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Abstract—In this paper the capacitated vehicle routing prob-
lem with time windows is tackled with a beam-search based
approximate algorithm. An instance of this problem is defined by
a set of customers and a fleet of identical vehicles. A time window
is associated with each customer and a maximum capacity
characterizes a vehicle. The aim is then to serve all the customers
by minimizing the number of vehicles used as well as the total
distance and by respecting the time windows.

The proposed method follows three complementary phases: (i)
dividing the set of customers into disjunctive clusters, (ii) deter-
mining a feasible solution in each cluster by using beam search,
and (iii) applying a local search in order to improve the quality of
the solutions. The proposed method is analyzed computationally
on a set of benchmarks due to Solomon. Encouraging results
have been obtained.

I. INTRODUCTION

T
HE Vehicle Routing Problem (VRP) is well known and
well studied in the literature. It consists, in its simplest

version, to visit or deliver a set N = {1, ..., n} of customers by
using a fleet of m vehicles V = {v1, ..., vm}. The objective is
often to minimize the number of vehicles m as well as the sum
of distances traveled by these ones. Note that if m = 1 then
the problem becomes the Traveling Salesman Problem (TSP).
Is some cases, a time window Wi = [ei, li] is associated to
customer i, where ei is the earliest time to begin the service
of this customer and li the latest time. Parameters ei and
li are also known as ready time and due date respectively.
The aforementioned problem is known as the Vehicle Routing

Problem with Time Windows (VRPTW). A service time si can
be associated with customer i, this means that the arrival time
at this customer must be at most li − si. Furthermore, each
customer i, i ∈ N has a demand di and a capacity may be
associated with each vehicle denoting the maximum of the sum
of quantities that can be put inside the corresponding vehicle.
Such a problem is called Capacitated VRPTW (CVRPTW).

VRP was addressed by many authors and several methods
and strategies were proposed to solve its different versions.
These methods can be categorized into two categories: exact
methods and approximate ones. In the first category, Azi et al.

[3] proposed an exact algorithm, based on column generation
and branch-and-price, to solve VRPTW including multiple use
of vehicle, i.e., a given vehicle may be associated with several
routes. The same authors [2] proposed, several years before,
another exact algorithm for a single vehicle routing problem
with time windows and multiple routes. Baldacci et al. [4]
employed branch-and-price in order to solve a capacitated
vehicle routing problem (CVRP) by using an integer program-
ming formulation. New lower bounds were presented and an
algorithm to find the optimal solution for CVRP was given.
Baldacci and Maniezzo [5] proposed exact methods based on
node-routing formulations to tackle the undirected arc-routing
problems. Feillet et al. [11] developed an exact algorithm for
the elementary shortest path problem with resource constraints
where the authors indicated an application to some vehicle
routing problems.

The second category of methods consists to search for
approximate solutions by using essentially heuristics and meta-
heuristics. Solomon [19] proposed different algorithms in or-
der to solve the vehicle routing and scheduling problems with
time window constraints. A two-stage heuristic including ejec-
tion pools was for example proposed by Lim and Zhang [14] in
order to tackle VRPTW. Chen et al. [9] proposed a heuristic
that combines mixed integer programming and a record-to-
record travel algorithm in order to solve approximately the
split delivery vehicle routing problem, a variant of CVRP
where a customer may be served by more than one vehicle.
Tan et al. [22] proposed several heuristic methods, including
simulated annealing, to solve VRPTW . Insertion heuristics
were proposed by Campbell and Savelsbergh [7] for vehicle
routing and scheduling problems. Chao et al. [8] proposed a
fast heuristic for the orienteering problem, i.e., a vehicle rout-
ing problem where a profit is associated with each customer
and the objective is to visit a subset of customers in order to
maximize the total benefit and by respecting some constraints.
Pisinger and Ropke [16] developed a general heuristic for
vehicle routing problems able to solve five different variants
of VRP, including CVRP and VRPTW. A genetic algorithm
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was proposed in [12], [21], and [17] for the VRPTW. Ant
colony optimization is very effective and was adapted for the
various variants of VRP (see for example [13] where the open

vehicle routing problem was considered). Finally, tabu search
was considered by Cordeau et al. [10] for solving VRPTW and
by Brandão and Mercer [6] for solving the multi-trip vehicle
routing and scheduling problem, i.e., the case where a vehicle
may perform several trips.

In this work, we propose a three-phase algorithm for solv-
ing CVRPTW. The first phase consists to divide the set of
customers into m clusters. After that, at phase 2, the shortest
path that visits each customer once in each cluster is computed
by using beam search. Each path must verify the problem
constraints, i.e., must not violate the time window. In the third
and last phase, a local search is applied on the solution in order
to try to decrease the total distance traveled by the m vehicles.

II. PROBLEM STATEMENT AND MATHEMATICAL

FORMULATION

The problem to solve (CVRPTW) consists to visit n cus-
tomers i ∈ N = {1, ..., n} , where each customer (or vertex)
has coordinates (xi, yi) in the Euclidean plan. The float used
contains m identical vehicles V = {v1, ..., vm}, each with
the same maximal capacity Cmax. All the vehicles start their
travel at the depot D, whose coordinates are (xD, yD) in the
Euclidean plan, visit a set of distinct customers, and returns
to the depot.

In addition, a demand di is associated with each customer
i ∈ N, di has the same unit of measurement as the vehicle
capacity, this may be a volume or a weight for example.
Customer i must be served at time ti that may be the earliest
time after its ready time (ei) and no later than its due date li,
this corresponds to the time window Wi = [ei, li] associated
with customer i (li−ei is called the width of the time window).
A service time si is also defined for customer i and is equal
to the time spend to serve the customer.

Each vehicle vj , 1 ≤ j ≤ m performs then a route Rj

by visiting a number of customers or vertices. These ones
correspond to a cluster denoted by Cj . Let also denote by
Dj the sum of distances covered by vehicle vj . Note that
the distance between to customers i and j, denoted by distij
corresponds to the euclidean distance between these two
points, i.e., distij =

√

(xi − xj)2 + (yi − yj)2.
CVRPTW can then be formulated as follows:

min m (1)

min
∑

Dj , 1 ≤ j ≤ m (2)

subject to

∑

i∈Cj

di ≤ Cmax, ∀i ∈ Cj (3)

ti ∈Wi = [ei, li] ∀i ∈ N ∪ {D} (4)

Equation 1 represents the first objective to minimize, that
is the number of vehicles to use. Equation 2 is the second
objective to minimize and corresponds to the total distance
traveled by all vehicles. The first constraint is indicated in (3)
and ensures that the sum of demands for each cluster Cj is at
most equal to the vehicle capacity Cmax. The second constraint
(4) means that each customers i must be served inside its time
window Wi = [ei, li], i.e., ei ≤ ti ≤ li, ∀i ∈ N ∪ {D}.
Then the depot can be considered as a customer for which
the demand is null (dD = 0) and is the only point that is
visited twice. The time window WD = [eD, lD] associated to
the depot defines the scheduling horizon and means that each
vehicle cannot leave the depot before its opening (at time eD)
and must return to the depot before its closure (at time lD).

III. A THREE-PHASE METHOD FOR SOLVING CVRPTW

It is well known that many methods for solving vehicle
routing problems often contain three phases (steps):

P1. Consists to divide the set of customers into m disjoint
clusters, i.e., C1, ..., Cm such that Ci ∩ Cj = ∅ for
1 ≤ i < j ≤ m.

P2. Apply a given method in order to compute the shortest
path, or a path of maximum benefit inside each cluster.

P3. Try to improve the solution obtained after P2, by applying
another method such as local search.

A. Clustering

The first phase in solving our problem (Capacitated Vehicle
Routing Problems with Time Windows) consists to divide the
n customers into m disjoint sets or clusters. Then each vehicle
will visit all the customers in the clusters that is assigned to it.
Fig. 1 shows an example where a set containing 16 points and a
depot (D) is divided into three disjoint clusters {C1, C2, C3}.

There exists several methods for clustering and many of
them are based on the dispersion (distribution) of the point
around a central point called centroid. In our case we choose
the well-known k-means method in order to compute the
clusters. Actually, this is an adaptation of k-means in order
to compute m clusters each of total capacity smaller than of
equal to the capacity Cmax of the vehicle.

Algorithm 1 explain how procedure k-means works. It
receives the set N of customers as input parameter. The pro-
cedure’s output corresponds to m disjoint clusters respecting
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Fig. 1. An example of clustering a set of points into three disjoint clusters.
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the vehicle capacity constraint. k-means begins by choosing
m random points c1, ..., cm from N (line 4), each point
cj , (1 ≤ j ≤ m) corresponds to a centroid (belonging to
cluster Cj). After that (at line 5), each not-assigned yet point
i ∈ N is assigned to the nearest centroid cj of coordinates
(xcj , ycj ) in the sense euclidean distance. This means that
point i of coordinates (xi, yi) is assigned to cluster Cj that
minimizes the euclidean distance

√

(xi − xcj )
2 + (yi − ycj )

2,
for 1 ≤ j ≤ m.

After that, in the while loop that begins at line 6, the
coordinates of the m centroids are recomputed (line 7). This
is done by assigning to each cj , (1 ≤ j ≤ m) the
center of the points belonging to cluster j. More precisely:
xcj = 1

|Cj |

∑

xck and ycj = 1
|Cj |

∑

yck for all points ck ∈ Cj .
Each point i ∈ N is after that assigned to the nearest centroid
(among the new computed centroids), this is done in line 8.
At line 9, if no point has moved from a centroid to another
one, then a stable clustering is obtained: variable move is set
to the value false (line 10) in order to stop recomputing of
the centroids. Otherwise, this means that at least one point
has moved, then instructions in lines 7–10 are repeated until
a stable configuration is obtained. After that, the procedure
verifies that the total capacity of each cluster does not exceed
the capacity Cmax of the vehicles. If so, then variable found
is set to “true" (line 14) in order to stop the procedure and
return m clusters respecting the capacity constraint. If at least
one cluster violates the capacity constraint, then the procedure
restarts with m other random points by using the first while

loop (line 2).
Note that the optimal number of clusters (m) is not known

in the general case. So a dichotomous search can for example
be used in order to test several values and determine the
best one. Of course, increasing the value of m increases
the probability to find clusters respecting the capacity con-
straint. For well-studied benchmarks, e.g. those proposed by
Solomon [19], the same best value of m was found by many
authors, so this value can be fixed in advance in order to save
computation time.

B. Beam search for computing the shortest paths (routes)

The second phase takes place after the m clusters were gen-
erated by the k-means procedure (algorithm 1). The objective
of the second phase is to compute the shortest path in each
cluster. A path correspond to a route beginning at the depot
D, visiting exactly once each point (customer) are returning
after that to the depot. In addition, one vehicle is associated
to each cluster. Fig. 2 shows an example of solution for the
example indicated in figure 1.

It is to note that the time windows associated to each
customer as well as the capacity of the vehicle make the
problem hard to solve, harder than the traveling salesman
problem (TSP) in which there are no time windows and no
limit to the vehicle capacity.

Remember that the objective in CVRPTW is to minimize
the sum of distances traveled by the m vehicles. In order to
compute the shortest paths, we propose to use beam search on

Algorithm 1 Procedure k-means for CVRPTW
Require: Set N containing n points (customers);
Ensure: m disjoint clusters each of total capacity ≤ Cmax;

1: found← false;
2: while (found = false) do

3: move← true;
4: Choose randomly m distinct points {c1, ..., cm} from

N. Let these points be the m centroids (clusters);
5: Assign each point i ∈ N to the nearest centroid cj ,

1 ≤ j ≤ n;
6: while (move = true) do

7: Recompute the coordinates (xcj , ycj ) of each cen-
troid, i.e., each cj becomes the center of the points
assigned to that centroid;

8: Assign each point i ∈ N to the nearest centroid cj ,
1 ≤ j ≤ n;

9: if no point has moved from a cluster to another one
then

10: move← false;
11: end if

12: end while

13: if the capacity of each a cluster ≤ Cmax then

14: found← true;
15: end if

16: end while

each cluster. Beam search is a tree search and is a modified
version of the well known branch-and-bound method.

Beam search was used to solve different combinatorial
problems, such as Scheduling [15] and Cutting–and–Packing
problems [1]. In its width–first implementation, the method
starts by creating the root node which may contains an initial
(starting) partial solution. After that, each node at level ℓ
generates a set of descendants, these correspond to level ℓ+1.
Each node of the new level is then evaluated by using an
evaluation criterion and only a subset containing the ω best
nodes are retained, the other nodes are discarded. Parameter ω
is known as the beam width. If a node contains a final solution,
then this one is evaluated and stored. The corresponding node
is after that deleted because no branching is possible from
it (leaf). The beam search stops when no branching becomes
possible from any node of the current level. The best solution,
among the different solutions obtained, is then retained as the
final result.

1) Content of a node in the search tree: Let V =
{v1, ..., v|Cj |} be the set of vertices (customers) in cluster Cj

(1 ≤ j ≤ m).
It is important to define clearly the content of a node in

the beam search tree. Each node ηℓ at level ℓ contains the
following elements:

• The set of vertices (customers) already visited
V + = {v+1 , ..., v

+
ℓ }.

• The set of vertices that have not yet been visited
V − = V \V +.

• The distance dist corresponding to the length of the path
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D → v+1 → v+2 → ...→ v+ℓ .

Note then that if a node corresponds to a complete solution,
then the path obtained is D → v+1 → ... → v+|Cj |

→ D and
the total distance is the sum of euclidean distances of the
corresponding arcs in the path.

As a result, a node ηℓ at level ℓ in the search tree
can be designated by the elements described above, i.e,
ηℓ = {V +, V −, dist}, where |V +| = ℓ and |V −| = |Cj | − ℓ.

2) Selection criterion for the next customer to visit: As
explained above, branching from a node ηℓ (or more exactly
from the last node v+ℓ in the path under construction) consists
to choose the successors of the vertex v+ℓ among the vertices
in V −. The next vertex vi ∈ V − may be for example the
closest one to v+ℓ in the sense of euclidean distance or the
time window interval [ei, li]. For example, for the two sets of
instances examined in this work (see Section IV below), the
next vertex to visit is the closest one in the sense of parameter
ei (the earliest time) in the time window. For beam search, all
the successors v−i are ranked in increasing value of parameter
ei and then the ω first ones are chosen to create ω distinct
branches.

Of course, others criteria were tested, including the latest
time li and/or the distance between the current customer and
the remaining customers to visit, but the experimentations
showed that the criterion based on parameter ei is the best
one for the instances tested.

3) Algorithm Beam Search: Algorithm 2 explains how
beam search works in order to compute a route. Note that the
capacity constraint is not taken into account in the algorithm
since the sum of the capacities of the vertices in each cluster is
less or equal to the vehicle capacity. The capacity constraint is
always respected after the clustering phase (see Section III-A),
then only the time window constraint is checked.

Algorithm 2 receives three input parameters: the cluster
Cj , i.e., the set of vertices or customers to visit (to serve),
the value of the beam width ω, and the selection criterion ρ
that will serve to sort the nodes at each level of the tree and
then to determine the best ones according to this criterion.
As output, the algorithm computes the best route (path) Rj

of minimal distance beginning at the depot D, visiting each
customer once, and then returning to the depot.

The root node η0 of the search tree is created in line 1. This
node contains the set of vertices already visited ,i.e. the depot
D (so V + = {D}), and the set of vertices not already served
V − = V. Since no customer has been already visited, then the
distance is equal to 0.

Set B (line 2) corresponds to the nodes at the current level
of the search tree. Each node η ∈ B contains a partial route
(path) from the depot to a given customer (set V +) as well as
the set of remaining customers to visit V −. The total distance
to the current customer is also known since this distance is
updated each time a new customer is visited and then added
to the path (route). B is initialized to η0 (line 4). Set Boff (line
3) contains the offspring nodes after branching from each node
in B.

Algorithm 2 Beam Search for computing the shortest path in
a cluster
Require: Cluster Cj , the beam width ω, and the selection

criterion ρ;
Ensure: The best shortest route Rj starting from the depot

D, visiting all the vertices of the cluster, and returning to
the depot;

1: Let η0 ← {{D}, V, 0} be the root node;
2: Let B be the set containing the nodes at a given level of

the tree;
3: Let Boff the offspring nodes (descendants of nodes in B);
4: B ← {η0};
5: ℓ← 0;
6: η∗ ← η0; (the best solution found)
7: η∗.dist← +∞; (best distance)
8: while (B 6= ∅) do

9: Branch out of each node ηℓi = {V +
i , V −

i , disti} ∈ B
and create the offspring nodes Boff (each node in Boff

must respect the time windows);
10: ℓ← ℓ+ 1;
11: if (V −

i = ∅ for a node ηℓi ∈ Boff) then

12: Add vertex D (depot) to that node and compute the
total distance;

13: if (ηℓi .dist < η∗.dist) then

14: η∗ ← ηℓi ;
15: Remove ηℓi from Boff ;
16: end if

17: end if

18: Sort the nodes in Boff according to parameter ρ and
then keep only the min(ω, |Boff |) first nodes, remove
the other nodes from Boff ;

19: B ← Boff ;
20: Boff ← ∅;
21: if there is a node ηℓi ∈ B for which V −

i contains a
vertex with a violated time window then

22: Remove ηℓi from B;
23: end if

24: end while

Since the current level ℓ is 0 (root node), then this is
indicated in line 5, while the best solution η∗ is initialized
to the root node η0 at line 6. The best distance η∗.dist is set
equal to +∞ (line 7) because this value is to be minimized.

At line 8 the while loop starts. So at a given level ℓ
of the tree, B contains at most ω distinct partial paths
(routes) computed in parallel from the depot (root node). Then
branching from a node ηℓi (line 9) consists to explore the
successors of the last visited vertex (customer) and to create
as many nodes as there are successors with nonviolated time
windows. So each node in B may have several descendants.
Each descendant is then inserted into the set of offspring node
Boff , that corresponds to level ℓ+ 1. This is why the level is
incremented at the next line (10).

After that, at line 11, if there is a node in Boff in which
all the customers were served (V − = ∅), then the complete
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Fig. 2. An example of solution obtained after the second phase (beam search).

solution is computed by adding the returning arc to the
depot (line 12). The total distance for the obtained complete
solution is then computed and compared to the best known
one (line 13). If a lower distance is obtained then the best
solution is updated (line 14) and the corresponding node is
removed from Boff (line 15).

The most important instruction in beam search is certainly
that given in line 18. Indeed, this step consists to sort the nodes
according to the selection criterion ρ from the most important
node to the least important one. Then the ω first nodes are
kept and the other ones are removed from Boff . Note that if
there are less than ω nodes in Boff then all the nodes are kept.
After that set Boff is assigned to B and Boff reset to the empty
set (lines 19–20). The last instruction in algorithm 2 consists
to remove from B all the nodes that cannot lead to feasible
solutions, i.e, that containing violated time windows.

The algorithm stops when set B becomes empty meaning
that there is no node to explore or more precisely no customer
to serve. Two cases can be distinguished: the algorithm has
computed a feasible solution and this one is indicated in node
η∗ as well as the best corresponding distance, or there is no
solution (if the distance in node η∗ is equal to +∞).

Fig. 2 shows an example of a solution that may be obtained
after the second phase (beam search) on the example (clusters)
shown in Fig. 1.

C. Local search for improving solution quality

In order to try to improve the result obtained after the
second phase (beam search), a local search is performed on
each cluster. This consists to execute the well-known 2-opt
algorithm on each cluster (route).

2-opt is an iterative method that consists, at each iteration, to
break two nonconsecutive arcs in the route and to link the four
extremities in order to form another path and by respecting
the time windows of course. The replacement is kept if the
obtained solution is better.

The 2-opt method is given in algorithm 3. In each iteration,
the algorithm examines each two distinct arcs vi → vi+1 and
vj → vj+1 in the route R. These two arcs are replaced by
the arcs vi → vj and vi+1 → vj+1 if and only if the distance
decreases and the time windows are not violated. This process
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Fig. 3. A solution obtained after the third phase (local search).

is repeated as long as there is improvement. Fig. 3 shows an
example of improvement obtained by the 2-opt procedure on
the solution of fig. 2. The arcs that had changed are indicated
in dotted lines.

D. The three-phase algorithm (3PA) for solving CVRPTW

The three-phase algorithm based on clustering, beam search,
and 2-opt local search is given in algorithm 4. It receives as
input parameters the set of customers N, the depot D, and the
number of vehicles. The algorithm’s output corresponds to a
set containing m feasible routes (respecting the constraints) of
minimum distance, each one starts and ends at the depot D.

At line 1, the clustering phase (algorithm 1) is called in
order to create m distinct clusters. The selection criterion (ρ),
that serves to choose the next customer to serve is set at line 2.
Then, algorithm 2 (beam search) is executed on each cluster
(line 5), and this for several values of the beam width, i.e., for
all values ω ∈ [1, ..., ωmax]. The local search (algorithm 3)
is then executed (line 6) on each solution computed by beam
search.

Algorithm 3 2-opt algorithm
Require: A route R = v0 → v1 → . . .→ v|Cj | → v|Cj |+1;
Ensure: A route R′ with a length at most equal to that of V ;

1: improvement← true;
2: while (improvement = true) do

3: improvement← false;
4: for each vertex vi ∈ R do

5: for each vertex vj ∈ R (j 6= i− 1, j 6= i+ 1) do

6: if (dist(vi, vi+1)+dist(vj , vj+1) > dist (vi, vj)+
dist(vi+1, vj+1) AND the time windows will not
be violated) then

7: Replace arcs (vi → vi+1) and (vj → vj+1)
by arcs (vi → vj) and (vi+1 → vj+1);

8: improvement← true;
9: end if

10: end for

11: end for

12: end while

HAKIM AKEB ET AL.: A BEAM SEARCH BASED ALGORITHM FOR THE CAPACITATED VEHICLE ROUTING 333



Algorithm 4 The three-phase algorithm 3PA for solving
CVRPTW
Require: A set N = {1, ..., n} of customers, the depot D,

and m the number of vehicles (clusters).
Ensure: A set of routes minimizing the total distance and

respecting the capacity and the time windows constraints.
1: Call the clustering phase (algorithm 1) and create m

clusters {C1, ..., Cm} respecting the vehicle capacity con-
straint;

2: Define the selection criterion ρ;
3: for each cluster Cj , (1 ≤ j ≤ m) do

4: for ω = 1 to ωmax do

5: Call algorithm 2: Beam-Search(Cj , ω, ρ);
6: Apply algorithm 3 (2-opt) on the solution returned

by Beam-Search;
7: end for

8: end for

IV. COMPUTATIONAL RESULTS

The proposed method is coded in C++ and the program run
under Microsoft Windows environment on a computer with 2
GB of RAM and a 2.26 GHz Intel processor.

The algorithm was tested on two sets of instances, namely
C1 and C2, proposed by Solomon. The characteristics of the
two sets are summarized in table I. Each instance of each set
contains 100 customers (column 2), they have also all the same
service time (time needed to serve a customer) which is equal
to 90 (column 4). The depot D has also the same coordinates
for all the instances.

The first common characteristic between two distinct in-
stances of the same set is the customer demand, i.e., the
quantity to deliver to each customer. This value is fixed in
each set for a given customer. More precisely, for two distinct
instances in the same set (C1 or C2) each customer i has the
same demand di. The second common characteristic is that
a given customer i has the same coordinates (xi, yi) in two
distinct instances of the same set (C1 or C2).

The third common characteristic appears in the scheduling
horizon (column 3) of Table I, which is short for instances of
set C1 (1236) and large for the instances of set C2 (3390).
This means for example that the tours in instances C1 will
all finish at most after 1236 units of time and at most after
3390 units of time for the instances of set C2. Finally, the
fourth common characteristic concerns the vehicle capacity
(column 5) of table I. In set C1, vehicles of capacity Cmax =
200 are used while this capacity is equal to 700 for instances

TABLE I
CHARACTERISTICS OF THE C1 AND C2 INSTANCES

Set Number of Scheduling Service time Vehicle

customers horizon Capacity

C1 100 1236 90 200

C2 100 3390 90 700

of set C2.
From these characteristics Solomon designed several in-

stances in the same set by changing the time windows from
an instance to another one. More precisely, there are nine
instances C101–C109 in the first set C1 and eight instances
C201–C208 in the second set C2. For two distinct instances
in the same set (C1 or C2) we have:

• the same coordinates for a given customer i as well as
for the depot D

• the same demand for a given customer i
• the same vehicle capacity
• different time windows

For more details, the reader can refer to Solomon’s web
site [20].

Then, one can surmise that less vehicles (clusters) will be
needed for instances of set C2 comparing to set C1 because of
the larger value of the capacity and the greater length of the
time windows. This is in fact the case as proven in different
works published in the literature.

Finally, note that the value of m (number of clusters or
vehicles) is fixed to the best value found by several authors in
the literature. More precisely, m = 10 for instances C1 and
m = 3 for set C2.

Table II shows the results obtained on the 17 instances
where column 1 indicates the name of each instance.
Columns 2–4 contain the best known results in the literature
(to our knowledge). Column 2 shows the best value for m
(the number of vehicles) and column 3 the best distance.
Column 4 (Ref.) indicates the reference to the paper where
the best values for m and Dist were obtained. Columns
5–7 contain the results obtained by a method based on goal
programming and genetic algorithm (GP-GA) proposed by
Ghoseiri and Ghannadpour [12]. So columns 5 and 6 indicate
the best value for m and the best distance respectively.
Column 7 corresponds to the gap between the distance
obtained by GP-GA (column 6) and the best known distance
in the literature (column 3). This gap is computed as follows:
gap = 100%× (Distbestknown −DistGP−GA)/Distbestknown.
Columns 8–12 summarize the results obtained by the proposed
algorithm 3PA. Column 8 indicates the minimum number
of vehicles m while column 9 shows the best minimum
distance obtained by algorithm 3PA. Column 10 (ωmax)
corresponds to the maximum value of the beam width
used for each instance, then ωmax = 50 means that beam
search was executed for each value 1 ≤ ω ≤ 50. The next
column (time) indicates the total computation time needed
for the execution of algorithm 3PA (in seconds). The last
column (gap) indicates the difference (in %) between the
solution obtained by the proposed method 3PA and the best
known solution in the literature (column 3). More precisely
gap = 100% × (DistBest known − Dist3PA)/Distbest known.
Finally, the last row of table II indicates the average gap for
the two compared methods (GP-GA and 3PA). As expected,
the number of vehicles needed for C1 instances (10) is larger
than that needed for instances of set C2 (only 3 vehicles).
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TABLE II
RESULTS OBTAINED ON INSTANCES C1 AND C2

Best known GP-GA [12] The proposed method (3PA)

Inst. m Dist. Ref. m Dist. gap(%) m Dist. ωmax time (s) gap (%)

C101 10 828.94 [12] 10 828.94 0.0 10 828.94 50 29 0.00

C102 10 828.94 [12] 10 828.94 0.0 10 828.94 50 66 0.00

C103 10 828.06 [12] 10 828.06 0.0 10 828.94 50 140 -0.11

C104 10 824.78 [12] 10 824.78 0.0 10 828.94 50 183 -0.50

C105 10 828.94 [12] 10 828.94 0.0 10 828.94 50 36 0.00

C106 10 828.94 [12] 10 828.94 0.0 10 828.94 50 41 0.00

C107 10 828.94 [12] 10 828.94 0.0 10 828.94 50 41 0.00

C108 10 828.94 [12] 10 828.94 0.0 10 828.94 1600 146 600 0.00

C109 10 828.94 [12] 10 828.94 0.0 10 828.94 50 80 0.00

C201 3 591.56 [12] 3 591.56 0.0 3 591.56 50 176 0.00

C202 3 591.56 [12] 3 591.56 0.0 3 591.56 50 240 0.00

C203 3 591.17 [12] 3 591.17 0.0 3 591.17 100 13 210 0.00

C204 3 590.60 [17] 3 599.96 -1.58 3 591.17 100 12 390 -0.10

C205 3 588.16 [21] 3 588.88 -0.12 3 588.49 50 528 -0.06

C206 3 588.49 [17] 3 588.88 -0.07 3 588.49 2000 286 700 0.00

C207 3 588.29 [18] 3 591.56 -0.56 3 588.32 2000 291 600 -0.01

C208 3 588.32 [18] 3 588.32 0.0 3 588.88 50 618 -0.09

Average -0.14 -0.05

The results of table II indicate that the proposed method
3PA reached the best known results in 11 cases out of 17. In
the six other cases, the result is very close to the best known
value since the gap is often smaller of equal to −0.11%, except
for instance C104 where the gap reaches −0.50%. Note that
even if the GP-GA method reaches the best known results in
13 cases out of 17, its average gap (-0.14%) is worst then that
obtained by algorithm 3PA (-0.05%).

Concerning the computation time of algorithm 3PA, it is at
most 183 seconds for instances of set C1 (except for C108
which was hard to solve). Each cluster in instances of set
C1 contains about 10 customers. The computation time is
generally greater for the second set C2, this is due to larger
number of customers in each cluster (which is about 30)
and then the number of combinations in each cluster (route)
becomes larger.

But how to determine the maximum value for the beam
width ωmax, especially for new instances. One can for ex-
ample fix the maximum value to 50 or 100 or use a limited
computation time.

Table III indicates, for each of the 17 solutions of table II
the best value ω∗ that gave the best solution for each cluster
Cj , j = 1, ..,m. We can see for example that w∗ = 1
for all j = 1, .., 10 for instance C101, but the values of ω∗

are heterogeneous for instances C103 and C104 for example,
meaning that these two instances are harder to solve (due to
the characteristics of the time windows).

Fig. 4 shows an example of solution obtained after the
second step of the algorithm (beam search), i.e., the output
of algorithm 2 on instance C206. The total distance obtained

TABLE III
BEST VALUE OF THE BEAM WIDTH IN EACH CLUSTER FOR INSTANCES C1

AND C2

Cluster

Inst. 1 2 3 4 5 6 7 8 9 10

C101 1 1 1 1 1 1 1 1 1 1

C102 7 7 1 1 1 6 7 6 8 1

C103 39 13 1 8 7 10 44 5 8 4

C104 24 5 1 5 7 8 14 5 8 7

C105 1 1 1 1 1 1 1 1 1 1

C106 8 1 1 1 1 1 1 1 1 2

C107 1 1 1 1 1 1 1 1 1 1

C108 1518 2 3 2 2 10 1 1 3 1

C109 1 1 1 2 1 1 1 1 1 2

C201 1 1 1 – – – – – – –

C202 43 19 26 – – – – – – –

C203 43 35 68 – – – – – – –

C204 43 22 68 – – – – – – –

C205 1 1 1 – – – – – – –

C206 6 1687 1 – – – – – – –

C207 43 1928 1 – – – – – – –

C208 1 1 1 – – – – – – –

after this step is equal to 597.35. Fig. 5 indicates improvement
of the solution of fig. 4 (instance C206) by the 2-opt procedure
(algorithm 3). The new distance was decreased from 597.35
to 588.49, i.e., an improvement of 1.48%. The 2-opt phase has
changed several arcs in clusters 1 and 2 while the third cluster
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Fig. 4. Solution obtained by algorithm 3PA on instance C206 after the second
step (Beam Search): m = 3, Distance=597.35
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Fig. 5. Solution obtained by algorithm 3PA on instance C206 after the third
step (Local Search): m = 3, Distance=588.49

has not changed.

V. CONCLUSION AND FUTURE WORK

In this work a three-phase algorithm denoted by 3PA is
proposed in order to solve the capacitated vehicle routing
problem with time windows (CVRPTW). The central phase
is that computing the shortest paths in a given cluster. To do
so, a beam search is proposed. The most characteristic of beam
search is that it explores several paths in parallel and increases
then the probability to find good paths. The results obtained on
the instances used show that the method is competitive since
the computations revealed that algorithm 3PA was better than
a method based on goal programming and genetic algorithm
(GP-GA). Indeed, 3PA obtained a gap closer to the best known
results in the literature than the gap obtained by GP-GA.

As a future work, it will be interesting to add a global
evaluation criterion for beam search in order to provide
solutions of better quality before calling the local search (third)
phase and then to improve the overall solution.
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