
Template Library for Multi-GPU Pseudorandom
Number Recursion-based Generators

Dominik Szałkowski
Institute of Mathematics, Maria Curie-Skłodowska University,

Pl. M. Curie-Skłodowskiej 1, Lublin, Poland

Email: dominisz@umcs.lublin.pl

Przemysław Stpiczyński
Maria Curie-Skłodowska University, Lublin, Poland

Institute of Theoretical and Applied Informatics of

the Polish Academy of Sciences, Gliwice, Poland

Email: przem@hektor.umcs.lublin.pl

Abstract—The aim of the paper is to show how to design
and implement fast parallel algorithms for Linear Congruential,
Lagged Fibonacci and Wichmann-Hill pseudorandom number
generators. The new algorithms employ the divide-and-conquer
approach for solving linear recurrence systems. They are imple-
mented on multi GPU-accelerated systems using CUDA. Numeri-
cal experiments performed on a computer system with two Fermi
GPU cards show that our software achieve good performance in
comparison to the widely used NVIDIA CURAND Library.

I. INTRODUCTION

P
SEUDORANDOM numbers are very important in prac-

tice and pseudorandom number generators are often cen-

tral parts of scientific applications such as simulations of

physical systems. They are used by Monte Carlo methods,

especially in case of multidimensional numerical integration

[1], [4], [9]. In [8] we showed the general techniques for

implementing recursion-based generators of pseudorandom

numbers on GPU-accelerated systems which are much more

efficient than their sequential counterparts.

NVIDIA CURAND Library [5] provides routines for simple

and efficient generation of high-quality random numbers. It

comprises two types of generators:

• XORWOW, MRG32K3A and MTGP32 are pseudoran-

dom number generators which means that a sequence

of random numbers which they produce satisfy most of

desired statistical properties of a truly random sequence

and they work on 32-bit numbers,

• SOBOL32, SCRAMBLED_SOBOL32, SOBOL64,

SCRAMBLED_SOBOL64 are quasirandom number

generators, n-dimensional points obtained from

these fill n-dimensional space evenly, SOBOL32,

SCRAMBLED_SOBOL32 use 32-bit arithmetic and

SOBOL64, SCRAMBLED_SOBOL64 use 64-bit

arithmetic.

Unfortunately, these generators utilize only a single GPU

device, thus if we want to perform computations using multiple

GPUs, we should apply some parametrization techniques

for parallel generation of pseudorandom numbers [3] what

can lead to possible unwanted correlations between numbers

resulting in their poor statistical properties [6]. It should be

noticed that only one generator from CURAND produces fully

64-bit results.

In this paper we show how to design fast parallel algorithms

for Linear Congruential, Lagged Fibonacci [3] and Wichmann-

Hill [10] pseudorandom number generators which employ

the divide-and-conquer approach for solving linear recurrence

systems [7] and can be easily used in computations on multi-

GPU systems. Our generators have exactly the same statistical

properties as their sequential counterparts.

Numerical experiments performed on a computer sys-

tem with two Fermi GPU cards show that they achieve

good speedup in comparison to the standard CPU-based

sequential algorithms [8] and implementations provided

by NVIDIA CURAND Library. Our implementation is

freely available as the C++ template library which re-

quires only CUDA Toolkit. It can be downloaded from

http://dominisz.umcs.lublin.pl/gpu-rand.

II. PARALLEL PSEUDORANDOM NUMBER GENERATORS

We consider the following three pseudorandom number

generators:

1) Linear Congruential Generator (LCG): xi+1 ≡
(axi + c)(mod m), where xi is a sequence of pseu-

dorandom values, m > 0 is the modulus, a, 0 < a < m
is the multiplier, c, 0 ≤ c < m is the increment, x0,

0 ≤ x0 < m is the seed or start value,

2) Lagged Fibonacci Generator (LFG): xi ≡ (xi−p1
+

xi−p2
)(mod m), where 0 < p1 < p2,

3) Wichmann-Hill Generator (WHG, [10]):

xi ≡ 11600xi−1(mod 2147483579)

yi ≡ 47003yi−1(mod 2147483543)

zi ≡ 23000zi−1(mod 2147483423)

ti ≡ 33000ti−1(mod 2147483123) (1)

W ≡ xi/2147483579.0 + yi/2147483543.0

+ zi/2147483423.0 + ti/2147483123.0

Wi ≡ W − ⌊W ⌋.

It should be noted that, in fact, WHG combines four LCG

generators, each with the increment 0 (such generator is

also called Multiplicative Congruential Generator, MCG). This

generator has much better statistical properties than LCG. Its

period is about 2121. It passes Big Crush test from TestU01

Library [2].

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 515–519

978-1-4673-4471-5/$25.00 c© 2013, IEEE 515

In case of LCG and LFG, m = 2M , where M = 32
or M = 64, thus these generators produce numbers from

Zm = {0, 1, . . . ,m − 1}. It allows the modulus operation

to be computed by merely truncating all but the rightmost

32 or 64 bits, respectively. Thus, when we use unsigned

int or unsigned long int data types, we can neglect "(
mod m)". In case of WHG, we have moduli given explicitly.

Note that the integers xk are between 0 and m− 1. They can

be converted to real values rk ∈ [0, 1) by rk = xk/m.

It is clear that LCG, LFG, WHG generators can be consid-

ered as special cases of linear recurrence systems [7]. Indeed,

LCG can be defined as
{

x0 = d

xi+1 = axi + c, i = 0, . . . , n− 2,
(2)

and similarly for LFG we have
{

xi = di i = 0, . . . , p2 − 1

xi = xi−p1
+ xi−p2

, i = p2, . . . , n− 1.
(3)

The details of our single-GPU implementations of LCG and

LFG generators can be found in [8]. Here we only recall the

most important formulas. The parallel version LCG can be

expressed as follows
{

x0 = A−1f0

xi = t+ xis−1y, i = 1, . . . , r − 1,
(4)

where xi = (xis, . . . , x(i+1)s−1)
T ∈ Z

s
m, f0 =

(d, c, . . . , c)T ∈ Z
s
m, f = (c, . . . , c)T ∈ Z

s
m, and

A =

1
−a 1

. . .
. . .

−a 1

∈ Z

s×s
m .

Moreover t = A−1f and y = A−1(ae0), where e0 =
(1, 0, . . . , 0)T ∈ Z

s
m.

Similarly, for LFG we have

x0 = A−1
0 f

xi =
∑p2−1

k=0 xis−p2+kyk +
∑p1−1

k=0 xis−p1+kyk,

i = 1, . . . , r − 1,

(5)

where matrix A0 and vectors f , yk are defined analogously

as for LCG case (see [8] for details). Note that (5) is the

generalization of (4).

III. MULTI-GPU IMPLEMENTATION

To implement the parallel algorithms efficiently on GPU,

we will form the following matrix

Z = [x0, . . . ,xr−1] ∈ Z
s×r
m , (6)

where all vectors xi are defined by (4) or (5). This allows to

use fast coalesced memory access and makes possible the use

of shared memory.

The equation (4) has a lot of potential parallelism. The

algorithm comprises the following steps. First (Step 1) we

from CPU

from
previous
GPU

to
next
GPU

vector y
matrix z

vector t

Fig. 1. LCG: data structures on a GPU device and communication scheme

have to find y, t. Then (Step 2) we find the last entry of each

vector xi, i = 1, . . . , r − 1. Finally (Step 3), we find s − 1
entries of the vectors x1, . . . ,xr−1 in parallel. In case of multi-

GPU implementation vectors y, t are computed by CPU and

then sent to all GPU devices. The generator seed required to

compute Step 2 is received from the previous GPU device and

sent to the next one after Step 2 is completed locally (Figure

1). Then all GPUs perform Step 3 independently.

We can develop a similar parallel algorithm for LFG. During

the first step we have to find vector y0. This vector is computed

by CPU and sent to all GPUs. It is easy to verify that

yk = (0, . . . , 0
︸ ︷︷ ︸

k

, 1, y1, . . . , ys−1−k)
T .

Then (Step 2) using (5) we find p2 last entries of x1, . . . ,xr−1.

Finally (Step 3) we use (5) to find s− p2 first entries of these

vectors in parallel. Note that Step 2 requires communication

(sending and receiving the seed consisting of p2 numbers)

between GPU devices (Figure 2).

The parallel algorithm for WHG is a simple extensions of

the parallel LCG. Instead of vectors t and y, we have four

instances of y, each for one MCG. We also have four separate

"last rows" of matrix Z, corresponding to appropriate MCG,

which are required during Step 2 (Figure 3).

IV. RESULTS OF EXPERIMENTS

The considered algorithms have been tested on a computer

with Intel Xeon X5650 (2.67 GHz, 48GB RAM) and NVIDIA

Tesla M2050 (448 cores, 3GB GDDR5 RAM with ECC off),

running under Linux with gcc and NVIDIA nvcc compilers

and CURAND Library ver. 5.0 provided by the vendor. The

results of experiments are presented in Figures 4-6. We can

conclude the following:

• Parallel LCG is the fastest among the considered gener-

ators. It produces ≈ 32 · 106 unsigned int pseudo-

random numbers per second, while the fastest CURAND

pseudorandom generator achieves the speed of ≈ 12·106.

516 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

from CPU

from
previous
GPU

to
next
GPU

vector y matrix z

Fig. 2. LFG: data structures on a GPU device and communication scheme

from CPU

from
previous
GPU

to
next
GPU

matrix z

vector y0

vector y1

vector y2

vector y3

last row 0

last row 1

last row 2

last row 3

Fig. 3. WHG: data structures on a GPU device and communication scheme

• Parallel WHG is about 6 times slower than LCG. How-

ever it uses more computations and communications in

comparison to LCG. It also has better statistical prop-

erties, so it should be use instead of LCG, when the

performance is not so important.

• The performance of parallel LFG depends on the values

of p1 and p2.

• Our template library provides both 32-bit and 64-bit

versions of all generators. CURAND does not support

32-bit or 64-bit arithmetic in all cases (hence missing

bars in Figure 4).

• The use of two GPUs accelerates the overall time of com-

putations (Figure 6). In case of LCG we obtain almost

linear speedup. The scalability of WHG is worse because

of longer lasting Step 2. Unfortunately, the scalability of

LFG is poor for large values of p1, p2.

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

XO
R
W

O
W

M
R
G
32K3A

M
TG

P32

SO
BO

L32

SO
BO

L64

CURAND library performance (numbers per second)

unsigned int
float

unsigned long int
double

Fig. 4. CURAND Library performance: generation of random number using
various generators

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

LC
G

W
H
G

LFG
, p1=5, p2=7

LFG
, p1=7, p2=10

LFG
, p1=5, p2=17

LFG
, p1=6, p2=31

Template library performance (numbers per second, using 2 GPUs)

unsigned int
float

unsigned long int
double

Fig. 5. Our template library performance: generation of random number using
various generators

V. USING TEMPLATE LIBRARY

Let us consider the use our template library in case of LCG.

The following class template should be used (we only show

public: part of it).

template <class T>

class LcgGpu {

public:

LcgGpu(T multiplier, T increment,

T seed, size_t count);

void generate();

void generateFloat();

void generateDouble();

T* getNumbersFromDevice(int device);

size_t getCountFromDevice(int device);

int getDeviceCount();

...

}//class LcgGpu

DOMINIK SZAŁKOWSKI, PRZEMYSŁAW STPICZYŃSKI: TEMPLATE LIBRARY FOR MULTI-GPU NUMBER GENERATION 517

 0.5

 1

 1.5

 2

 2.5

LC
G

W
H
G

LFG
, p1=5, p2=7

LFG
, p1=7, p2=10

LFG
, p1=5, p2=17

LFG
, p1=6, p2=31

Speedup of template library (2 GPUs vs 1 GPU)

unsigned int
float

unsigned long int
double

Fig. 6. Our template library: speedup 2 GPUs vs 1 GPU

In order to use the generator we should create an object

providing desired parameters (multiplier, increment, seed of

the generator and the number of pseudorandom numbers to

generate).

unsigned int multiplier=1664525;

unsigned int increment=1013904223;

unsigned int seed=31;

size_t count=100000000;

LcgGpu<unsigned int> lcg

=new LcgGpu<unsigned int>(multiplier,

increment,

seed, count);

Then we generate random numbers (e.g. uniformly distributed

real numbers from interval [0, 1)).

lcg->generateFloat();

Generated numbers are stored in global memories of all GPU

devices. We use the following routines to obtain the number

of GPU devices, which produce numbers, the number of

pseudorandom numbers generated by a given device and the

address of memory block containing the numbers:

int getDeviceCount();

size_t getCountFromDevice(int device);

T* getNumbersFromDevice(int device);

Generated numbers can be used directly by each GPU or can

be transferred to CPU memory using loop for accessing all

devices.

for (i=0; i<lcg->getCountFromDevice(); i++) {

cudaMemcpy(cpuNumbers+offset,

lcg->getNumbersFromDevice(i),

lcg->getCountFromDevice(i)

*sizeof(unsigned int),

cudaMemcpyDeviceToHost);

offset=offset

+lcg->getCountFromDevice(i);

}//for

Generation of numbers can be repeated as many times as de-

sired to obtain very long sequence of pseudorandom numbers.

Finally we can delete the object.

delete lcg;

Using LFG generator is quite similar. The only difference

is when the object is created. For example, we can use the

following code.

unsigned int p1=24;

unsigned int p2=55;

unsigned int seed[]={...}; //array of

//length p2

size_t count=100000000;

LfgGpu<unsigned int> lfg=

new LfgGpu<unsigned int>(p1, p2

seed, count);

Analogously for WHG we use the following.

unsigned int seedX=389933028;

unsigned int seedY=148667295;

unsigned int seedZ=146045161;

unsigned int seedT=767880647;

WhgGpu<unsigned int> whg=

new WhgGpu<unsigned int>(seedX, seedY,

seedZ, seedT,

count);

When we parametrize template with unsigned int type

then we can use the following routines to generate 32-bit

pseudorandom numbers (integer or real numbers).

void generate();

void generateFloat();

When we need 64-bit precision we use unsigned long

int type to parametrize template and the following routines.

void generate();

void generateDouble();

VI. CONCLUSIONS

We have showed how to implement fast parallel LCG, LFG

and WHG pseudorandom number generators using the divide-

and-conquer approach on contemporary multi-GPU systems.

Numerical experiments performed on a computer system with

modern Fermi GPU cards showed that our routines achieve

good performance in comparison to the widely used NVIDIA

CURAND Library. Our template library is easy to use and it

is freely available for the community.

518 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

ACKNOWLEDGEMENTS

The work has been prepared using the supercomputer re-

sources provided by the Institute of Mathematics of the Maria

Curie-Skłodowska University in Lublin.

REFERENCES

[1] J. M. Bull and T. L. Freeman, “Parallel globally adaptive quadrature on
the KSR-1,” Adv. Comput. Math., vol. 2, pp. 357–373, 1994. [Online].
Available: http://dx.doi.org/10.1007/BF02521604

[2] P. L’Ecuyer and R. J. Simard, “TestU01: A c library for empirical testing
of random number generators,” ACM Trans. Math. Softw., vol. 33, no. 4,
2007. [Online]. Available: http://doi.acm.org/10.1145/1268776.1268777

[3] M. Mascagni and A. Srinivasan, “Algorithm 806: SPRNG: a scalable
library for pseudorandom number generation,” ACM Trans. Math. Softw.,
vol. 26, no. 3, pp. 436–461, 2000.

[4] H. Niederreiter, “Quasi-Monte Carlo methods and pseudo-random num-
bers,” Bull. Am. Math. Soc., vol. 84, pp. 957–1041, 1978.

[5] NVIDIA, CUDA Toolkit 5.0. CURAND Guide. NVIDIA Corporation,
2012.

[6] A. Srinivasan, M. Mascagni, and D. Ceperley, “Testing parallel random
number generators,” Parallel Computing, vol. 29, no. 1, pp. 69–94, 2003.

[7] P. Stpiczyński, “Solving linear recurrence systems on hybrid GPU
accelerated manycore systems,” in Proceedings of the Federated

Conference on Computer Science and Information Systems, September

18-21, 2011, Szczecin, Poland. IEEE Computer Society Press, 2011,
pp. 465–470. [Online]. Available: http://fedcsis.eucip.pl/proceedings/
pliks/148.pdf

[8] P. Stpiczyński, D. Szałkowski, and J. Potiopa, “Parallel GPU-
accelerated recursion-based generators of pseudorandom numbers,” in
Proceedings of the Federated Conference on Computer Science and

Information Systems, September 9-12, 2012, Wroclaw, Poland. IEEE
Computer Society Press, 2012, pp. 571–578. [Online]. Available:
http://fedcsis.org/proceedings/fedcsis2012/pliks/380.pdf

[9] D. Szałkowski and P. Stpiczyński, “Multidimensional monte carlo inte-
gration on clusters with hybrid gpu-accelerated nodes,” 2013, submitted
to PPAM2013.

[10] B. A. Wichmann and I. D. Hill, “Generating good pseudo-random
numbers,” Comput. Stat. Data Anal., vol. 51, no. 3, pp. 1614–1622,
2006. [Online]. Available: http://dx.doi.org/10.1016/j.csda.2006.05.019

DOMINIK SZAŁKOWSKI, PRZEMYSŁAW STPICZYŃSKI: TEMPLATE LIBRARY FOR MULTI-GPU NUMBER GENERATION 519

