
Novel heuristic solutions for Multi–Skill
Resource–Constrained Project Scheduling Problem

Paweł B. Myszkowski, Marek E. Skowroński, Łukasz Podlodowski
Institute of Informatics, Department of Artificial Intelligence

Faculty of Computer Science & Management, Wrocław University of Technology, Poland

Email: pawel.myszkowski@pwr.wroc.pl, m.e.skowronski@pwr.woc.pl, 168037@student.pwr.wroc.pl

Abstract—In this article some novel scheduling heuristics for
Multi–Skill Resource–Constrained Project Scheduling Problem
have been proposed and compared to state-of-the-art priority
rules, based on task duration, resource salaries and precedence
relations. New heuristics stand an aggregation of known methods,
but are enhanced by skills domain. The goal of the paper is to
investigate, whether evaluated methods can be used as robust-
ness enhancement tools in metaheuristics, mostly evolutionary
algorithms. Experiments have been performed using artificially
created dataset instances, based on real–world instances. Ob-
tained results prove that such methods stand interesting feature
that can be included to more complex methods and increase their
robustness.

I. INTRODUCTION

RESOURCE-Constrained Project Scheduling Problem

(RCPSP) is one of the most widely described [1],

[4], [10], [11], [12] combinatorial problems in the literature.

RCPSP describes the problem [4], where the set of predefined

tasks and resources are given. The objective of RCPSP is to

assign tasks to resources in the way to make the overall project

schedule as cheaper and shorter as possible – time & cost

optimization. However, there are many constraints that have

to be satisfied to make the schedule feasible. Given resource

cannot be assigned to more than one task in specified time.

Moreover, the precedence relations between tasks have to be

obeyed.

The RCPSP can be extended to Multi–Skill RCPSP (MS–

RCPSP) [16], where the set of predefined skills pool is given.

In MS–RCPSP each task requires some skill in specified level

to be performed. Each resource disposes some subset of skills.

Hence not every resource can perform every task. The ability

of performance specified task has to be checked before the

assignment. If specified resource is assigned to given task,

even it does not cover required skills, the project schedule

become infeasible.

As MS–RCPSP is a combinatorial, NP–hard problem [1],

there is no optimal solution that can be found in acceptable,

finite time. That is why the soft computing methods are

often used, mostly metaheuristics. However, simpler heuristics

are often used. Usually they obtain suboptimal solution, but

their advantages are different - they are much faster than

more complex metaheuristics, like Evolutionary Algorithms

(EA) [8], [14] or Ant Colony Optimization [13]. What is

more, heuristics provide repeatable results, while the non-

deterministic character of metaheuristics can be regarded as

one of the most important disadvantage.

Heuristics used to solve the RCPSP and its extensions

are called scheduling priority rules (SPR) [10]. They are

usually related to the main elements that create the problem

description - tasks with their precedence relations, resources or

skills. In this paper five SPR will be presented and evaluated

on proposed dataset: known from the literature, like based on a

task duration, a resource salary, and task successors’ list size.

Some novel approaches are proposed, based on an adjustment

between required and available skills.

Proposed SPR could be applied to more complex methods,

like metaheuristics, i.e. as a method of generating initial

population in EA, to make the search more effective. Further-

more SPR can be combined with the EA–based approaches,

constructing hybrid metaheuristics, where those methods could

be regarded as a local search methods. The goal of this paper

is to investigate whether proposed SPR are effective enough

to recommend them to such applications.

The rest of the paper is organised as follows. Section II

describes other approaches to solve the (MS)–RCPSP with the

SPR paradigm. Section III describes proposed SPR, while Sec-

tion IV provides experiments made with described approaches,

based on proposed dataset. Finally, Section V presents dis-

cussion of obtained results, while Section VI provides the

conclusions and some ideas of future work.

II. RELATED WORK

SPR have been widely investigated in the literature (e.g. [2],

[3], [10]). In [2] some standard priority rules has been pre-

sented: minimum total slack (MINSLK), minimum late finish

time (MINLFT) and minimum processing time (MINPTM).

Furthermore some less popular rules have been introduced:

maximum number of immediate successors (MAXNIS), max-

imum remaining work (MAXRWK) and maximum processing

time (MAXPTM). Proposed priority rules has been tested on

a randomly created dataset. Results have shown that the most

sufficient priority rule for proposed dataset is MAXNIS.

In [3] most of above mentioned priority rules have been

examined, like MINSLK, MINLFT, MINPTM and MAXPTM.

The work–related priority rules has been changed to total

work: minimum total work (MINTWRK) and maximum total

work (MAXTWRK). The MINPTM and MAXPTM has been

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 159–166

978-1-4673-4471-5/$25.00 c© 2013, IEEE 159

examined, however they have been called in different ways—

shortest operation first and longest operation first, but their

meaning is the same to above mentioned. Authors presented

some novel heuristics, based on tasks criticality or load bal-

ancing factor, which became more suitable for solving RCPSP

than standard ones, as it was presented in the results section.

An approach presented in [5] proposes priority rule based on

resource availability. After each task is scheduled, the resource

availability is computed and it influences on further resource–

to–task assignments. An opposite measure for resource avail-

ability - moving resource strength (MRS) is introduced. The

bigger the MRS value is, the more busy the resource is and

the probability of choosing it for further tasks is smaller. MRS

is computed locally – for given time window in a project. The

MRS is included for most of typical priority rules (LFT, SLK,

MTS).

Some researchers also proposed combined approaches,

where priority rules are included in EA [11], [17]. In those ap-

proaches priority rules are used to generate the initial solution

from which the whole initial population could be generated.

Other approach [6] proposes using priority rule as a general

method of creating the whole schedule from the resource–

to–task assignments. Resources are assigned to given tasks

and then the schedule is built by adding following tasks in

given order, preserving resource– and precedence–constraints.

In that approach SPR based on successors definition has been

investigated.

The standard notation for scheduling has been presented

in [4]. It introduces the formal language for describing the

scheduling problem using SPR in comparison to metaheuris-

tics and other more complex methods. It also describes other

known priority rules and methods to solve various RCPSPs

with different objective functions.

Most of state-of-the-art scheduling priority rules has been

tested on the PSPLIB [9] benchmark dataset. The experiments

and results have been widely described in [10], [11]. An

update of performed evaluation has been performed in [12]

and some novel methods have been also proposed there.

Moreover, priority rule heuristic methods have been compared

to metaheuristics, i. e. genetic algorithms (GA) [7]. Even if

GA produces comparative results, priority rule heuristics are

indispensable to create initial solution.

Solutions based on priority rules for multi–mode RCPSP

(MM–RCPSP) are presented in [15]. MM–RCPSP assumes

that task can be performed in several modes while every mode

could cause various task’s performance cost or its duration.

For that problem typical priority rules have been proposed:

LFT, SLK, NIS, LPM and SPM. Obtained results could lead

to conclusion that LFT and LST priority rules are the most

suitable.

III. SCHEDULING PRIORITY RULES

A priority rule contains information to construct a list of

tasks that ranks all project tasks in a certain order to determine

the priorities in which the tasks are assigned to the project

schedule. Such a list is constructed in order to assign priorities

to tasks based on the following project information:

• task description: information about time or cost estimates

of the tasks also determines the task priorities.

• precedence constraint information: information obtained

from simple critical path scheduling tools determines the

task priorities.

• resource skills information: information about the project

resources and skills pools they cover, determines the task

priorities.

The constructed list of tasks is then used and tasks are removed

one by one from the list and are put in the schedule in the

heuristic scheduling process.

Constraints that have to be preserved for each priority rule:

• Resource can be assigned to specified task only if it owns

the required skill in required or higher familiarity level.

• If task has predecessors, it cannot be started before the

last of predecessors would be finished.

• If a conflict occurs during the scheduling the specified

task t, it has to be removed by shifting the start time of

t just after the finish time of conflict-related task. The

conflict is defined as a situation, when given resource is

assigned to more than one tasks, which are performed in

overlapping periods of time.

A. Simple priority rules

We proposed three simple priority rules, where tasks are

ordered to be performed by satisfying simple conditions,

presented below.

1) Task duration–based: In task duration–based priority

rule (TD) tasks are ordered by their duration (ascending or

descending). Then resources are assigned to tasks in predefined

order. If there is more than one resource that can be assigned

to specified task, the cheapest one (with the smallest standard

rate) is selected. If there is more than one resource with the

smallest standard rate, the first one from the pool is taken

to be assigned. The TD bases on MINPTM and MAXPTM

state-of-the-art priority rules.

2) Resource salary–based: In resource salary–based prior-

ity rule (RS) resources are sorted by their standard rate salary

and then are assigned to tasks in an order the tasks were added

to the project description. If there is more than one resource

with the smallest standard rate, the first one from the pool is

taken to be assigned. The tasks’ order is taken directly from

the dataset instance.

3) Successors’ list size–based: In successors’ list size–

based priority rule (SLS) tasks are sorted by the size of

successors’ list. Then resources are assigned to tasks in defined

order. The SLS bases on the state-of-the-art MAXNIS priority

rule. If there is more than one resource that can perform given

task, the cheapest one is taken (the same like in TD). If there

is still more than one resource, that can be chosen, the first

one from the pool is taken.

160 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

B. Complex heuristics

Above mentioned methods base on one or maximum two

sorting criteria that define the tasks order. However, those

methods do not utilize sufficiently the information about the

resource load balancing or skills covered by resource and skills

required by tasks. Thus we propose novel SPR approaches,

based on mentioned aspects.
1) Skill adjustment–based: In skill adjustment–based

heuristic (SA) skills are ordered by the adjustment measure

(π), compared as a difference between number of tasks re-

quiring specified skill and number of resources owning it and

then normalized to [0;1] values. For each skill, the list of tasks

that require it in specified level is obtained. If the list size is

bigger than one, tasks are sorted by their duration time and the

first one from the ordered list is taken to be assigned by the

first resource in ordered resource list by standard rate salary.

If there is more than one resource than can perform specified

task in the same cost, the first one from the list is used.
This priority rule has been extended by one decision to

made - whether the adjustment measure should be computed

only once where the following skill is taken into consideration

or should be computed after each task would be assigned. In

extreme, if each task had different required skill, this decision

would be useless. However, such situation occurs very rarely.

Hence, it was useful to check the importance of that decision in

the context of obtained results. This method has been presented

as a pseudo–code in the Algorithm 1.
Because the sorting order for π, task duration and resource

salary can be ascending or descending and the dynamic

adjustment decision had to be included, we proposed four

two-state parameters: Pπ regards the sorting order of π, Pd

concerns task duration sorting order, Ps declares the sorting

order for resource salary and the last one - Pa treats whether

the dynamic adjustment feature is active or disabled. Each of

those parameter can be set to A (ascending for sorting order

and active for dynamic adjustment feature) or D (descending

sorting order or disabled dynamic adjustment feature).
2) Resource properties – based: In resource properties

– based heuristic (RP) resource that should be assigned to

specified task is selected by using a complex method, where

many conditions are checked. First, only valid resources are

obtained – who dispose required skill in specified level. Then

the subset of obtained resources is created that contains only

resources, who have specified skill in the highest / lowest

acceptable level. If there is more than one resource that

satisfies above condition, resources are compared by their free

time during the project lifetime. The free time is computed

for each resource as a difference between the project duration

and sum of hours that reflects all tasks assigned to specified

resource. If there are still more than one resource that can

be assigned, the cheaper / more expensive one is chosen,

by comparing their standard rate. If there are more than one

resources with the smallest / biggest resource standard rate, the

overtime rate is compared. The last comparison stage regards

the number of skill types that are owned by resource. Finally,

if there is still more than one possibility of choosing resource,

Algorithm 1 SA(Pπ, Pd, Ps, Pa) priority rule

Require: Defined tasks (T), resources (R), relations and skills

Ensure: Feasible schedule (set of task–to–resource assign-

ments (A)

1: Q← sortByAdjustmentMeasure(Pπ)
2: for q ∈ Q do

3: Tq ← tasksWithExpectedSkill(q)
4: Tq ← sortByDuration(Pd)
5: for t to T do

6: for r to R do

7: if resourceCanDoTask(r, t) then

8: R′ ← add(r)
9: R′ ← sortByStandardRateSalary(Ps)

10: R′ ← getCheapestResources()
11: r′ ← getF irst(R′)
12: ai ← t(r′)
13: A← add(ai)
14: if dynamicAdjustment(Pa) then

15: π ← adjustment()
16: Q← sortByAdjustmentMeasure(π)

the first one from the list (regarding the order from creating the

project instance) is taken. The whole RP procedure is shown

as a pseudo-code in the Algorithm 2.

In analogy to SA, some parameters have to be included,

to determine the sorting order of investigated elements. Hence

Psl concerns ordering skills by their level, Pt regards the order

of resources by their free time in the project, Psr sorts the

resource in the order of their standard rate, Por - the same

like previous but regards overtime rate and Pst defines the

sorting order for number of skills owned by resource.

Algorithm 2 RP(Psl, Pt, Psr, Por, Pst) priority rule

Require: Defined tasks (T), resources (R), relations and skills
Ensure: Feasible schedule (set of task–to–resource assignments (A)

1: for t to T do
2: skill← getSkillName(t)
3: for r to R do
4: if resourceCanDoTask(r, t) then
5: R′

← add(r)
6: RHSL ← resourcesOrderedBySkillLevel(skill, Psl)
7: if size(RHSL) > 1 then
8: RMFT ← resourcesOrderedByFreeT ime(Pt)
9: if size(RMFT) > 1 then

10: RMSR ← resourcesOrderedByStandardRate(Psr)
11: if size(RMSR) > 1 then
12: RMOR ← resourcesOrderedByOvertimeRate(Por)
13: if size(RMOR) > 1 then
14: RMST ← resourcesOrderedBySkillTypes(Pst)
15: if size(RMST) > 1 then
16: ai ← getF irst(RMST)
17: else
18: ai ← RMST

19: ...
20: A← add(ai)

Similarly to SA priority rule, the set of values for parameters

in RP priority rule is the same: A – ascending, D – descending.

MAREK E. SKOWROŃSKI, ET AL.: NOVEL HEURISTIC SOLUTIONS FOR MULTI-SKILL RESOURCE-CONSTRAINED PROJECT 161

IV. EXPERIMENTS AND RESULTS

The goal of conducted experiments was to investigate

whether proposed SPR stand a robust way of solving MS–

RCPSP and thus – whether they can be used in combination

with EA. To evaluate solution – the resulted project schedule

– its duration time ([days]) and performance cost ([c.u]1) were

investigated.

A. Dataset

Because not only the project schedule duration, but also

the cost of the schedule should be evaluated, we cannot use

the standard PSPLIB benchmark dataset [9], that does not

contain any information about the task performance cost. What

is more, PSPLIB dataset instances do not reflect the multi–skill

model. We propose the dataset containing six project instances

that has been artificially created2, in a base of real–world

instances, got from the Volvo IT Department in Wroclaw. The

dataset instances have been verified by experienced project

manager from mentioned enterprise.

TABLE I
MS–RCPSP DATASET DESCRIPTION

Property D1 D2 D3 D4 D5 D6

Tasks 100 100 100 200 200 200
Resources 20 10 5 40 20 10
Skills 9 9 9 9 9 9
Relations 20 26 22 133 148 129

The dataset summary has been presented in the Table I.

There are two groups of created project instances: one contains

100 tasks and the second – 200 tasks. Within the group, project

instances are varied by number of available resources and

the precedence relationship complexity. It led to create three

different project instances both with 100 and 200 tasks. The

skill variety has been set up to constant 9 different skill types

for each project instance. Because of the different resources

and relations number, the scheduling complexity for each

project was varied.

B. Set-up

For SA priority rule 4 parameters has been investigated –

24 = 16 experiments with different parameters’ configurations

have been performed (see Tab. III). In RP summary table (see

Tab. IV) records containing the same values for each project

instance with different parameters’ configuration have been

filtered out. The number of experiments is equal to the number

of parameters’ configuration: 25 = 32.

C. Experiments

Experiments have been divided into the following parts.

Evaluation of project duration and performance cost (see Table

II) for first three priority rules. Furthermore, an evaluation

of the same project properties (duration and cost) has been

performed for SA (Tab. III) and RP heuristics (Tab. IV).

1Currency units
2http://www.ii.pwr.wroc.pl/˜myszkowski/scheduling

All experiments have been performed on a personal com-

puter equipped with Intel Core 2 Duo P8700 (2.53 GHz at each

core), 4 GB memory RAM and Windows 7 Professional with

Service Pack 1. For such configuration, SPR processing times

were negligible small (1-3 [s]), thus they were not presented

in details in this paper. The experimental environment was

provided by the Eclipse IDE and Java programming language.

We used some specific libraries3 to process MS Project files.

We decided to highlight the best obtained results in specified

tables (see Tab. II, III, IV). However, as described problem

is multi-objective, we highlighted the best duration– and cost

oriented optimization results for given project instance. If there

were more than one best result for specified objective, that with

smaller value of second objective was highlighted as the best

one.

D. Results obtained for TD, SLS, RS

The experimental results for TD, SLS and RS has been

presented in Table II. Taking into account the consideration

of obtained results for evaluation of project duration for TD,

SLS and RS, we can see that that the SLS became a winner

in 5/6 times. Both ascending and descending mode for SLS

priority rule got the best results four times. RS priority rule

has never obtained the best result, what can be explained by

the fact that this rule does not care about the duration of the

project. It is focused only on the cost aspect.

As RS priority rule became the worst approach for schedul-

ing focused on the duration aspect, it turned out to be the

best way when the cost–oriented scheduling mode is required.

When the ascending mode for RS priority rule was set, the best

results for each project instance was obtained (6/6). However,

changing the order of this priority rule from ascending to

descending make it the less effective approach. It suggests

that this is one of the most performance cost–sensitive SPR.

Fig. 1. Project schedule duration for TD, SLS and RS priority rules

Project duration and performance cost results for TD, SLS

and RS priority rules have been also illustrated in the Fig. 1

and Fig. 2 respectively. Indicated figures gives as a clue how

changing the number of resources in project could influence

on the potential of scheduling optimization. The more tasks

3Microsoft Project Exchange - http://mpxj.sourceforge.net

162 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

TABLE II
PROJECT DURATION AND PERFORMANCE COST OBTAINED FOR TD, RS, SLS PRIORITY RULES

Method
Dataset instance

D1 D2 D3 D4 D5 D6
days cost days cost days cost days cost days cost days cost

TD
Asc 45 52806 69 43262 92 40677 107 103102 195 93285 217 105686
Desc 45 52607 68 43892 78 40862 107 101319 195 93535 221 105205

SLS
Asc 45 47530 63 43329 87 40346 111 73157 193 59627 216 75033

Desc 45 48257 63 43221 74 40286 110 73749 195 59339 216 75141

RS
Asc 124 30104 128 26323 172 30164 212 46133 333 51496 254 71986

Desc 166 83312 111 60384 134 52957 222 148407 278 142072 231 131272
Avg 78 52436 84 43402 106 40882 145 90978 232 83226 226 94054

are statistically assigned to resource, the longer the project

schedule could be.

Fig. 2. Project schedule cost for TD, SLS and RS priority rules

E. Results obtained for SA

However duration results obtained for the dataset using SA

heuristic are much diversified (see Tab. III), an interesting

observation has been made. For 4 from 6 project instances,

the best solution was found where the second parameter

value, which was reflected to task duration sorting order,

had been set to D. In other words - sorting tasks by their

descending duration provides the best duration results. What

is also interesting, for two remaining project instances the best

duration results were obtained when task duration sorting order

had been set to ascending, but the skill adjustment order had

been set to descending.

The cost–oriented scheduling (see Tab. III) with the use

of SA priority rule leads to the conclusion, that cost–related

parameter (resource standard rate) is the most important.

Moreover, results show that this is the only one parameter

that influences to the method’s robustness. If cost sorting

order is set to ascending, provided results as the best, while

changing the parameter to the descending value makes often

results even the worst from all of investigated methods. What

is also interesting, for all of performed experiments related

to evaluating the cost for SA priority rule, only two resulting

values were obtained.

What is also worth mentioning, duration optimization results

for SA priority rule were significantly worse in comparison

to those obtained for duration optimization in TD, SLS, RS

and RP priority rules. While the average duration for sample

project instance (D1) is equal to 78 for TD, SLS, RS (see

Tab.II) or 70 (see Tab.IV) for RP priority rules, the average

duration value for the same project instance in SA (see Tab.III)

is about two times bigger - 149 days! On the other hand, cost

aspect for D1 has been changed from average 52436 [c.u.]

(see Tab.II to average 56708 [c.u.] (see Tab.III).

F. Results obtained for RP

As it is presented in the Table IV, ascending skill level

criterion generally leads to get better results. Most often

the best results has been placed into the parameters’ con-

figuration pool consisting skill level criterion ascending and

resource availability criterion descending. It could lead to the

conclusion that those two parameters influence the heuristic

optimization potential the most. However, for the D6 project

schedule instance, the best configuration regards ascending

skill level criterion and ascending resource availability. On the

other hand, for two from six project instances the best duration

optimization results were obtained also for descending skill

level criterion, while the resource availability criterion still

remains descending.

Looking at the cost optimization results (see Tab. IV) the

first impression can be made that those results are in opposition

to project duration results. It proves the previous assumption

that project cost and duration are in opposition. It means:

reducing the performance cost leads to enlarging the project

duration. The best cost optimization results were obtained

when the second parameter – resource availability – has been

set to ascending. An interesting fact is that steering remaining

parameters does not influence on the final result. However it

involves only the parameter configuration, when the skill level

criterion is set descending.

Nevertheless the average values for cost optimization in

SA is generally smaller than those relevant values for SA,

the better optimization results were obtained for SA. The

differences in average values come from smaller standard

deviation of performance cost values in parameter configu-

rations of RP. Cost obtained for RP are relatively small, but

the smallest values were obtained in SA. On the other hand,

invalid parameter configuration in SA could lead to increase

the performance cost drastically.

MAREK E. SKOWROŃSKI, ET AL.: NOVEL HEURISTIC SOLUTIONS FOR MULTI-SKILL RESOURCE-CONSTRAINED PROJECT 163

TABLE III
PROJECT DURATION AND PERFORMANCE COST FOR SA PRIORITY RULE

Parameter configuration
Dataset instance

D1 D2 D3 D4 D5 D6
days cost days cost days cost days cost days cost days cost

AAAA 122 30104 169 26322 189 30163 213 46132 356 51495 294 71986
AAAD 128 30104 135 26322 179 30163 237 46132 347 51495 311 71986
AADA 166 83311 126 60383 151 52957 258 148407 294 142071 258 131272
AADD 177 83311 119 60383 144 52957 234 148407 313 142071 281 131272
ADAA 121 30104 144 26322 171 30163 225 46132 349 51495 294 71986
ADAD 135 30104 140 26322 178 30163 237 46132 329 51495 292 71986
ADDA 162 83311 120 60383 138 52957 248 148407 275 142071 244 131272
ADDD 176 83311 127 60383 135 52957 245 148407 335 142071 273 131272
DAAA 127 30104 144 26322 174 30163 236 46132 342 51495 288 71986
DAAD 127 30104 144 26322 176 30163 212 46132 387 51495 292 71986
DADA 176 83311 111 60383 142 52957 241 148407 322 142071 239 131272

DADD 178 83311 111 60383 142 52957 242 148407 324 142071 247 131272
DDAA 122 30104 131 26322 177 30163 229 46132 349 51495 259 71986

DDAD 122 30104 131 26322 195 30163 229 46132 356 51495 264 71986
DDDA 166 83311 105 60383 135 52957 248 148407 309 142071 259 131272
DDDD 176 83311 105 60383 135 52957 224 148407 305 142071 259 131272
Average 149 56708 129 43353 160 41560 235 97270 331 96783 272 101629

TABLE IV
PROJECT DURATION AND PERFORMANCE COST FOR RP PRIORITY RULE

Parameter configuration
Dataset instance

D1 D2 D3 D4 D5 D6
days cost days cost days cost days cost days cost days cost

AAAAA 85 37657 100 37843 118 42512 200 51905 223 58549 216 97984

AAADA 85 35951 100 36957 118 42512 201 50074 223 58447 216 97984

ADAAA 45 52693 64 43094 108 39260 110 100583 193 94386 217 104757
ADADA 45 52693 63 42948 108 39260 108 101366 199 93582 217 104757
DAAAA 100 38776 140 41511 174 36299 285 49261 247 55735 244 83948

DDAAA 50 54341 66 42576 108 42100 112 104275 195 88679 216 102737
DDADA 50 54341 66 42576 108 42100 112 103216 195 88679 216 102737
Average 70 45653 93 41126 127 40042 177 76242 215 74224 223 97357

V. RESULTS’ DISCUSSION

The best obtained results for the duration and cost op-

timization has been compiled into the Table V. The table

shows that SLS priority rule became the most effective in

duration optimization for the most analysed project instances.

Only for D4 instance the other method turned out to be

more robust (TD). While first of proposed complex heuristic

(SA) became not sufficient for duration optimization, the RP

heuristic resulted well, being mostly equally efficient as SLS.

TABLE V
THE BEST OBTAINED DURATION AND COST INDICATORS.

ID
DO CO

Method D C Method D C
D1 SLS-A 45 47530 SA-ADAA 121 30140
D2 SLS-D 63 43221 SA-DDAA 131 26322
D3 SLS-D 74 40286 SA-DAAA 174 30163
D4 TD-D 107 101319 SA-DAAD 212 46132
D5 SLS-A 193 59627 SA-ADAD 329 51495
D6 SLS-A 216 75033 RS-A 254 51986

Beside the duration optimization, the project performance

cost optimization has been also examined for each project

instance. The cost optimization results are also presented in the

Table V. Obtained results are quite interesting: SA methods

became the best cost–optimization–oriented. An interesting

fact is that for each best SA parameter configuration, the third

criterion that reflects resource standard rate, was always set to

ascending (A). Results given for RS were comparably good

as those obtained by SA (see Tab. II), thus both SA and RS

method became the best cost–optimization method for each

project instance.

Fig. 3. Summary duration optimization results of examined methods.

The summary of duration and cost optimization for the best

parameter configuration has been presented in Fig. 3 (duration

optimization) and in Fig. 4 (cost optimization). In these figures

164 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

the issue of time/cost trade-off is clearly presented – reducing

the project cost makes the performance cost larger and vice

versa.

Fig. 4. Summary cost optimization results of examined methods.

Let’s analyse the differences between the best duration and

cost optimization. While the best project duration for D1 is 45

days, such a schedule would cost 47530 [c.u.], the cheapest

project schedule could save about 17000 [c.u.] (37%), but

would enlarge the project for 169%. For D2 project instance

those indicators are 39% of reducing cost and enlarging the

project duration by 108%. For D3 project instance 135%

of project duration enlargement could cause saving 25% of

budget. An interesting example is D4, where reducing the

budget by the half, enlarges the duration about two times.

D5 project instance turned out to be the least prone for cost

optimization, where only 14% of budget could be saved, with

the respect of enlarging the project duration by 70%. The last

project instance – D6 – has the smallest potential in duration

optimization - only 18% of duration was able to be reduced.

Consequently, the potential of performance cost optimization

for this instance is also reduced.

VI. CONCLUSIONS AND FURTHER WORK

Before making some more general assumptions and con-

clusions, an important issue has to be reminded. The best

optimization results, both time– or cost– oriented influence on

the opposite project property. In other words, best time opti-

mization could cause generate the schedule with unacceptable

performance cost. Analogously, reducing the cost could be the

reason of enormous enlargement of project duration. As it was

presented in tables with detailed results.

The main drawback that can be stated for proposed SPR

is that they are much less flexible in obtaining the final solu-

tion than other methods, like metaheuristics, especially those

population–based. E.g. for EA the set of possible solutions

is investigated during the EA runtime. Thus they can be

compared and the best compromise can be found - the solution

that is cheaper enough, but with acceptable cost. For SPR we

do not have the possibility to find such a medium solution.

On the other hand the computing time of above mentioned

methods is negligibly small, using such methods in EA could

enlarge its processing times. The decision would have to be

made, whether potential increase of robustness and flexibility

is worth of enlarging processing time.
Obtained results provide also a conclusion that there is no

need to make the priority rules too much complicated. TD,

SLS and RS are operating in one or maximum two sorted lists

(tasks and / or resources), while in the SA one more sorted

list has to be made, based on the skills pool. It enlarges the

computing complexity, but does not provides better results.
Furthermore, if cost–oriented scheduling is taken into ac-

count, the best results have been obtained using the SA

heuristic. However, the results are the same like obtained for

RS priority rule. It could lead to conclusion, that also cost–

oriented optimization could be made with the usage of simpler

priority rules.
Performed experiments showed that using SPR give possi-

bility to get sub-optimal solution of proposed problem. Hence,

in a further work proposed methods would be applied to EA

as a local search (mutation operator) or as an initial population

generator method.
As the fitness function in EA could be weighted by their

duration and cost component, specified heuristic could be

chosen depending to the weight settings of evaluation function

in EA. Directed selection of local search or initial population

creation method could enhance the final optimization results.

REFERENCES

[1] Blazewicz J., Lenstra J.K., Rinnooy Kan A.H.G.; Scheduling subject
to resource constraints: Classification and complexity, Discrete Applied
Mathematics (5), pp. 11–24, 1983.

[2] Boctor F. F.; Heuristics for scheduling projects with resource restrictions
and several resource–duration modes, International Journal of Production
Research (31/11), pp. 2547–2558, 1993.

[3] Browning T. R., Yassine A. A.; Resource–constrained multi–project
scheduling: Priority rule performance revisited, International Journal of
Production and Economics (126), pp. 212–228, 2010.

[4] Brucker P., Drexl A., Mohring R., Neumann K., Pesch E.; Resource–
constrained project scheduling: Notation, classification, models, and
methods, European Journal of Operational Research (112), pp. 3–41,
1998.

[5] Buddhakulsomsiri J., Kim D., S.; Priority rule–based heuristic for multi-
mode resource–constrained project scheduling problems with resource
vacations and activity splitting, European Journal of Operational Research
(178), pp. 374–390, 2007.

[6] Chen Z., Chyu C.; An Evolutionary Algorithm with Multi–Local Search
for the Resource-Constrained Project Scheduling Problem, Intelligent
Information Management (2), pp. 220–226, 2010.

[7] Hartmann S.; A competitive genetic algorithm for resource–constrained
project scheduling, Naval Research Logistics (45), pp. 733–750, 1998.

[8] Hindi K. S., Yang H., Fleszar K.; An Evolutionary Algorithm for
Resource–Constrained Project Scheduling, IEEE Transactions on evolu-
tionary computation (6), pp. 512–518, 2002.

[9] Kolisch R., Sprecher A., PSPLIB - A project scheduling problem library,
European Journal of Operational Research (96), pp. 205–216, 1996.

[10] Kolisch R.; Efficient priority rules for the resource–constrained project
scheduling problem, Journal of Operations Management (14), pp. 179–
192, 1996.

[11] Kolisch R., Serial and parallel resource-constrained project scheduling
methods revisited: Theory and computation, European Journal of Opera-
tional Research (90), pp. 320–333, 1996.

[12] Kolisch R., Hartmann S., Experimental evaluation of state-of-the-art
heuristics for the resource-constrained project scheduling problem, Eu-
ropean Journal of Operational Research (127), pp. 394–407, 2000.

[13] Merkle D., Mittendorf M., Schmeck H.; Ant Colony Optimization
for Resource–Constrained Project Scheduling, IEEE Transactions on
Evolutionary Computation (6/4), pp. 333–346, 2002.

MAREK E. SKOWROŃSKI, ET AL.: NOVEL HEURISTIC SOLUTIONS FOR MULTI-SKILL RESOURCE-CONSTRAINED PROJECT 165

[14] Mendes J. J. M., Goncalves J. F., Resende M. G. C.; A random key
based genetic algorithm for the resource constrained project scheduling
problem, Computers & Operations Research (36), pp. 92–109, 2009.

[15] Lova A., Tormos P., Barber F., Multi-Mode Resource Constrained
Project Scheduling: Scheduling Schemes, Priority Rules and Mode Selec-
tion Rules, Inteligencia Artificial, Revista Iberoamericana de Inteligencia
Artificial, (10), pp. 69–86, 2006.

[16] Santos M., Tereso A. P.; On the multi-mode, multi-skill resource
constrained project scheduling problem - computational results, Soft
Computing in Industrial Applications, Advances in Intelligent and Soft
Computing (96), pp. 239–248, 2011.

[17] Valls V., Ballestin F., Quintanilla S.; A hybrid genetic algorithm for
the resource–constrained project scheduling problem, European Journal
of Operational Research (185), pp. 495–508, 2008.

166 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

