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Abstract—Machine-code decompilation is a reverse-
engineering discipline focused on reverse compilation. It
performs an application recovery from binary executable files
back into the high level language (HLL) representation. One of
its critical tasks is to produce an accurate and well-readable
code. However, this is a challenging task since the executable
code may be produced by one of the modern compilers that
use advanced optimizations. One type of such an optimization
is usage of so-called instruction idioms. These idioms are used
to produce faster or even smaller executable files. On the
other hand, decompilation of instruction idioms without any
advanced analysis produces almost unreadable HLL code that
may confuse the user of a decompiler. In this paper, we present a
method of instruction-idioms detection and reconstruction back
into a readable form with the same meaning. This approach is
adapted in an existing retargetable decompiler developed within
the Lissom project. The implementation has been tested on
several modern compilers and target architectures. According
to our experimental results, the proposed solution is highly
accurate on the RISC (Reduced Instruction Set Computer)
processor families, but it should be further improved on the
CISC (Complex Instruction Set Computer) architectures.

Keywords—compiler optimizations, reverse engineering, decom-
piler, Lissom, instruction idioms, bit twiddling hacks

I. INTRODUCTION

REVERSE engineering is a process analyzing existing
objects to discover knowledge about their functionality.

Within the computer and information security, reverse engi-
neering is often used for analysis of binary executable files.
This is useful for vulnerability detection, malware analysis,
compiler verification, code migration, etc. In present, this
analysis is commonly done by using low-level tools such as
disassemblers and dumpers.

Machine-code decompilers (i.e. reverse compilers) are
more effective but not so wide-spread. Their task is to recover
HLL representation (e.g. C source code) from executable files.
In contrast to compilation, the process of decompilation is
much more difficult because the decompiler must deal with
incomplete information on its input (e.g. information used
by the compiler but not stored within the executable file).
Furthermore, the input machine code is often heavily optimized
by one of the modern compilers (e.g. GCC, LLVM, MSVC);
this makes decompilation even more challenging.

This work was supported by the BUT grant FEKT/FIT-J-13-2000 Validation
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and BUT FIT grant FIT-S-11-2.

Code de-optimization is one of the necessary transforma-
tions used within decompilers. Its task is to properly detect the
used optimization and to recover the original HLL code rep-
resentation from the hard-to-read machine code. One example
of this optimization type is the usage of instruction idioms [1].
An instruction idiom is a sequence of machine-code instruc-
tions representing a small HLL construction (e.g. arithmetic
expression, assignment statement) that is highly-optimized for
its execution speed and/or small size.

The instructions in such sequences are assembled to-
gether by using Boolean algebra, arbitrary-precision arith-
metic, floating-point algebra, bitwise operations, etc. There-
fore, the meaning of such sequence is usually hard to under-
stand at the first sight. A notoriously known example is the
usage of an exclusive or to clear the register content (i.e. xor
reg, reg) instead of an instruction assigning zero to this
register (i.e. mov reg, 0).

The goal of this paper is to present an approach how to
deal with instruction-idioms detection and their reconstruction
during decompilation. This approach has been successfully
adapted within an existing decompiler developed within the
Lissom project [2, 3]. Moreover, this decompiler is developed
to be retargetable (i.e. independent on a particular target
platform, operating system, file format, or a used compiler);
therefore, the proposed analysis has to be retargetable too.

This paper is organized as follows. In Section II, we give an
introduction to instruction idioms and their usage within com-
piler optimizations. Then, we briefly describe the retargetable
decompiler developed within the Lissom project in Section III.
Afterwards, we present our own approach in Section IV. The
most common instruction idioms employed in the modern
compilers are presented and illustrated in the same section.
Section V discusses the related work of instruction idioms
reconstruction. Experimental results are given in Section VI.
Section VII closes the paper by discussing future research.

II. INSTRUCTION IDIOMS USED IN COMPILERS

In present, the modern compilers use dozens of optimiza-
tion methods for generating fast and small executable files.
Different optimizations are used based on the optimization
level selected by the user. For example, the GNU GCC
compiler supports these optimization levels1:

• O0 – without optimizations;

1See http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html for details.
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• O1 – basic level of speed optimizations;

• O2 – the common level of optimizations (the ones
contained in O1 together with basic function inlining,
peephole optimizations, etc.);

• O3 – the most aggressive level of optimizations;

• Os – optimize for size rather than speed.

In the nowadays compilers, the emission of instruction
idioms cannot be explicitly turned on by some switch or
command line option. Instead, these compilers use selected sets
of idioms within different optimization levels. Each set may
have different purpose, but multiple sets may share the same
(universal) idioms. The main reasons why to use instruction
idioms are:

• The most straightforward reason is to exchange slower
instructions with the faster ones. These optimizations
are commonly used even on the lower optimization
levels.

• The floating-point unit (FPU) might be missing, but a
programmer still wants to use floating-point numbers
and arithmetic. Compilers solve this task via floating-
point emulation routines (also known as software
floating point or soft-float in short). Such routines are
generated instead of hardware floating-point instruc-
tions and they perform the same operation by using
available (integer) instructions.

• Compilers often support an optimization-for-size op-
tion. This optimization is useful when the target ma-
chine is an embedded system with a limited memory
size. An executable produced by a compiler should
be as small as possible. In this case, the compiler
substitutes a sequence of instructions encoded in more
bits with a sequence of instructions encoded in less
bits in general. This can save some space in instruction
cache too.

Another type of optimization classification is to distinguish
them based on the target architecture. Some of them depend
on a particular target architecture. If a compiler uses platform-
specific information about the generated instructions, these
instructions can be classified as platform-specific. Otherwise,
they are classified as platform-independent.

As an example of platform-independent idiom, we can
mention the div instruction representing a fixed-point divi-
sion. The fixed-point division (signed or unsigned) is one of the
most expensive instruction in general. Optimizing the division
leads to a platform-independent optimization.

On the other hand, clearing the content of the register by
using the xor instruction (mentioned in the introduction) is a
highly platform-specific optimization. Different platforms can
use different approaches to clear the register content. As an
example, consider the zero register on MIPS ($zero or $0),
which always contains the value of 0. Using this register as
a source of zero bits looks like a faster solution than using a
xor instruction.

Furthermore, different compilers use different instruction
idioms to fit their optimization strategies. For example, GNU
GCC uses an interesting optimization when making signed
comparison of a variable. When a number is represented on

32-bits and bit number 31 is representing the sign, logically
shifting the variable right by 31 bits causes to set the zeroth bit
equal to the original sign bit. The C programming language
classifies 1 as true and 0 as a false, which is the expected
result of the given less-than-zero comparison. This idiom is
shown in Fig. 1. The Fig. 1a represents a part of a source
code with this construction. The result of its compilation with
optimizations enabled is depicted in Fig. 1b. We illustrate the
generated code on the C level rather than machine-code level
for better readability.

The compiler used the before-mentioned instructions
idiom—replacing the comparison by the shift operation. The
not-standardized lshr() function is used in the output listed
in Fig. 1b. The C standard does not specify whether operator
">>" means logical or arithmetical right shift. Compilers deal
with it in an implementation-defined manner. Usually, if the
left-hand-side number used in the shift operation is signed,
arithmetical right shift is used. Analogically, logical right shift
is used for unsigned numbers.

III. LISSOM PROJECT RETARGETABLE DECOMPILER

In this section, we briefly describe the concept of an auto-
matically generated retargetable decompiler developed within
the Lissom project [2]. This decompiler aims to be independent
on any particular target architecture, operating system, object
file format, or originally used compiler. The concept of the
decompiler is depicted in Fig. 2. Its detailed description can be
found in [3]. Currently, the decompiler supports decompilation
of MIPS, ARM, and Intel x86 executable files stored in
different file formats.

The input binary executable file is preprocessed at first.
The preprocessing part tries to detect the used file format,
compiler, and (optional) packer, see [4] for details. Afterwards,
it unpacks and converts the examined platform-dependent
application into an internal uniform Common-Object-File-
Format (COFF)-based representation. Currently, we support
conversions from UNIX ELF, Windows Portable Executable
(WinPE), Apple Mach-O, Symbian E32, and Android DEX file
formats. The conversion is done via our plugin-based converter
described in [5, 6]. Afterwards, such COFF-file is processed
in the decompilation core that consists of three basic parts—
a front-end, a middle-end, and a back-end. The last two of
them are built on top of the LLVM Compiler Infrastructure [7].
LLVM Intermediate Representation (LLVM IR) [8] is used as
an internal code representation of the decompiled applications
in all particular decompilation phases.

int main(void)
{

int a, b;

/∗ ... ∗/

b = a < 0;

/∗ ... ∗/
}

(a) Input.

int main(void)
{

int a, b;

/∗ ... ∗/

b = lshr(a, 31);

/∗... ∗/
}

(b) Output (for better readability in C).

Fig. 1: Example of an instruction idiom (C code).
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Fig. 2: The concept of the Lissom project retargetable decom-
piler.

After that, the unified COFF files are processed by the
front-end part.Within this part, we use the ISAC architec-
ture description language [9] for an automatic generation of
the instruction decoder. The decoder translates the machine-
code instructions into sequences of LLVM IR instructions.
The resulting LLVM IR sequence characterizes behaviour of
the original instruction independently on the target platform.
This intermediate program representation is further analysed
and transformed in the static-analysis phase of the front-
end. This part is responsible for eliminating statically linked
code, detecting the used ABI, recovery of functions, etc. [3].
When debugging information (e.g. DWARF, Microsoft PDB)
or symbols are present in the input application, we may utilize
them to get more accurate results, see [10].

The output of the front-end part (i.e. LLVM IR code
representing input application) is sizable. The main reason is
because it reflects a complete behavior of each machine-code
instruction, which may not be necessary. For example, each
side-effect of an instruction (e.g. setting a register flag based
on instruction operands) is represented via the LLVM IR code,
but results of these side-effects may not be used anywhere.
Therefore, the front-end output is further processed within the
middle-end phase, which is built on the top of the LLVM opt

tool. This phase is responsible for reduction and optimization
of this code by using many built-in optimizations available in
LLVM as well as our own passes (e.g. optimizations of loops,
constant propagation, control-flow graph simplifications).

Finally, the back-end part converts the optimized interme-
diate representation into the target high-level language (HLL).
Currently, we support C and a Python-like language. The latter
is very similar to Python, except a few differences—whenever
there is no support in Python for a specific construction, we
use C-like constructs. During the back-end conversion, high-
level control-flow constructs, such as loops and conditional
statements, are identified, reconstructed, and further optimized.
Finally, it is emitted in the form of the target HLL.

The decompiler is also able to produce the call graph of the

%a = load i32∗ @regs0
%b = xor i32 %a, %a
store i32 %b, i32∗ @regs0

(a) Optimized form of an instruction idiom in LLVM IR.

store i32 0, i32∗ @regs0

(b) De-optimized form of an instruction idiom in LLVM IR.

Fig. 3: Example of the bit-clear xor instruction-idiom trans-
formation.

decompiled application, control-flow graphs for all functions,
and an assembly representation of the application.

IV. IDIOM ANALYSIS AND RECONSTRUCTION IN THE

RETARGETABLE DECOMPILER

The aim of the decompiler presented in the previous section
is to allow retargetable decompilation independently on the
particular target platform or the used compiler. Therefore, the
methods of instruction idiom detection and reconstruction have
to be retargetable too. For this reason, we implement these
methods within the front-end phase because it uses the unified
code representation in the LLVM IR format.

Detection of instruction idioms is based on a detection
algorithm operating on the LLVM IR code. LLVM IR is a
set of low-level instructions similar to assembly instructions.
Moreover, LLVM IR is platform-independent and strongly
typed, which meets our requirements. Therefore, machine
instructions from different architectures can be easily mapped
to sequences of LLVM IR instructions. This brings an ability
to implement platform-independent instruction-idiom analysis.

The detection algorithm is similar to a peephole technique
used in optimizing compilers [11]. It operates on a basic-
block level, where each basic block contains a continuous
sequence of instructions described via LLVM IR operations.
A particular idiom is detected only if a basic block contains
predefined LLVM IR instructions stored in a proper order
and they must contain expected operand values (e.g. constant,
register number). While examining instructions in an idiom se-
quence, we may found unrelated instructions (e.g. inserted by a
code-motion compiler optimization). The detection algorithm
may skip these instructions and continue the search on the
following ones, but only if they do not modify the operands of
already detected instructions. Otherwise, the search continues
behind the current instruction from the beginning. Whenever
an instruction idiom is detected, it is substituted by its more
readable de-optimized version, once again in the LLVM IR
form. The skipped instructions are left untouched on their
original positions.

It should be noted that this algorithm does not search for
a particular idiom over multiple basic blocks in present. The
detection enhancement via usage of a control-flow analysis
represents a future research. However, according to our exper-
imental tests, the nowadays common compilers rarely scatter
instructions related to idioms over multiple basic blocks.
Therefore, the impact of this enhancement may be low.

An example demonstrating this substitution on the LLVM
IR level is shown in Fig. 3. Fig. 3a represents the already
mentioned xor bit-clear instruction idiom. To use register
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TABLE I: Shortened list of instruction idioms found in compilers.

Instruction idiom GNU GCC Visual
Studio C++

Intel C/C++
Compiler

Open
Watcom

Borland C
Compiler

Less than zero test X × X × ×

Greater equal zero test X × × × ×

Bit clear by using xor X X X X X

Bit shift multiplication X X X X X

Bit shift division X X X X X

Division by -2 X × × × ×

Expression -x - 1 X X × × ×

Modulo power of two X X X × ×

Negation of a float X × × × ×

Assign -1 by using and × X X × ×

Multiplication by an invariant X X X X ×

Signed modulo by an invariant X × X × ×

Unsigned modulo by an invariant X X X × ×

Signed division by an invariant X X X × ×

Unsigned division by an invariant X X X × ×

Substitution by copysignf() X × × × ×

Substitution by fabsf() X × × × ×

content, a register value has to be loaded into a typed variable
%a. Using the xor instruction, all bits are zeroed and the result
(in variable %b) can be stored back into the same register. To
transform this idiom into its de-optimized form, a proper zero
assignment has to be done. This de-optimized LLVM IR code
is shown in Fig. 3b. In this case, the typed variable %b holds
zero, which can be directly stored in the register.

In Table I, we can see a shortened list of instruction
idioms used in common compilers. This list was retrieved by
studying the source codes responsible for code generation (this
applies to open-source compilers—GNU GCC 4.7.1 and Open
Watcom 1.9) and via reverse engineering of executable files
generated by these compilers (this method was used for other
compilers—Microsoft Visual Studio C++ Compiler 16 and 17,
Borland C++ 5.5.1, and Intel C/C++ Compiler XE13). Some
of these instruction idioms are widespread among modern
compilers. We have also found out that actively developed
compilers, such as GNU GCC, Visual Studio C++, and Intel
C/C++ Compiler, are using these optimizations heavily. For
example, they generate the idiv instruction (fixed signed
division) only in rare cases on the Intel x86 architecture;
they generate optimized division by using magic number
multiplication instead. The decompiler currently supports all
of these idioms, among others.

A decompilation of an executable file is a time consuming
process. The decompilation time highly depends on the exe-
cutable size. A good approach how to optimize instruction-
idioms analysis is to use any available information to save
decompilation time. This is especially important when we
support many instruction idioms. Some of them are specific for
a particular compiler and therefore, they can be omitted from
the detection phase whenever another compiler is detected. On
the other hand, detection of the used compiler (as described
in [4]) may be inaccurate in some cases and the algorithm
will not detect any used compiler. In that case, the idiom
analysis tries to detect all the supported idioms. Another
optimization approach is to detect only the platform-specific
idioms based on the target architecture and omit idioms for
other architectures.

Transformation of instruction idioms by using LLVM IR
is a quite straightforward task and it is entirely platform
independent. On the other hand, the detection of an instruction
idiom is more challenging. For example, the expected operand
values (e.g. values used for magic number multiplication) may
not be stored as clearly as in a original HLL source code. For
example, the original HLL constant may not be stored directly
as a number (i.e. immediate value), but it may be computed
through several machine-code instructions. These instructions
fold the original value at run-time based on different resources
(e.g. register value, memory content). For example, the MIPS
instruction set does not allow direct load of 32-bit immediate
value and it has to be done using more instructions (e.g. lui
and ori). Therefore, the operand value is not stored directly
within one instruction but it is assembled by an instruction se-
quence. This is quite complicated because the idiom-detection
phase (as well as the rest of the decompiler) is done statically
and run-time information is unavailable. To deal with this
problem, we utilize a static-code interpreter, originally used
for function reconstruction—see [3] for a detailed description
of the static-code interpreter.

Using an interpreter to statically compute a value stored in
a register is quite common task in instruction-idiom analysis.
An example is shown in Fig. 4. An interpreter has to be run
to statically compute a number stored in register @regs3 by
using the backtracking of previously used operations and their
operands. The obtained result is in this case 680390859.
This number is used in optimized division by number 101
performed by the magic-number multiplication on ARM and
the GNU GCC compiler. Another similar issue is accessing
the data segment to load constants; the interpreter can solve
this issue as well.

The last implementation issue is not related to idiom
detection or transformation, but to the processing within the
middle-end phase of the decompiler. This phase is responsible
for optimization of the LLVM IR code generated by the front-
end phase. We exploit the LLVM opt and its optimizations
for this purpose. For example, it serves to reduce the code size,
which has a positive impact on the decompilation results (as
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%a = add i32 679477248 , 0
store i32 %a, i32∗ @regs3

%b = load i32∗ @regs3
%b_1 = add i32 913408 , 0
%b_2 = add i32 %b_1 , %b
store i32 %b_2 , i32∗ @regs3

%c = load i32∗ @regs3
%c_1 = add i32 203, 0
%c_2 = add i32 %c_1 , %c
store i32 %c_2 , i32∗ @regs3

; @regs3 contains value 680390859
; = 203 + 913408 + 679477248

Fig. 4: An example of a constant computation in LLVM IR.

has been discussed in Section III). Besides our decompilation
project, opt is normally used as an optimization part of
the LLVM compiler toolchain. However, LLVM is a modern
compiler toolchain and it also uses instruction idioms for code
optimizations. Therefore, the opt tool has tendencies to bring
back idioms instead of the de-optimized code. Therefore, we
had to disable these optimization passes used in opt.

In Fig. 5, we demonstrate reconstruction of another idiom.
In this figure, we can compare decompilation results with
and without the instruction-idiom analysis. Fig. 5a illustrates
a simple C program containing the division idiom. Decom-
pilation result obtained without instruction-idiom analysis is
depicted in Fig. 5c. It contains three shift operations and one
multiplication by a magic value. Without the knowledge of
fundamentals of this idiom, it is almost impossible to under-
stand the resulting code. On the other hand, the decompilation
result with instruction-idiom analysis enabled is well readable
and a user can focus on a program sense, not on deciphering
optimizations done by a compiler, see Fig. 5b.

V. RELATED WORK

The fundamentals of instruction idioms and their usage
within compiler optimizations are well documented, see [1,
12–16]. From these publications, we can gain insights into the
principles behind instruction idioms as well as how and when
to use them to obtain a more effective machine code.

Contrariwise, the detection and reconstruction of instruc-
tion idioms from a machine code is mostly an untouched
area of machine-code decompilation. This topic is only briefly
mentioned in [17–19]. Nevertheless, some of the existing
(non-retargetable) decompilers support this feature. In order
to observe the state of the art, we look closely on their
approaches.

We used a test containing five idioms from a larger list
listed in Table I. These idioms are the most common ones
(e.g. multiplication via left shift) and the support of idiom
reconstruction within a tested decompiler should be easily
discovered via these idioms. A source code of this test is
listed in Fig. 6. Each expression of the printf function
represents one instruction idiom, whose meaning is described
in Section IV. This source code was compiled for different
target platforms (i.e. processor architecture, operating system,

int main(void)
{

int a;

/∗ ... ∗/

a = a / 10;

/∗ ... ∗/
}

(a) Input.

int main(void)
{

int a;

/∗ ... ∗/

a = a / 10;

/∗ ... ∗/
}

(b) Output with idiom analysis enabled.

int main(void)
{

int a;

/∗ ... ∗/

a = (lshr(a ∗ 1717986919 , 32) >> 2) −

(a >> 31);

/∗ ... ∗/
}

(c) Output with idiom analysis disabled.

Fig. 5: C code example of decompilation with and without the
idiom analysis.

#include <stdio.h>
int main(void)
{

int a;

/∗ ... ∗/

printf("1. Multiply: %d\n", a ∗ 4);
printf("2. Divide: %d\n", a / 8);
printf("3. >= 0 idiom: %d\n", a >= 0);
printf("4. Magic sign−div: %d\n", a / 10);
printf("5. XOR by −1: %d\n", −a − 1);
return a;

}

Fig. 6: C source code used for decompilers’ testing.

and file format) based on their support in each decompiler.
Finally, each decompiler was tested by using this executable
file and we analysed the decompiled results afterwards.

Boomerang is the only existing open-source machine-
code decompiler [20]. However, it is no longer developed.
According to our tests, it was able to reconstruct only the first
instruction idiom.

REC Studio (also known as REC Decompiler) is freeware,
but not an open-source decompiler. It has been actively de-
veloped for more than 25 years [21]. None of the instruction
idioms was successfully reconstructed. We only noticed that
REC Studio can reconstruct the register cleaning idiom (via
the xor instruction) described in Section I.

SmartDec decompiler is another closed-source decompiler
specialising on decompilation of C++ code, see [22] for details.
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However, SmartDec was unable to reconstruct any instruction
idiom from the machine-code.

Hex-Rays decompiler [23] achieved the best results—three
successfully reconstructed idioms from five (it succeeded in
the 1st, 2nd, and 4th test). Therefore, we have chosen this
decompiler for a deeper comparison with our own solution as
described in Section VI.

There are two other interesting projects. The dcc decom-
piler was the first of its kind, but it is unusable for modern real-
world decompilation because it is no longer developed [17, 24].
On the other hand, the Decompile-it.com project looks promis-
ing, but the public beta version [25] is probably still in an
early version of development and it cannot handle any of these
instruction idioms.

In conclusion, we cannot compare our idiom-detection
algorithm with approaches used in other tools because of two
reasons. (1) They are either not distributed as open-source.
(2) The open-source solutions do not support idiom recovery
at all or they support only a very limited number of idioms. On
the other hand, we can compare our results with the Hex-Rays
Decompiler.

VI. EXPERIMENTAL RESULTS

This section contains an evaluation of the proposed method
of instruction-idiom analysis and reconstruction. The decom-
piled results are compared with the nowadays decompilation
“standard”—the Hex-Rays Decompiler [23] that is a plugin
to the IDA disassembler [26]. We used the latest versions of
these tools, i.e. Hex-Rays Decompiler v1.8.0.130306 and IDA
disassembler v6.4.130306. The Hex-Rays Decompiler is not
an automatically generated retargetable decompiler, such as
our solution, and it supports the Intel x86 and ARM target
architectures. Our solution also supports the MIPS architecture
at the moment.

All the three mentioned architectures are described as
instruction-accurate models in the ISAC language in order to
automatically generate our retargetable decompiler. MIPS is
a 32-bit processor architecture, which belongs to the RISC
processor family. The processor description is based on the
MIPS32 Release 2 specification [27]. ARM is also a 32-bit
RISC architecture. The ISAC model is based on the ARMv7-
A specification with the ARM instruction set [28]. The last
architecture used for the comparison is Intel x86 (also known
as IA-32) that belongs in the CISC processor family. The
model is based on the 32-bit processor core specified in [29]
without extensions (e.g. x86-64).

We created 21 test applications in the C language. Each
test is focused on a detection and reconstruction of a different
instruction idiom. The Minimalist PSPSDK compiler (version
4.3.5) [30] was used for compiling MIPS binaries into the
ELF file format, the GNU ARM toolchain (version 4.1.1) [31]
for ARM-ELF binaries, and the GNU compiler GCC version
4.7.2 [32] for x86-ELF executables (the 32-bit mode was
forced by the -m32 option).

As can be observed, we used the ELF file format in each
test case; however, the same results can be achieved by using
the WinPE file format [33, 34]. All three compilers are based
on GNU GCC. The reason for its selection is the fact that it

allows retargetable compilation to all three target architectures
and it also supports most of the idioms specified in Sections II
and IV.

Different optimization levels were used in each particular
test case. Because of different optimization strategies used in
compilers, not every combination of source code, compiler, and
its optimization level leads to the production of an instruction
idiom within the generated executable file. Therefore, we count
only the tests that contain instruction idioms. Furthermore, it is
tricky to create a minimal test containing an instruction idiom
without its removal by compiler during compilation.

An example of this problem is depicted by using a C code
with multiplication idiom in Fig. 7a. The result of this code
can be computed during compilation; therefore, the compiler
emits directly the result without the code representing its
computation (see the example in Fig. 7b). Therefore, we use
functions from the standard C library for initialization of
variables used in idioms. For example, this can be done by
using statements a = rand(); or scanf("%d", &a);.
Example of an enhanced test is depicted in Fig. 7c. Such code
cannot be eliminated during compilation and the instruction
idiom is successfully generated in the executable file, see
Fig. 7d.

The testing was performed on Intel Core i5 (3.3 GHz),
16 GB RAM running a Linux-based 64-bit operating system.
The GCC compiler (v4.7.2) with optimizations enabled (O2)
was used for creation of the decompiler.

Finally, we enabled the emission of debugging information
in the DWARF standard [35] by using the g option because
both decompilers exploit this information to produce a more
accurate code, see [10] for details. The debugging information
help to eliminate inaccuracy of decompilation (e.g. entry-
point detection, function reconstruction) that may influence
testing. However, the debugging information does not contain
information about usage of idioms and therefore, its usage does
not affect the idiom-detection accuracy.

All test cases are listed in Table II. The first column repre-
sents description of a particular idiom used within the test. The
maximal number of points for each test on each architecture is

int main(void)
{

int a = 1;
a = a ∗ 8;
return a;

}

(a) Test C code.

int main(void)
{

return 8;
}

(b) Compiler optimized code
without instruction idiom.

#include <stdlib.h>
int main(void)
{

int a = rand();
a = a ∗ 8;
return a;

}

(c) Enhanced test C code.

#include <stdlib.h>
int main(void)
{

int a = rand();
a = a << 3;
return a;

}

(d) Compiler optimized code
with an instruction idiom.

Fig. 7: Problem of idiom removal by compiler.
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TABLE II: Experimental results—number of successfully detected and reconstructed instruction idioms. Note: several tests differ
only in the used numeric constant; however, different instruction idioms are emitted based on this value.

MIPS ARM Intel x86

Lissom Lissom Hex-Rays Lissom Hex-Rays

Tested instruction idiom tests X (%) tests X (%) X (%) tests X (%) X (%)

intA = intB < 0 5 5 100.0 5 5 100.0 0 0.0 5 0 0.0 0 0.0
intA = intB >= 0 5 5 100.0 5 5 100.0 0 0.0 5 5 100.0 0 0.0
intA = 0 0 - - 0 - - - - 1 1 100.0 1 100.0
intA = intB * 4 5 5 100.0 5 5 100.0 5 100.0 5 5 100.0 5 100.0
intA = intB / -2 0 - - 5 5 100.0 5 100.0 4 0 0.0 4 0.0
intA = intB / 4 1 0 0.0 5 5 100.0 5 100.0 4 0 0.0 4 0.0
intA = intB / 10 0 - - 4 4 100.0 4 100.0 4 0 0.0 4 100.0
intA = intB / 120 0 - - 4 4 100.0 4 100.0 4 0 0.0 4 100.0
uintA = uintB / 7 0 - - 4 4 100.0 4 100.0 4 0 0.0 4 100.0
uintA = uintB / 9 0 - - 4 4 100.0 4 100.0 4 0 0.0 4 100.0
intA = -intB - 1 5 5 100.0 5 5 100.0 0 0.0 5 5 100.0 0 100.0
intA = intB % 2 0 - - 5 4 80.0 2 40.0 4 0 0.0 0 0.0
intA = intB % 3 0 - - 4 4 100.0 4 100.0 4 0 0.0 4 100.0
intA = intB % 5 0 - - 4 4 100.0 4 100.0 4 0 0.0 4 100.0
intA = intB % 8 0 - - 4 4 100.0 3 75.0 4 0 0.0 1 25.0
uintA = uintB % 3 0 - - 4 4 100.0 4 100.0 4 0 0.0 4 100.0
uintA = uintB % 5 0 - - 4 4 100.0 4 100.0 4 0 0.0 4 100.0
uintA = uintB % 8 5 5 100.0 5 5 100.0 1 20.0 5 0 0.0 0 0.0
floatA = -floatB 5 5 100.0 5 5 100.0 0 0.0 0 - - - -
floatA = copysign(floatB, floatC) 5 5 100.0 5 5 100.0 0 0.0 0 - - - -
floatA = fabs(floatB) 5 5 100.0 5 5 100.0 0 0.0 0 - - - -

Total 41 40 97.6 91 90 98.9 53 58.2 74 16 21.6 47 63.5

five (i.e. one point for each optimization level – O0, O1, O2,
O3, Os). Some idioms are not used by compilers based on the
optimization level or target architecture; therefore, the number
of total points can be lower than five. For example the MIPS
and ARM architectures lack a floating-point unit (FPU) and
the essential FPU operations are emulated via soft-float idioms.
On the other hand, the Intel x86 architecture implements these
operations via the x87 floating-point instruction extension;
therefore, the instruction idioms are not used in this case.

The decompilation results are depicted in Fig. 8. We can
observe four facts based on the results. (1) The Hex-Rays
decompiler does not support the MIPS architecture; therefore,
we are unable to compare our results on this architecture.
(2) Results of the Hex-Rays decompiler on ARM and Intel x86
are very similar (approximately 60%). Its authors covered the
most common idioms for both architectures (multiplication via
bit shift, division by using magic-number multiplication, etc.).
However, the non-traditional idioms are covered only partially
or not at all (e.g. integer comparison to zero, floating-point
idioms). (3) Our solution achieved almost perfect results on
MIPS and ARM; only one test for each architecture failed.

(4) The concept of idiom detection within the front-end
phase reaches its limits on the Intel x86 architecture, where
the accuracy drops to 20%. The difference between the same
tests for ARM (or MIPS) and x86 lies in the complexity of
the instruction-semantics description. In general, RISC instruc-
tions have only a few side effects (modification of registers,
flags, or memory) and their behavioural description in LLVM
IR is compact. Therefore, detection of instruction idioms
on such smaller pieces of code is quite easy. Contrariwise,
almost every CISC instruction has several side-effects and its
description in LLVM IR is much more longer. In such long
code sequences of LLVM IR, we are unable to detect idioms
with higher accuracy. The solution of this problem represents
a future research and it is described in Section VII.
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Fig. 8: Results of idiom analysis and reconstruction architec-
ture.

VII. CONCLUSION

In this paper, we have focused on the problem of instruction
idiom detection and reconstruction during the decompilation
process of an existing retargetable decompiler. We proposed a
new concept of this analysis that has been successfully tested
on the MIPS, ARM, and x86 architectures within the Lissom
project [2] retargetable decompiler.

In conclusion of the experimental results, our solution
is capable to detect and reconstruct instruction idioms for
the common RISC architectures with a very good accuracy
(i.e. more than 97%), which is better than existing non-
retargetable decompilers (some of them lacks this analysis
as we demonstrated in Section V). However, the accuracy
drops down significantly with the increasing instruction-set
complexity. This issue has to be solved in the future research.

The major problem is the code complexity of CISC instruc-
tions during the early phases of decompilation (i.e. the front-
end phase). On this level, it is problematic to properly detect
the idiom without an increase of the false-positive ratio (that
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is kept to be zero). However, it should be possible to perform
this analysis after the optimization phase (i.e. the middle-end
phase) that is based on the LLVM opt tool. This optimization
phase will simplify the analysed code and it should be possible
to detect idioms more easily. Moreover, changing order of this
phase is supposed to have a minimal effect on the other phases.

The second propose of the future research lies in further
testing of the retargetable idiom detection and reconstruction
by using executables created by different compilers and for
different target architectures. There is always a room for im-
provement by adding new instruction idioms into our database
of supported idioms.

Finally, usage of control-flow analysis for instruction-idiom
detection may be useful when dealing with more aggressive
optimizations.
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[6] J. Křoustek and D. Kolář, “Object-file-format description
language and its usage in retargetable decompilation,”
in AIP Conference Proceedings (SCLIT’12), vol. 1479.
American Institute of Physics (AIP), 2012, pp. 466–469.

[7] The LLVM Compiler Infrastructure, http://llvm.org/,
2013.

[8] LLVM Assembly Language Reference Manual, http://
llvm.org/docs/LangRef.html, 2013.
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