
FAL: A Forensics Aware Language for Secure
Logging

Shams Zawoad

zawoad@cis.uab.edu

University of Alabama at Birmingham

Marjan Mernik

marjan.mernik@uni-mb.si

University of Maribor

Ragib Hasan

ragib@cis.uab.edu

University of Alabama at Birmingham

Abstract—Trustworthy system logs and application logs are
crucial for digital forensics. Researchers have proposed different
security mechanisms to ensure the integrity and confidentiality
of logs. However, applying current secure logging schemes on
heterogeneous formats of logs is tedious. Here, we propose FAL,
a domain-specific language (DSL) through which we can apply
a secure logging mechanism on any format of logs. Using FAL,
we can define log structure, which represents the format of logs
and ensures the security properties of a chosen secure logging
scheme. This log structure can be later used by FAL to serve
two purposes: it can be used to store system logs securely, and
it will help application developers for secure application logging
by generating required source code.

Keywords-DSL, Secure Logging, Audit Trail, Digital Forensics

I. INTRODUCTION

IN RECENT years, digital crime case has increased tremen-

dously. An annual report of the Federal Bureau of Inves-

tigation (FBI) states that the size of average digital forensic

case is growing 35% per year in the United States. From 2003

to 2007, it increased from 83 GB to 277 GB [1]. Various

logs, e.g., network log, process log, file access logs, audit trail

of application play vital role in a successful digital forensics

investigation. System and application logs record crucial events,

such as, user activity, program execution status, system resource

usage, network usage, and data changes through which some

important attacks can be identified, e.g., network intrusion,

malicious software, unauthorized access to software, and many

more. Log is also important to ensure the auditability of a

system and auditability is a vital issue to make a system

compliant with the regulatory acts, e.g., Sarbanes-Oxley (SOX)

[2] or The Health Insurance Portability and Accountability

Act (HIPAA) [3]. Keeping system audit trails and reviewing

them in a consistent manner is recommended by NIST as one

of the good principles and practices for securing computer

systems [4].
While the necessity of logs and application audit trail are

indisputable, the trustworthiness of this evidence will remain

questionable if we do not take proper measures to secure them.

In many real-world applications, sensitive information is kept

in log files on an untrusted machine. As logs are crucial for

identifying an attacker, attackers often attack the logging system

to hide the trace of their presence in the attack or to frame an

honest user. Very often, experienced attackers first attack the

logging system [5], [6]. Malicious insider users colluding with

the attacker can also tamper with logs. Moreover, forensics

investigators can also alter evidence before presenting to court.

To protect logs from these possible attacks, we must need a

secure logging mechanism. Researchers have already proposed

several secure logging schemes [7]–[9], which are designed to

defend such attacks.

However, ensuring the privacy and integrity of the logs is

costly given that it requires special knowledge and skill of

developers. To implement a secure logging scheme, we need

to give complete access of the logs to application developers.

Providing full access of sensitive logs to developers definitely

increases the attack surface. They can violate the privacy,

sell sensitive business or personal information, and most

importantly can keep a back door for future attack. Adding

secure application audit trail can also be burdensome for

developers, and increases the application development cost. On

the other hand, system admins, who have access to network logs,

process logs may not have sufficient knowledge for developing

a securing logging scheme.

In this paper, we propose a DSL [10] to assist system admins

and application developers for maintaining system logs and

application audit trail securely, which is crucial for digital

forensics investigation. A DSL is designed for a particular

domain and has great advantages over general-purpose language

for that specific domain. DSLs provide higher productivity by

its greater expressive power, the ease of use, easier verification

and optimization [10]–[12]. Using our proposed DSL FAL,

system admins can define log structure and parse a log file

according to the structure. They can also define the security

parameters to preserve the integrity and confidentiality of logs.

To accomplish this, they only need their domain knowledge

related with system logs. Using FAL, a software security analyst

can define the required audit trail structure and can generate

code for a generic purpose language (GPL), e.g., Java, C# to

store the audit logs securely.

Contribution. The contribution of this work is two-fold:

• We propose the first domain-specific language FAL, which

can be used to ensure the security of system logs, and

application audit logs.

• We show all the DSL development processes, which can

be served as a guideline for future DSL development.

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 1567–1574

978-1-4673-4471-5/$25.00 c© 2013, IEEE 1567

II. BACKGROUND AND MOTIVATION

In this section, we present the necessity of secure logging

scheme, common approaches for secure logging, and how a

DSL can help to mitigate some challenges of secure logging.

A. Secure Logging

As logs are crucial for digital forensics investigation, this is

often become the target of attacker. There can be two types of

attacks on logs:

• Integrity: Integrity of logs can be violated in three ways

– an attacker can remove log information, can re-order the

log entries, and can add fake logs. A malicious user can

launch these attacks to hide the trace of illegal activities

from forensics investigation, or to frame an honest user.

Timing of an incident is crucial for forensics investigation.

Hence, re-ordering the log entries can be important for an

attacker, which can give him a chance to produce some

alibi.

• Confidentiality: From various system logs and application

logs, we can identify the activity of users as well as

sensitive private information about the users. From the

application logs of a business organization, we can

also trace out very sensitive business information. This

information has high value to attacker. Hence, attack on

the confidentiality of logs can be highly beneficial to

attacker.

The above attacks can come from different types of attackers:

• External Attackers: An external attacker can be a

malicious user intending to attack users’ privacy from the

logs, or try to modify logs to hide the trace of any attack

(e.g., network intrusion, malware, spyware). A dishonest

forensic investigator can also be an external attacker, as

the investigator can alter the logs before presenting to

court.

• Internal Attackers: A more crucial attack can come

from insider attackers colluding with malicious users.

A dishonest insider can be a system admin, database

admin, or application developer. As system admins have

access to all system logs, they can always tamper with

logs. Application logs and some of the system logs can

be stored in database. In this case, threats can come

from database admin. A malicious database admin can

modify logs without leaving any trace of the modification.

Application developers can modify application logs, or

can create a backdoor to collect the application logs.

Besides tampering the logs, these insiders can also attack

on the privacy of users. They can collect and sell sensitive

business and personal information derived from the logs.

To defend the confidentiality and integrity of logs, re-

searchers have proposed several secure logging schemes [7]–[9],

[13]. The commonalities among these secure logging schemes

are: encrypting sensitive fields to protect the confidentiality,

and maintain a hash-chain of the logs to protect the integrity

of logs. Hash-chain maintains the chronological information

of data. Hence, if any log is missing from the chain or if there

is a reordering of the logs then this alteration can be detected

from the hash-chain. Hash-chain of one log entry is calculated

using the hash of its previous entry. In this way, it preserves

the sequence information.

B. Motivation

Though there are some proven secure logging schemes,

developing and maintaining a scheme is always challenging

because of the following reasons:

1) The first problem is logs are in heterogeneous format.

Unfortunately, there is no standard of logs format. Hence,

two types of systems logs can look completely different.

Moreover, same log can vary by operating systems. For

example, format of a process log entry is different in

MacOS and Debian.

2) To build a secure logging scheme, we need to permit the

logging scheme developers to access the logs. Developers’

accessibility to crucial log information certainly increases

the attack surface. Earlier, we only need to trust system

admins; adding developers in the loop adds an extra

level of trust. The developer might place a back door to

collect plain log information and can violate the privacy

of users.

3) For application logging, application developers need to

add secure application logging code for every scenario.

Most of the cases, we need to log the database operations

– Add, Update, Delete. Through these logs, we can get

who has done some specific operations on a specific

data. Writing code for all of the possible scenarios is

burdensome for developers, and skipping one important

logging method may turn out to be crucial.

To resolve the above challenges, we suggest that a well-

defined DSL should help. For system logs, with the help of

a DSL, we can shift the responsibility of developing a secure

logging scheme from programmers to system admins. Because

systems admins already have the domain knowledge about

system logs, and with the help of a DSL, they can easily define

the required security parameters. In this way, we can minimize

one level of attack surface. The DSL should also deal with

the heterogeneous formats of logs. Hence, we do not need to

re-implement a scheme when the log format changes because

of any system migration. For application logs, a DSL can

generate required application logging code to ease the life of

application developers. However, using proprietary encryption

and hashing algorithm cannot be adopted by a DSL. Hence,

our proposed DSL can only handle established encryption and

hashing algorithms.

III. THE DOMAIN-SPECIFIC-LANGUAGE FAL

A. Domain Analysis

The very first step of designing a DSL is the detailed

analysis and structuring of the application domain [14], which

is provided by domain analysis. Output of domain analysis is a

Domain Model, which gives us commonalities and variabilities,

semantics of concepts, and dependencies between properties.

Among various schemes of domain analysis, we choose FODA

1568 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

Log Structures

Fields
 Encryption Algorithm
 Hash Algorithm

Type
Encrypted
Index
 RSA
 AES
 MD5
 SHA-256

IP
 TEXT
 INT
 TIME

Auto
 Index-Based

SHA-1

DOUBLE

Logging Actions

System Log
 Application Log

File

Public Key
 Private Key

Table
 Action

Add
 Update
 Delete

History

Method

History

Key
 Key

Public Key
 Private Key

Secure Logging

Fig. 1: The Feature Diagram of FAL

(Feature Oriented Domain Analysis). In FODA, the results

of the domain analysis are obtained in a feature model [15].

One of the most prominent ways of describing feature model

is by feature diagram (FD). The FD is represented as a tree

with nodes as rectangles and arcs connecting the nodes. Nodes

determine the features, while arcs determine the dependency

between the features. The nodes can be mandatory or optional,

which are denoted by closed dots, or open dots respectively.

The FD of FAL is illustrated in Figure 1.

From Figure 1, it is clear that a secure logging scheme

constitutes of log structure and logging action. Every log

structure must have fields. Every field must have a type.

According to the chosen secure logging scheme, a field can be

encrypted or not. Fields may have an index attribute, which

will be used to specify the location of a field in an input.

The type of a field can be IP, Text, Double, Integer, or Time.

Time can be auto-generated, i.e. current system time, or can be

index-based. For index-based field, value will be extracted from

input file or argument list according to the position defined by

the index. For encryption, encryption algorithms, such as, RSA

[16], AES [17] can be used. Some secure logging mechanisms

use hashing, and hash-chain to ensure the integrity of the logs.

Hence hashing algorithms, e.g., SHA-11, SHA-2561, or MD52

can be used.

After defining a secure log structure, we need to use the

structure for system or application logging. There can be two

types of actions. First, for system logs, we need to parse the

log files according to a pre-defined structure, and apply the

security features while storing. Second, for application log, we

need to generate GPL code. For system logs, we must have

a file name, and we may have public or private key file. By

encrypting with public key, we can ensure that only the private

key owner can decrypt certain information. Private key is also

needed to create a signature on certain data. Using the public

key we can verify the signature. For application logging, we

must have a table name, action, method, and may have public

1http://www.itl.nist.gov/fipspubs/fip180-1.htm
2http://tools.ietf.org/html/rfc1321

or private key file. Method is actually a method name of a GPL

program, from where the action is called. An action can be

adding a new record, update, or delete a record. For update and

delete, we may want to save the history of previous records.

The FDs represent the common features, which always

exist in a system (commonalities) and optional features, which

may or may not exist in a system (variabilities). Some of the

commonalities identified from the FD of FAL are Fields, Type,

etc., and some variabilities are Encryption Algorithm, Key, etc.

From FD, the variation points can be easily identified (optional,

one-of and more-of features). After the domain analysis, we

can gather the following information – terminology, concepts,

and common and variable properties of concepts and their

interdependencies.

B. The Abstract Syntax

After the domain analysis, the next step is to design the DSL,

from which we will get syntax and semantics of the language.

During the domain analysis using FODA, we identified several

concepts in the application domain that needed to be mapped

into DSL syntax and semantics. From the FD, we can notice

the relationship between concepts/features in an application

domain and non-terminals in a context-free grammar (CFG).

Table I represents the mapping between application domain

concepts and non-terminals in context-free grammars, which

appears on the left hand side (LHS) and right-hand side (RHS)

of CFG production.

Based on Table I, we define the abstract syntax of FAL,

which is presented in Table II. The syntactic domains of

variables are presented in Table III. A FAL program consists of

Log structures LS, and logging actions LA. Log structure LS

defines field description F and security parameter S. There can

be one or more LS. The field description F specifies field type,

id, index I, and encrypted status. There can be one or more

fields in a log structure. Index I is either an integer number,

or auto. Security parameter S defines encryption and hashing

algorithm. Logging action LA can be either System logging

action SLA or Application logging action ALA. There can be

one or more logging actions. SLA specifies the system log file

SHAMS ZAWOAD, MARJAN MERNIK, RAGIB HASAN: FAL: A FORENSICS AWARE LANGUAGE FOR SECURE LOGGING 1569

TABLE I: Translation of the application domain concepts to a context-free grammar

Application domain concepts LHS non-terminal RHS structure
Secure Logging P Description of Log structure, and logging action
Log Structure LS Description of fields and security parameters
Fields F Field id, type (IP, Text, Double, Integer, Time), indexing feature, encrypted (or not encrypted)
Index I Position of a field in input, or auto.
Security Parameters S Description of encryption and hashing algorithm
Logging Action LA Description of system logging, or application logging statement.
System logging SLA File name to be parsed to store securely, and encryption key.
Application log ALA Database operation, table id, GPL method name, encryption key, and history preservation option.

name and encryption key. ALA specifies the database action

name, database table name, GPL method name, encryption key,

and history preservation option.

TABLE II: Abstract syntax of FAL

P ::= LS LA
LS ::= lid F S |LS1; LS2
F ::= type fid I encrypted |type fid I |F1; F2
S ::= encAlg hashAlg |encAlg |hashAlg |ǫ
I ::= n |Auto
LA ::= SLA |ALA |LA1; LA2
SLA ::= file key |file
ALA ::= action tid key m withhistory |action tid m key |
action tid m history |action tid m

TABLE III: Syntactic Domains

P ∈ Pgm LS ∈ LogStructure
F ∈ Field LA ∈ LogAction
I ∈ Index S ∈ SecAttrs
SLA ∈ SystemLog ALA ∈ AppLog
n ∈ Num file ∈ FileSpec
type ∈ {IP, Text, Double, Integer,
Time}

fid ∈ FileIdentifier

tid ∈ TableIdentifier m ∈ MethodName
action ∈ {Add,Update,Delete} key ∈ KeyFileSpec
lid ∈ LogStructureIdentifier encAlg ∈ {RSA,AES}
hashAlg ∈ {MD5, SHA-1,SHA-256}

C. The Concrete Syntax

After defining the abstract syntax, we experimented with

various forms of concrete syntaxes to see how various constructs

might look. For example, a log structure with two field fromip

and user can be defined using the concrete syntax as described

in Listing 1.

Listing 1: FAL Log Structure

1: Define netlog {
2: IP fromip Index 0 Encrypted;
3: TEXT user Index 1;
4: Use Encryption With RSA;
5: Use Logchain With SHA 1;

6: };

Here, fromip field has data type IP, and user is of TEXT

data type. The Index attribute represents the position of a field

in the network log file. The Encrypted attribute states that the

field will be encrypted according to the encryption algorithm

defined in line 4. If there are multiple encrypted fields, all the

fields will be encrypted using the same encryption algorithm.

Line 5 adds the flexibility of choosing any hash function.

After defining a log structure a log action will be defined,

which uses the pre-defined log structure. A concrete example

of storing a network log file securely can be defined as follows

(Listing 2):

Listing 2: FAL Logging Action

1: Watchfile network.log Using netlog
2: {
3: Privatekey private.key;

4: }

The Watchfile statement uses the predefined ‘netlog’ structure

to parse the ‘network.log’ file and provides the required

encryption key to start the process of preserving logs securely.

Listing 3: FAL Program for System and Application Log

1: SampleProgram[
2: Define netlog {
3: IP fromip Index 0 Encrypted;
4: TEXT user Index 1;
5: Use Encryption With RSA;
6: Use Logchain With SHA 1;
7: }
8: Define patientlog{
9: TIME logtime Auto;

10: TEXT user Index 0 Encrypted;
11: INT refid Index 1;
12: TEXT message Index 2 Encrypted;
13: Use Logchain With SHA 256;
14: }
15: Watchfile network.log Using netlog {
16: Privatekey private.key;
17: }
18: Watchtable Patient Using patientlog {
19: Action Edit Withhistory;
20: Method updatepatient;
21: Publickey public.key;
22: }
23:]

When a language designer is satisfied with the look and feel

of the language’s syntax, and possible additional constraints

from domain experts or language end-users are fulfilled, the

concrete syntax can be finalized. In Listing 3, a complete

example of FAL program for secured system and application

logs is described. We finalized the concrete syntax on the basis

of several example programs. Finalizing the concrete syntax

process can be executed in parallel with defining language

semantics. In Table IV, the FAL concrete syntax is given.

1570 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

TABLE IV: The concrete syntax of FAL

Program := #CCStart [LOG STRUCT LOG ACTION]
LOG STRUCTS := LG STRUCTS
LG STRUCTS := LG STRUCTS LG STRUCT |LG STRUCT
LG STRUCT:= Define #Id {DEF}
DEF := FIELDS SEC ATTRS
FIELDS := FIELDS FIELD |FIELD
FIELD := #Type #Id IND BASE ENC ;
IND BASE := Index #Number |Auto
ENC := Encrypted |ǫ
SEC ATTRS := SEC ATTRS SEC ATTR |ǫ
SEC ATTR := Use SEC STMT ;
SEC STMT := ENC STMT |HASH STMT
ENC STMT := Encryption With #EncAlgorithm
HASH STMT := Logchain With #HashAlgorithm
LOG ACTION := LG ACTIONS
LG ACTIONS := LG ACTIONS LG ACTION |LG ACTION
LG ACTION := SYS ACT |APP ACT
SYS ACT := Watchfile #FileName Using #Id {ENC KEY}
ENC KEY := PUB KEY |PRIV KEY |ǫ
PUB KEY := Publickey #FileName;
PRIV KEY := Privatekey #FileName;
APP ACT := Watchtable #CCStart Using #Id {PARAM}
PARAM := DB ACTION GPL MTHD ENC KEY
DB ACTION := Action ACT NAME ;
ACT NAME := Add |ACT HSTRY
ACT HSTRY := ACT HSTRY NAME HISTRY STMT
ACT HSTRY NAME := Edit |Delete
HISTRY STMT := Withhistory |ǫ
GPL MTHD := Method #Id ;

D. Translational Semantics

The advantages of using formal description for semantics of

DSL (e.g., attribute grammars, denotational semantics, opera-

tional semantics) have been previously discussed in [10], where

an ability to find problems in semantics before a DSL is actually

implemented was exposed. In this work, we used translational

semantics, which is simpler to define then denotational and op-

erational semantics, and it is often used for defining semantics

of domain-specific modeling languages [18]. Due to space con-

siderations, only the translational semantics for log structures

is presented in Listing 4 (translational semantics for logging

actions is omitted from this paper). For each non-terminal in

CFG, (Table II) a translational function is defined, which maps

syntactic domains (Table III) to their meanings – generated code

in Java using a specialized API for secure logging. In particular,

the meaning of non-terminal LS is defined by translational func-

tion TLS, which maps LogStructure to code. Two different

forms of LS exist (see abstract syntax in Table II). Hence, two

translational functions TLS are defined (lines 4 and 5 in Listing

4). The first translational function TLS (line 4 in Listing 4)

maps syntactic structure lid F S into several Java statements:

declaration of new object as an instance of class LogStructure,

setting a name to the newly created object by calling setName

method, and additional Java statements, which will be generated

by applying translational functions TF and TS on non-

terminals F and S representing fields and security attributes,

respectively. Whilst, the second translational function TLS

(line 5 in Listing 4) define the meaning of sequence of log

structures (LS1;LS2). The generated code for LS1 is simply

concatenated with generated code for LS2 (line 5 in Listing 4).

In similar manner, other translational functions are defined.

Listing 4: Translational Semantics

1: TP : Pgm → Code
2: TPJLS LAK = TLSJLSK + TLAJLAK
3: TLS : LogStructure → Code
4: TLSJlid F SK = “LogStructure ” + lid + “ = new LogStructure();” +

lid+“.setName(” + lid + “);” + TFJF K lid + TSJSK lid
5: TLSJLS1;LS2K = TLSJLS1K + TLSJLS2K
6: TF : Field → lid → Code
7: TFJtype fid I encryptedK = lid+“.addField(FieldType.” + type + “,” +

fid + “,” + TIJIK + “, true);”
8: TFJtype fid IK = lid+“.addField(FieldType.” + type + “,” + fid + “,” +

TIJIK + “, false);”
9: TFJF1;F2K = TFJF1K + TFJF2K

10: TI : Index → Code
11: TIJnK = “true, ” + n
12: TIJAutoK = “false, INTEGER.MAX VALUE”
13: TS : SecAttrs → lid → Code
14: TS JencAlg hashAlgK = lid + “.setEncryptionAlgorithm(”+ encAlg
15: + “);” + lid + “.setHashingAlgorithm(”+ hashAlg + “);”
16: TS JencAlgK = lid + “.setEncryptionAlgorithm(”+ encAlg +“);”
17: TS JhashAlgK = lid + “.setHashingAlgorithm(”+ hashAlg + “);”
18: TLA : LogAction → Code

19: ...

E. Implementation

Various implementation techniques to implement a DSL

exist, such as preprocessing, embedding, compiler/interpreter,

compiler generator, extensible compiler/interpreter, commercial

off-the-shelf, and hybrid approaches [10]. Kosar et al. [19]

suggested focusing end-user usability while implementing a

DSL. One implementation approach can be good in terms of

effort needed to implement a DSL. However, the same approach

may not be suitable for end-users. End-users may need extra

effort to rapidly write correct programs using the DSL. If only

DSL implementation effort is taken into consideration, then

the most efficient implementation technique is embedding.

However, the embedding approach might have significant

penalties when end-user effort is taken into account (e.g., DSL

program size, closeness to original notation, debugging and

error reporting). To minimize end-user effort, building a DSL

compiler [19] is most often a good solution, but this process

costs most from an implementation point of view. However,

the implementation effort can be greatly reduced, but not as

much as with embedding, especially if compiler generators

(e.g., LISA [20], ANTLR [21], Silver [22]) are used.

To implement FAL, we depend on source-to-source trans-

formation technique. To transform a FAL program into an

intermediate Java program, we build a FAL compiler using

LISA, which has proven itself useful in many other DSL

projects [23], [24]. The intermediate program uses a pre-build

Java API. The design of the API is illustrated in Figure 2.

Fields are represented by Field class. The LogStructue has a

list of Field object, and the security attributes. The name field

of LogStructure is used to map with the database table name.

LogAction is an Abstract class with the abstract method execute,

and it also has an instance of LogStructure. FileWatcher extends

the LogAction class and implements the execute method. The

execute method is responsible to parse a log file and store it to

database with the help of LogStructure and Field. TableWatcher

SHAMS ZAWOAD, MARJAN MERNIK, RAGIB HASAN: FAL: A FORENSICS AWARE LANGUAGE FOR SECURE LOGGING 1571

also extends the LogAction class and implements the execute

method, which generates application logging code for developer.

The SecurityUtil class defines all the required encryption and

hashing methods.

Field

FieldType

FieldName

IsEncrypted

IsIndexBased

Index

LogStructure

EncAlgorithm

HashAlgorithm

Name

*

FileWatcher

FileName

execute()

FileWatcher

TableName

ActionName

MethodName

�

execute()

LogAction

PublicKeyFile

PrivateKeyFile

getHashChain()

execute()

SecurityUtil

All Encryption

And Hashing

Utility Methods

Fig. 2: Design of the API for FAL

After finalizing the Java API, we now know what the

intermediate program will be. The FAL compiler will generate

this intermediate program from a FAL program. To transform

the FAL program to Java program correctly, we use the attribute

grammar based approach and LISA specifications are based

on attribute grammars [25], [26]. It is capable to generate

the compiler from formal attribute grammar-based language

specifications.

The first task to implement the compiler is to define the

lexicon. Defining the lexicon in Lisa is straightforward. It is

showed in Listing 5.

Listing 5: Lexical specification for FAL in LISA.

1: lexicon {
2: Number [0-9]+
3: Id [a-z][a-z0-9]*
4: Type IP |TEXT |INT |TIME |DOUBLE
5: EncAlgorithm RSA |AES
6: HashAlgorithm MD5 |SHA 1 |SHA 256
7: keywords Define |Use |Encryption |With |Logchain |Index |
8: Auto |Encrypted |Watchfile |Using |Publickey |Privatekey |
9: Watchtable |Action |Withhistory |Method |Parameter

10: FileName [a-z][a-z0-9]*.[a-z]*
11: CCStart [A-Z][a-z0-9]*
12: ActionName Add |Edit |Delete
13: Separator \; |\{ |\} |\, |\[|\]
14: ignore [\0x09\0x0A\0x0D\]+

15: }

To write the attribute-based semantic rules, first, we need

to identify the required attributes for proper semantic analysis.

Listing 6 presents the attributes that we used. code is the

main synthesized attribute that produces the targeted GPL

program. ivar is an inherited attribute that is used to propagate

the variable name down the parse tree. envs is a synthesized

attribute and envi is an inherited attribute; both were needed to

maintain a HashSet of already defined variables. errorMsg is a

synthesized attribute required to report FAL error message to

users. ok is a synthesized attribute that indicates whether a FAL

program is correct or not. Finally, PROGRAM.file attribute is

used to write the generated GPL program in a file.

Listing 6: Attributes for FAL in LISA.

1: attributes String *.code;
2: String *.ivar;
3: String *.errorMsg;
4: HashSet *.envs;
5: HashSet *.envi;
6: boolean *.ok;

7: BufferedWriter PROGRAM.file;

An implementation of translational semantics (Listing 4)

using LISA is a straightforward task. The implementation of

translational function TF (Line 7 in Listing 4) is presented in

Listing 7. Note, how closed both notations are.

Listing 7: Semantic Rules in LISA.

1: rule field {
2: FIELD ::= #Type #Id IND BASE ENC \; compute {
3: FIELD.code = FIELD.ivar + “.addField(FieldType.” +
4: #Type.value() + “,\”” + #Id.value()+“\”, ” +
5: IND BASE.code + “,” + ENC.code+”);”;
6: };
7: }
8: rule ind base {
9: IND BASE ::= Index #Number compute {

10: IND BASE.code = “true,”+ #Number.value();
11: }
12: |Auto compute {
13: IND BASE.code = “false,Integer.MAX VALUE”;
14: };
15: }
16: rule enc {
17: ENC ::= Encrypted compute {
18: ENC.code = ”true”;
19: }
20: |epsilon compute {
21: ENC.code = ”false”;
22: };
23: }

After compiling a FAL program, a required Java code is

automatically generated, which uses previously defined APIs

to store logs, and generate audit trail code for ensuring the

integrity and confidentiality of the logs.

IV. PRACTICAL EXPERIENCE

The goal of this section is to acquaint the reader with the

practical experiences that were obtained by using FAL. We

have therefore selected two case studies of FAL applications:

• Preserve snort log securely using FAL.

• Generate application logging code for a patient informa-

tion update method in Java.

A. Preserve Snort log

Snort3 is a free lightweight network intrusion detection

system. The network logs generated by Snort plays vital role

in network forensics. Hence, preserving the confidentiality

and integrity of Snort logs is crucial from digital forensics

perspective. Here is a sample Snort log:

11/19-13:43:43.222391 11.1.0.5:51215 ->

74.125.130.106:80 TCP TTL:64 TOS:0x0 ID:22101

3http://www.snort.org

1572 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

IpLen:20 DgmLen:40 DF ***A***F Seq: 0x3EA405D9

Ack: 0x89DE7D Win: 0x7210 TcpLen: 20’’

This log tells that the machine with IP 11.1.0.5 performed

an http request to machine 74.125.130.160 at time 11/19-

13:43:43.222391. Hence, when a machine attacks another

machine, we can identify the attacker machine IP from the

snort log. Let’s assume that a system admin decides to store

the ‘from IP’, ‘to IP’, and time of network request securely.

To protect the confidentiality of logs, among these three fields,

the admin decides to encrypt ‘from IP’, and ‘to IP’ by the

public key of law enforcement agencies using RSA algorithm.

To protect the integrity of the logs, the system maintains hash-

chain of the logs using SHA-256 hash function. The FAL

program described in Listing 8 can be used to ensure all the

properties.

Listing 8: FAL Program for Snort Log

1: SnortParser[
2: Define snortlog {
3: IP fromip Index 1 Encrypted;
4: IP toip Index 3 Encrypted;
5: Time logtime Index 0;
6: Use Encryption With RSA;
7: Use Logchain With SHA 256;
8: };
9: Watchfile snortnetwork.log Using snortlog {

10: Publickey lawpublic.key;
11: }
12:]

The above FAL program will generate Java code as follows

(Listing 9):

Listing 9: Translated Java Code from FAL

1: LogStructure snortlog = new LogStructure();
2: snortlog.setName(“snortlog”);
3: snortlog.addField(FieldType.IP,“fromip”,true,1,true);
4: snortlog.addField(FieldType.IP,“toip”,true,2,true);
5: snortlog.addField(FieldType.TIME,“logtime”,true,0,false);
6: snortlog.setEncryptionAlgorithm(“RSA”);
7: snortlog.setHashingAlgorithm(”SHA 256”);
8: FileWatcher snortlogFileWatcher = new FileWatcher();
9: snortlogFileWatcher.setLogStructure(snortlog);

10: snortlogFileWatcher.setFileName(“snortnetwork.log”);
11: snortlogFileWatcher.setPubicKeyFile(“public.key”);
12: snortlogFileWatcher.execute();

Executing the Java code (Listing 9) will parse the snort log

file and store them with the security parameter. However, FAL

users do not need to understand the underlying API or the

intermediate Java code generated by FAL.

B. Application Logging

Application log is crucial for many applications including

business and health care sector. The methods that directly

communicate with database need to be logged. From these

logs, later we can identify who added a new record, or who

updated or deleted some record, etc. Application developer

needs to integrate this logging feature with every method that

updates database. FAL can generate the necessary logging code

for application developer.
Here, we present a hypothetical scenario of a health care

application, where we can use FAL for secure application

logging. In the application, there is a Patient table, and we

want to store logs whenever any update is operated on patient’s

record. The log will include the user name of the application,

patient id is being updated, a description of the operation,

and time of operation. The security analyst of the application

decides to encrypt user name, and the operation description

using AES encryption algorithm and SHA-1 hash function to

maintain the hash-chain of logs. The FAL program described

in Listing 10 can be used to generate necessary application

logging code.

Listing 10: FAL Program for Application Logging

1: PatientAppLog [
2: Define useraudit {
3: TIME logtime Auto;
4: TEXT username Index 0 Encrypted;
5: INT refid Index 1;
6: TEXT message Index 2 Encrypted;
7: Use Encryption With AES;
8: Use Logchain With SHA 1;
9: };

10: Watchtable Patient Using useraudit {
11: Action Edit Withhistory;
12: Method updatepatient;
13: Privatekey serveraes.key;
14: }
15:]

The translated Java code from FAL program (Listing 10)

will generate the application logging method as described in

Listing 11.

Listing 11: Generated Code For Application Logging

1: public void auditPatientEdit(String username, int refid, String message,
String logtime)

2: {
3: try {
4: String rowValue = username + refid + message + logtime;
5: String currHashs = getHashChain(“useraudit”,“id”,rowValue,
6: “SHA-1”);
7: String aesKey = HandleKey.readAESKey(“serveraes.key”);
8: username = HandleKey.aesEncrypt(username +“”, aesKey);
9: message = HandleKey.aesEncrypt(message +“”, aesKey);

10: String query = “insert into useraudit(username, refid,
11: message, logtime, tablename, actionname, methodname,
12: logchain, withhistory) values(“‘ + username
13: + “’,” + refid + “,‘” + message + “’,‘” + logtime +
14: “’,‘Patient’,‘Edit’,‘updatepatient’,‘”+currHashs+“’,true)”;
15: DBHandler dbHandler = new DBHandler();
16: dbHandler.insertData(query);
17: }catch (Exception e) { e.printStackTrace();}

18: }

V. RELATED WORK

There has been a lot of prior research on secure logging,

because of its vital role in digital forensics. Schneier et al.

proposed a secure audit logging scheme, which can detect

any modification of logs after a machine got compromised

[27]. It also preserves the confidentiality of logs. Zawoad et

al. proposes a secure logging scheme for cloud computing

environment where the cloud service provider itself can be

dishonest and can try to alter original logs [9]. Though there

are no DSL for secure logging, there are some DSLs for

providing access control facility on the audit logs or provenance

SHAMS ZAWOAD, MARJAN MERNIK, RAGIB HASAN: FAL: A FORENSICS AWARE LANGUAGE FOR SECURE LOGGING 1573

record and also for general-purpose access control. Ni et al.

provided a XML-based access control language for general

provenance model [28]. Using this language, users can define

and evaluate access control policies on application audit logs.

It also supports specifying policies to a particular record and

its fields. Weissmann proposed ACS [29], an access control

language for specifying access control policy, which especially

resolves undecidability of granting or denying access, and

incapability of editing control policy without changing the

model. Ribeiro et al. provided SPL, an access control language

for security policies with complex constraints [30]. SPL

supports simultaneously multiple complex policies by resolving

conflicts between two active policies. Beyond the permission /

prohibition, they also showed how to express and implement

the obligation concept.

VI. CONCLUSION AND FUTURE WORK

For proper digital forensics investigation, maintaining the

trustworthiness of logs is compulsory, and for this, we need a

proper secure logging mechanism. To address the problem of

secure logging mechanism, we have designed and implemented

the domain-specific language FAL with the following benefits:

• Shifting the responsibility of developing a secure logging

schemes from application programmers to security experts,

which in turn increases trustworthiness.

• Required code to use specialized API for secure applica-

tion logging is automatically generated. Hence, the effort

and cost for developing secure logging scheme is lower.

• Heterogeneous formats of logs with any secure logging

schemes can be easily handled.

• Detail understanding of specialized API for secure logging

is not needed for FAL users.

We are working to add user specified delimiter feature with

FAL. In future, we will add a user-friendly error reporting.

Another important future feature is to incorporate timing option

with system logging action. With this feature, users can define

for how long they want to run system logging option. We

will also work towards making FAL more robust so that it

can generate audit-trailing code for all popular GPLs. Finally,

FAL’s design needs to be validated by end-users by performing

usability studies and control experiments.

REFERENCES

[1] FBI, “Annual report for fiscal year 2007,” 2008 Regional Computer
Forensics Laboratory Program, 2008, [Accessed July 5th, 2012].

[2] Congress of the United States, “Sarbanes-Oxley Act,” http://thomas.loc.
gov, 2002, [Accessed May 5th, 2013].

[3] U.S. Department of Health and Human Service, “Health information
privacy,” http://www.hhs.gov/ocr/privacy/, [Accessed May 5th, 2013].

[4] M. Swanson and B. Guttman, Generally Accepted Principles and Prac-

tices for Securing Information Technology Systems. National Institute
of Standards and Technology (NIST), Technology Administration, US
Department of Commerce, 1996.

[5] M. Bellare and B. Yee, “Forward-security in private-key cryptography,”
Topics in Cryptology, CT-RSA 2003, pp. 1–18, 2003.

[6] ——, “Forward integrity for secure audit logs,” Technical report,
Computer Science and Engineering Department, University of California
at San Diego, Tech. Rep., 1997.

[7] D. Ma and G. Tsudik, “A new approach to secure logging,” Transaction

of Storage (TOS), vol. 5, no. 1, pp. 2:1–2:21, Mar. 2009.
[8] B. Schneier and J. Kelsey, “Secure audit logs to support computer

forensics,” ACM Transactions on Information and System Security

(TISSEC), vol. 2, no. 2, pp. 159–176, May 1999.
[9] S. Zawoad, A. Dutta, and R. Hasan, “SecLaaS: Secure logging-as-a-

service for cloud forensics,” in Proceedings of 8th ACM Symposium on

Information, Computer and Communications Security (ASIACCS), May
2013.

[10] M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop
domain-specific languages,” ACM computing surveys (CSUR), vol. 37,
no. 4, pp. 316–344, 2005.

[11] A. Van Deursen and P. Klint, “Little languages: Little maintenance?”
Journal of software maintenance, vol. 10, pp. 75–92, 1998.

[12] T. Kosar, N. Oliveira, M. Mernik, V. J. M. Pereira, M. Črepinšek, C. D. Da,
and R. P. Henriques, “Comparing general-purpose and domain-specific
languages: An empirical study,” Computer Science and Information

Systems, vol. 7, no. 2, pp. 247–264, 2010.
[13] R. Accorsi, “On the relationship of privacy and secure remote

logging in dynamic systems,” in Security and Privacy in Dynamic

Environments. Springer US, 2006, vol. 201, pp. 329–339. [Online].
Available: http://dx.doi.org/10.1007/0-387-33406-8 28

[14] A. Van Deursen and P. Klint, “Domain-specific language design requires
feature descriptions,” Journal of Computing and Information Technology,
vol. 10, no. 1, pp. 1–17, 2004.

[15] P.-Y. Schobbens, P. Heymans, J.-C. Trigaux, and Y. Bontemps, “Generic
semantics of feature diagrams,” Computer Networks, vol. 51, no. 2, pp.
456–479, 2007.

[16] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Communications of the ACM,
vol. 21, no. 2, pp. 120–126, 1978.

[17] N. F. Pub, “197: Advanced encryption standard (AES),” Federal

Information Processing Standards Publication, vol. 197, pp. 441–0311,
2001.

[18] B. Bryant, J. Gray, M. Mernik, P. Clarke, R. France, and G. Karsai,
“Challenges and directions in formalizing the semantics of modeling
languages,” Computer Science and Information Systems, vol. 8, no. 2,
pp. 225–253, 2011.

[19] T. Kosar, P. A. Barrientos, M. Mernik et al., “A preliminary study
on various implementation approaches of domain-specific language,”
Information and Software Technology, vol. 50, no. 5, pp. 390–405, 2008.

[20] M. Mernik and V. Žumer, “Incremental programming language develop-
ment,” Computer Languages, Systems & Structures, vol. 31, no. 1, pp.
1–16, 2005.

[21] T. Parr, “The definitive ANTLR reference: Building domain-specific
languages (pragmatic programmers),” Pragmatic Bookshelf, May, 2007.

[22] E. Van Wyk, D. Bodin, J. Gao, and L. Krishnan, “Silver: an extensible
attribute grammar system,” Electronic Notes in Theoretical Computer

Science, vol. 203, no. 2, pp. 103–116, 2008.
[23] P. R. Henriques, M. V. Pereira, M. Mernik, M. Lenic, J. Gray, and H. Wu,

“Automatic generation of language-based tools using the LISA system,”
in Software, IEE Proceedings-, vol. 152, no. 2. IET, 2005, pp. 54–69.

[24] I. Fister, M. Mernik, and J. Brest, “Design and implementation of domain-
specific language Easytime,” Computer Languages, Systems & Structures,
vol. 37, no. 4, pp. 151–167, 2011.

[25] D. E. Knuth, “Semantics of context-free languages,” Mathematical

systems theory, vol. 2, no. 2, pp. 127–145, 1968.
[26] J. Paakki, “Attribute grammar paradigms: a high-level methodology in

language implementation,” ACM Computing Surveys (CSUR), vol. 27,
no. 2, pp. 196–255, 1995.

[27] B. Schneier and J. Kelsey, “Secure audit logs to support computer
forensics,” ACM Transactions on Information and System Security

(TISSEC), vol. 2, no. 2, pp. 159–176, 1999.
[28] Q. Ni, S. Xu, E. Bertino, R. Sandhu, and W. Han, “An access control

language for a general provenance model,” Secure Data Management,
pp. 68–88, 2009.

[29] M. Weißmann, “Domain specific language for specifying access controls,”
Ph.D. dissertation, Georg Simon Ohm University of Applied Sciences,
Nuernberg, Germany, 2007.

[30] C. Ribeiro, A. Zuquete, P. Ferreira, and P. Guedes, “SPL: An access
control language for security policies with complex constraints,” in
Proceedings of the Network and Distributed System Security Symposium,
2001, pp. 89–107.

1574 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

