

.

PAST

d = -v

a = 0

d ≥-dfar-away ∧ 0 ≤ a ≤ 90

.

.

d ≤ -dfar-away

Fig. 2. LLHA model of the Train-Gate controller.

The system is considered safe, i.e., the train is never closer

to the gate than dsafe unless the gate is completely closed,

only if the following safety property is satisfied: −dsafe ≤
d ≤ dsafe → a <= 0.

Such a property is used during the synthesis phase for identi-

fying the maximum values for the sensing and actuation delay

parameters (TSD and TAD, respectively) that are reported into

the LLHA modeling the system. In particular, the parametric

LLHA has been automatically generated by using a digitizing

precision ǫ = 10−3 and a control switch period P = 10−2s.

Then, the parameter synthesis approach has determined that

the coarse values for the sensing and actuation delays which

ensure the correctness of such a LLHA are TSD = 4 · 10−3s
and TAD = 2 ·10−3s. The time required for synthesizing such

values is reported in Table I.

TABLE I
SYNTHESIS TIMES USING DIFFERENT SMT SOLVERS.

SMT TSD s-Space TAD s-Space # Bisect. Time (s)

Beaver [0; 5 · 10−3] [0; 4 · 10−3] 15 123.336

Boolector [0; 5 · 10−3] [0; 4 · 10−3] 15 101.544

Yices [0; 5 · 10−3] [0; 4 · 10−3] 15 49121.94

In particular, column SMT reports the name of the com-

pared SMT solvers; columns TSD s-Space and TAD s-Space

report the initial search spaces used for identifying suitable

values for the sensing and actuation delays, respectively.

Column # Bisect. shows the maximum number of bisection

iterations allowed for synthesizing the parameter values and,

finally, column Time reports the total time (in seconds) spent

for the synthesis process.

B. Room Heating Controller

The room heating controller ensures that the temperature of

a room is kept into a comfort interval by turning on and off

the heater installed into the room. Figure 3 depicts the model

of the system. Intuitively, the automaton is composed by two

control modes on and off, representing the status of the heater.

The variable x denotes the room temperature (measured in
◦C). When the heater is off, the temperature of the room falls

according to any rate specified by the rectangular constraint

ẋ ∈ [−b,−a]. Instead, when the heater is on the temperature

of the room rises following any rate specified by the constraint

ẋ ∈ [b, c]. The heater is turned on as soon as the falling

temperature reaches xlow : the automaton moves to the control

mode on and the temperature rises starting at a value x ≤ xlow.

The heater is turned off as soon as the temperature reaches

xhigh: the automaton moves to the control mode off and

the temperature starts falling again at a value x ≥ xhigh.

This control strategy guarantees that the temperature of the

room will remain between xmin and xmax starting at the

initial temperature xinit such that xlow < xinit < xhigh.

The set of parameter values used in the running example

is as follows: a = 2 · 10−1 ◦C/s, b = 3 · 10−1 ◦C/s,

c = 4 · 10−1 ◦C/s, xmin = 17.8◦C, xlow = 18◦C,

xhigh = 22◦C, xmax = 22.5◦C and xinit = 19◦C.

x ≤ xlow

x = xinit

x ≥ xhigh

OFF

-b ≤ x ≤ -a

x ≥ xlow

.
ON

b ≤ x ≤ c

x ≤ xhigh

.

Fig. 3. The LLHA model of the room heating controller.

The property xmin < x < xmax is used for synthesizing the

maximum values of the sensing delay TSD and the actuation

delay TAD in the parametric LLHA modeling the finite-

precision lazy heating controller. Such a model has been

generated from the one depicted in Figure 3 by choosing a

digitizing precision ǫ = 10−4 and a control switch period

P = 10−2s. The synthesis procedure found that the values

TSD = 11 · 8−3s and TAD = 10 · 10−3s guarantee that the

lazy controller keeps the temperature into the comfort bounds

(i.e., xmin and xmax). The time required for synthesizing such

values is reported in Table II.

C. Watertank Controller

The watertank system is centered on a water tank, which is

characterized by an uncontrolled outbound water flow, while

the inbound water flow is controlled by the aperture of a valve.

The controller acts on the aperture of the valve y in order

to keep the water level x in a safe interval xmin < x <

1374 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

TABLE II
SYNTHESIS TIMES USING DIFFERENT SMT SOLVERS.

SMT TSD s-Space TAD s-Space # Bisect. Time (s)

Beaver [0; 4 · 10−2] [0; 3 · 10−2] 15 343.888

Boolector [0; 4 · 10−2] [0; 3 · 10−2] 15 1584.864

Yices [0; 4 · 10−2] [0; 3 · 10−2] 15 90903.836

xmax. The system model is shown in Figure 4. The water

level is measured in deciliters, the valve aperture in degrees

and the time in seconds. The set of parameter values used in

the running example is as follows: a = 1dl, b = 2dl, c = 4dl,
d = 7dl, v = 20◦/s, xhigh = 850dl, xlow = 550dl, ymin =
0◦, ymax = 360◦, xmax = 870dl and xmin = 540dl.

OPENING

a ≤ x ≤ c

y = v

y ≤ ymax

.

.

OPEN

c ≤ x ≤ d

y = 0

x ≤ xhigh

.

.

y ≥ ymax

x ≥ xhighx ≤ xlow

x = xlow

y = 0

CLOSED

-c ≤ x ≤ -b

y = 0

x ≥ xlow

.

.

CLOSING

-b ≤ x ≤ -a

y = -v

y ≥ ymin

.

.

y ≤ ymin

x ≥ xhighx ≤ xlow

Fig. 4. LLHA model of the watertank controller.

In the model, the water level begins to increase according

to a rectangular constraint ẋ = [a, c] when the valve starts to

open at constant angular speed v. As soon as the valve reaches

its full aperture, the incoming flow reaches its maximum value,

filling faster the water tank. Once the water level crosses an

upper threshold xhigh, the valve starts to close in order to

avoid a water overflow. Once the valve is completely closed,

no inbound water flow is present and the water level keeps

decreasing. When the water level reaches its lower threshold

xlow, the valve begins to open again.

The property xmin < x < xmax is used for synthesizing the

maximum values of the sensing delay TSD and the actuation

delay TAD in the parametric LLHA modeling the finite-

precision lazy watertank controller. Such a model has been

generated from the one shown in Figure 4 by choosing a

digitizing precision ǫ = 10−3 and a control switch period

P = 10−1s. At the end of the synthesis phase, the veri-

fication has determined that the values TSD = 23 · 10−3s
and TAD = 11 · 10−3s guarantee that the lazy controller

keeps safely the water level into the xmin and xmax bounds.

The time required for synthesizing such values is reported in

Table III.

D. Automated Highway Control System

Automated Highway Control System (AHS) is an arbiter

which ensures that there is no collision between cars running

TABLE III
SYNTHESIS TIMES USING DIFFERENT SMT SOLVERS.

SMT TSD s-Space TAD s-Space # Bisect. Time (s)

Beaver [0; 5 · 10−2] [0; 4 · 10−2] 15 531.56

Boolector [0; 5 · 10−2] [0; 4 · 10−2] 15 2413.02

Yices [0; 5 · 10−2] [0; 4 · 10−2] 15 107236.98

on a highway by imposing legal speed ranges. The linear

hybrid automaton representing the case of four cars is shown in

Figure 5. This example is a small variant of the original model

reported in [20]. The distance between cars is measured in km,

time in hours and speeds in km/h. The set of parameter values

used in the running example is as follows: rl = 20km/h,

b = 30km/h, c = 40km/h, d = 50km/h, e = 60km/h,

ru = 70km/h, f = 100km/h, αmin = 2 · 10−3km,

αmax = 1km and α′
min = 5 · 10−4km.

RECOVERY21

(b-e) ≤ y12 ≤ (c-d)

y23 = 0

y34 = 0

y12 ≥ αmax

y12 ≥ αmaxy12 ≤ αmax y34 ≥ αmaxy34 ≤ αmax

RECOVERY43

y12 = 0

y23 = 0

(b-e) ≤ y34 ≤ (c-d)

y34 ≥ αmax

y23 ≥ αmax y23 ≤ αmax

RECOVERY32

y12 = 0

(b-e) ≤ y23 ≤ (c-d)

y34 = 0

y23 ≥ αmax

CRUISE

(a-f) ≤ y12 ≤ (f-a)

(a-f) ≤ y23 ≤ (f-a)

(a-f) ≤ y34 ≤ (f-a)y12 ≥ αmin y12 ≤ αmin y34 ≥ αminy34 ≤ αmin

.
.
.

.
.

.

.

.
.

.
.

.

ERROR

y12 = 0

y23 =0

y34 = 0

RECOVERY23

(ru-e) ≤ y12 ≤ (ru-d)

(d-c) ≤ y23 ≤ (e-b)

(b-rl) ≤ y34 ≤ (c-rl)

α'min ≤ y23 ≤ αmin

αmin ≤ y12 ≤ αmax

αmin ≤ y23 ≤ αmax

αmin ≤ y34 ≤ αmax

RECOVERY12

(d-c) ≤ y12 ≤ (e-b)

(b-rl) ≤ y23 ≤ (c-rl)

y34 = 0

α'min ≤ y12 ≤ αmin

RECOVERY34

y12 = 0

(ru-e) ≤ y23 ≤ (ru-d)

(d-c) ≤ y34 ≤ (e-b)

α'min ≤ y34 ≤ αmin

y23 ≥ αmin y23 ≤ αmin

y12 ≤ α’min

y23 ≤ α’min

y34 ≤ α’min

.

.

.

.

.

.

.

.

.

.

.

.

Fig. 5. LLHA model of the Automated Highway Control System.

To avoid collisions, the arbiter specifies speed limits (i.e.,

[a, f]) for each vehicle. When two vehicles i and j come

within a distance yij ≤ αmin of each other, there exists a

possible collision event. The arbiter asks the approaching car

to slow down by reducing the speed into the interval [b, c], and

asks the leading car to speed up by keeping a speed into the

interval [d, e]; it also requires that all other cars not involved

in the possible collision slow down to a constant recovery

mode velocity rl for cars behind the critical region and ru for

cars in front of the critical region. When the distance between

the two vehicles involved in the possible collision exceeds α,

the arbiter model goes back to the dynamics of the cruise

mode. Moreover, the arbiter keeps all the vehicles below a

maximal distance αmax of each other. When two vehicles i
and j exceed such a distance (i.e., yij ≥ αmax), the arbiter

asks the leading car to slow down by reducing the speed into

the interval [b, c] and asks the approaching car to speed up by

keeping a speed into the interval [d, e]; it also requires that all

other cars keep the current distance constant (i.e., speeding up

for cars behind the critical region and slowing down for cars

in front of the critical region). When the distance between the

LUIGI DI GUGLIELMO ET AL.: SYNTHESIS OF IMPLEMENTABLE CONTROL STRATEGIES 1375

two vehicles decreases below αmax, the arbiter model goes

back to the dynamics of the cruise mode.
The only safety property to be satisfied by the model is that

the control mode is never the error mode.
Again, once the parametric LLHA model has been extracted

by choosing a digitizing precision ǫ = 10−5 and a clock period

P = 10−2, the safety property is used as a constraint for

identifying the coarse values of the sensing and actuation delay

parameters (TSD and TAD, respectively). In this case study, the

synthesis phase determined that the values TSD = 218 ·10−5h
and TAD = 112·10−5h guarantee the safety of the system, i.e.,

the lazy controller is able to avoid cars’ collision. The time

required for synthesizing such values is reported in Table IV.

TABLE IV
SYNTHESIS TIMES USING DIFFERENT SMT SOLVERS.

SMT TSD s-Space TAD s-Space # Bisect. Time (s)

Beaver [0, 5 · 10−3] [0, 4 · 10−3] 15 1472.75

Boolector [0, 5 · 10−3] [0, 4 · 10−3] 15 1844.05

Yices [0, 5 · 10−3] [0, 4 · 10−3] 15 188523.11

V. CONCLUSION

The development of methodologies for the synthesis of

implementable control strategies for models based on hybrid

automata is a new and valuable research area. This work

focused on defining a new methodology which enables the

synthesis of implementable control strategies for the inter-

esting subclass of lazy linear hybrid automata. To support

the methodology, a tool, i.e., cif2uclid, and a synthesis pro-

cedure were implemented in order to provide a complete

toolchain for synthesizing the implementable control strategy

in a systematic way. cif2uclid is able to extract from a hybrid

model a corresponding parametric-LLHA description, that is

automatically synthesized into an equivalent SMT formula by

using the UCLID modeling environment. The verification of

such a formula retrieves constraints for the parameters which

guarantee that the control strategy is implementable, i.e.,

the verification retrieves the performance and latency bounds

which make the control strategy realizable by a concrete

hardware/software device. The synthesis procedure may use

any available SMT solver.
The proposed procedure for the automatic synthesis of pa-

rameters that guarantee implementability of control strategies

is supported by a complete toolchain and improves the state-

of-art with respect to previous proposals, however scalability

of the overall approach is still a serious issue, when the

objective is to study test cases of industrial strength. This

may require from one side further restrictions to the class of

allowed hybrid automata, still preserving enough expressivity

for practical purposes, and from the other side advances in the

computational engines and how they are used (for instance,

gaining efficiency by using incrementally the SMT solvers).

REFERENCES

[1] T. Henzinger, “The Theory of Hybrid Automata,” in Proc. of IEEE

Symposium on Logic in Computer Science (LICS), pp. 278 – 292, 1996.
[2] S. Ratschan and Z. She, “Safety Verification of Hybrid Systems by Con-

straint Propagation Based Abstraction Refinement,” ACM Transactions

in Embedded Computing Systems, vol. 6, no. 1, 2007.
[3] L. Benvenuti, D. Bresolin, P. Collins, A. Ferrari, L. Geretti, and

T. Villa, “Assumeguarantee verification of nonlinear hybrid systems
withAriadne,” International Journal of Robust and Nonlinear Control,
p. doi: 10.1002/rnc.2914, 2012.

[4] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel,
R. Ripado, A. Girard, T. Dang, and O. Maler, “SpaceEx: Scalable
Verification of Hybrid Systems,” in Proc. of International Conference

on Computer Aided Verification (CAV), pp. 379–395, 2011.
[5] D. Bresolin, L. D. Guglielmo, L. Geretti, R. Muradore, P. Fiorini, and

T. Villa, “Open Problems in Verification and Refinement of Autonomous
Robotic Systems,” in Proceedings of the 15th EUROMICRO Conference
on Digital System Design (DSD 2012), pp. 469–476, 2012.

[6] M. Wulf, L. Doyen, and J. Raskin, “Almost ASAP Semantics: from
Timed Models to Timed Implementations,” Formal Aspects of Comput-

ing, vol. 17, no. 3, pp. 319 – 341, 2005.
[7] O. Sankur, P. Bouyer, and N. Markey, “Shrinking Timed Automata,” in

Proc. of IARCS Annual Conf. on Foundations of Software Technology

and Theoretical Computer Science (FSTTCS), pp. 90–102, 2011.
[8] D. Bresolin, L. D. Guglielmo, L. Geretti, and T. Villa, “Correct-by-

Construction Code Generation from Hybrid Automata Specification,”
in Proceedings of First IEEE Workshop on Design, Modeling and

Evaluation of Cyber Physical Systems (CyPhy’11), pp. 1660–1665,
2011.

[9] M. Agrawal and P. Thiagarajan, “The Discrete Time Behavior of Lazy
Linear Hybrid Automata,” in Proc. of International Conference on

Hybrid Systems: Computation and Control (HSCC), pp. 55–69, 2005.
[10] T. Henzinger and P. Kopke, “Discrete-Time Control For Rectangular

Hybrid Automata,” in Proc. of International Colloquium on Automata,

Languages and Programming (ICALP), pp. 582–593, Springer, 1997.
[11] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu, “Bounded

Model Checking,” Advances in Computers, vol. 58, pp. 117–148, 2003.
[12] S. Jha, B. A. Brady, and S. A. Seshia, “Symbolic Reachability Analysis

of Lazy Linear Hybrid Automata,” in Proc. of International Conference
on Formal Modeling and Analysis of Timed Systems (FORMATS),
pp. 241–256, 2007.

[13] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli, “Satisfiability
Modulo Theories,” in Handbook of Satisfiability (A. Biere, H. van
Maaren, and T. Walsh, eds.), vol. 4, ch. 8, IOS Press, 2009.

[14] D. Kroening and O. Strichman, “Efficient Computation of Recurrence
Diameters,” in Proc. of International Conference on Verification, Model
Checking, and Abstract Interpretation (VMCAI), pp. 298–309, 2003.

[15] C. Sonntag, R. Schiffelers, D. van Beek, J. Rooda, and S. Engell,
“Modeling and Simulation using the Compositional Interchange Format
for Hybrid Systems,” in International Conference on Mathematical

Modelling (MATHMOD), pp. 640–650, 2009.
[16] R. E. Bryant, S. K. Lahiri, and S. A. Seshia, “Modeling and Verifying

Systems using a Logic of Counter Arithmetic with Lambda Expressions
and Uninterpreted Functions,” in Proc. of International Conference on

Computer Aided Verification (CAV), pp. 78–92, 2002.
[17] S. Jha, R. Limaye, and S. Seshia, “Beaver: Engineering An Efficient

SMT Solver for Bit-Vector Arithmetic,” in Proc. of International Con-
ference on Computer Aided Verification (CAV), pp. 668–674, 2009.

[18] R. Brummayer and A. Biere, “Boolector: An Efficient SMT Solver for
Bit-Vectors and Arrays,” Tools and Algorithms for the Construction and
Analysis of Systems, pp. 174–177, 2009.

[19] B. Dutertre and L. De Moura, “The Yices SMT Solver.” http://yices.csl.
sri.com/tool-paper.pdf, 2006.

[20] S. K. Jha, B. H. Krogh, J. E. Weimer, and E. M. Clarke, “Reachability
for Linear Hybrid Automata Using Iterative Relaxation Abstraction,” in
Proc. of International Conference on Hybrid Systems: Computation and

Control (HSCC), pp. 287–300, 2007.

1376 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

