

Abstract—One of the biggest problems facing Web-based
Information Systems (WIS) is the complexity of the
information searching/retrieval processes, especially the
information overload, to distinguish between relevant and
irrelevant content. In an attempt to solve this problem, a wide
range of techniques based on different areas has been
developed and applied to WIS. One of these techniques is the
information retrieval. In this paper we described an
information retrieval mechanism (only for structured data)
with a client/server implementation based on the
Query-Searching/Recovering-Response (QS/RR) model by
means of a trading model, guided and managed by ontologies.
This mechanism is part of SOLERES system, an
Environmental Management Information System (EMIS).

I. INTRODUCTION

owadays, Web-based Information Systems (WIS) have
become popular as they favour universal access to the

information, helping their users to analyze the information
from different viewpoints and support group work,
decision-making, etc. However, one of the biggest problems
of this kind of systems is the complexity of the information
searching/retrieval processes, largely due to the huge
amount of information they manage.

N

Their users depend on web sites, digital libraries, engines
and other information searching/retrieval systems [1], [2] to
help them in this tedious process and, even so, they deal
with an overload of information in which they must distin-
guish between the relevant and irrelevant content. In an at-
tempt to solve this problem, a wide range of techniques
based on different areas has been developed and applied: in-
formation retrieval, information filtering, studies on infor-
mation search behavior, etc. Of all these techniques, we fo-
cused on the information retrieval in a client/server model
for Web systems. In this context, the term “information re-
trieval” refers to a set of techniques that satisfy the users’ in-
formation requirements [3].

The main WIS information retrieval mechanism, based on
the client/server model, is the Query-Searching/Recove-

ring-Response (QS/RR), showed in Figure 1. On one hand,
the term “Query” refers to the whole process of creating and
formulating the client’s request. The term “Searching” refers

This work has been supported by the EU (FEDER) and the Spanish
Ministry MINECO under grant of the TIN2010-15588, and also by the
JUNTA DE ANDALUCÍA excellent project TIC-6114. http://acg.ual.es.

to the process of locating the data sources (repositories, data
storage or databases, regardless of the model) where the
information is found, and the term “Recovering” refers to
the process of locating, identifying and selecting the data
from these sources. Finally the term “Response” refers to the
whole process of formulation, preparation and creation of
the response by the server to the client. The
“Query-Searching” pair is a process that goes from the client
to the server. The “Recovering-Response” pair goes from the
server to the client.

Fig. 1. Overview of the QS/RR mechanism.

A solution to QS/RR mechanism is the UDDI (Universal

Description Discovery and Integration) specification and
WSDL (Web-Services Definition Language) for SOA
(Service Oriented Architecture). They are based on
client/server implementations for Web systems.
Nevertheless, these techniques allow us to respect a
subscribe/publish/response model (a QS/RR information
retrieval approach) for locating WSDL documents (i.e.,
XML specifications of web-services) and connecting web
services in WIS, but not for different types of information
(non-WDSL information). Traders [4] are another solution
for open and distributed systems that extend the OMA
(Object Management Architecture) ORB (Object-Request

Broker) mechanism. From the viewpoint of the Open

Distributed Processing (ODP), a Trader (also called trading
service, trading function or mediator) is the software object
that mediates between objects that offer certain capacities or
services and other objects that demand their use
dynamically. As is shown in Figure 2, objects that offer their
services are called “exporters” and provide the Trader with a
description (extra-functional aspects) and an interface
(functional aspects) of their service, whereas objects that
demand these services are called “importers” and ask the
Trader for services with certain characteristics. The function
of the Trader, therefore, consists of checking the
characteristics required in the descriptions of the services

Information Retrieval Using an Ontological Web-Trading Model

José Andrés Asensio
University of Almería

Applied Computing Group
04120, Almería, Spain
Email: jacortes@ual.es

Nicolás Padilla
University of Almería

Applied Computing Group
04120, Almería, Spain
Email: npadilla@ual.es

Luis Iribarne
University of Almería

Applied Computing Group
04120, Almería, Spain

Email: luis.iribarne@ual.es

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 243–249

978-1-4673-4471-5/$25.00 c© 2013, IEEE 243

offered (stored in a local repository) and indicating the
importer the interfaces of the selected services for his
interaction with the exporter.

Fig. 2. Roles of the ODP Trader.

There is a large number of studies in which the trading
service follows the ODP specification. For instance, in [5] a
trading service called DOKTrader is presented, which acts
on a federated database system called Distributed Object

Kernel (DOK). Another example is found in [6]. This study
concentrates on the creation of a framework to develop
distributed applications for a Common Open Service Market

(COSM), making use of a Service Interface Description

Language (SIDL) to describe the services manipulated by
the trader. These approaches of the ODP trading
implementations have several shortcomings like component
interactions, object communications or language description,
which have been improved using ontologies.

The use of ontologies in trading services has spread,
especially in web information services. Ontologies are being
used to describe the services offered as well as
communication primitives employed by system components.
In [7] authors present the design of a market managed by
ontologies. Within this system, an ontological
communication language is used to represent queries, offers
and agreements. Furthermore, in [8], ontologies are used to
describe information shared by different system
components. To achieve greater operability and autonomous,
many systems have chosen to encapsulate the trader object
within a software agent. In [9] the MinneTAC agent is
described, like a trading agent developed to participate in the
Trading Agent Competition (TAC). Through the description
of this agent, implementation of a trader as a software agent
is shown to maximize benefits from scenarios that require
cooperation and negotiation between the trader and the rest
of the system components, as well as systems that require
communication among various trading objects, making use
of ontologies to represent information shared by the agents,
whether to describe data and the relationships among
variables, as is the case in [10], or defining communication
primitives and interaction among agents [11].

In this paper, we propose the Ontological Web Trading
(OWT) model that implements a mechanism for solving the
complexity of information retrieval in the SOLERES system
by means of a trading model for WIS, guided and managed
by ontologies. OWT has been implemented in this system as

a software agent. SOLERES [12] is an Environmental
Management Information System (EMIS) based on satellite
images, neural networks, cooperative systems, multi-agent
architectures and commercial components. This multi-agent
system implements a user Information Retrieval mechanism
that implements the QS/RR model and uses the SPARQL
query language and the OWL ontology description language
to operate. In this system, the ontologies are used in two
different contexts: (a) to represent the application domain
information itself (data ontology), and (b) to request
services between agents during their interaction (service

ontologies). Although a trader agent has five interfaces (i.e.,
Lookup, Register, Link, Proxy and Admin), this paper
discusses only the service and data ontology design features
of the Lookup interface, which is used for searching and
recovering information. This information should be only
structured data. All research work presented here is part of a
complete design strategy for Ontology-Driven Software

Engineering (ODSE) that we are developing in SOLERES.
The remainder of the paper is organized as follows.

Section 2 shows the SOLERES system architecture. Section
3 identifies the requirements that an ontological trading
service should meet for open and distributed environments
as well as the operation models it may carry out. Section 4
describes the Web Trading Agent. Section 5 shows the
Lookup ontology used by such agent. We end with some
conclusions and prospects for future work in section 6.

II.A CASE STUDY: THE SOLERES SYSTEM

This section presents the main SOLERES system
architecture (Figure 3), a spatio-temporal information
system for environmental management (an example of
EMIS). The general idea of the system is a framework for
integrating the disciplines above for “Environmental
information” as the application domain, specifically ecology
and landscape connectivity. The system has two main
subsystems, SOLERES-HCI and SOLERES-KRS. The first
is the framework specialized in human-computer interaction.
This subsystem is beyond the scope of this article and will
not be described. On the other hand, SOLERES-KRS is used
to manage environmental information. Examining Figure 3,
the IMI Agent is like a gateway between the user interface
and the rest of the modules, and is responsible for the
management of user demands.

Given the magnitude of the information available in the
information system, and that this information may be
provided by different sources, at different times or even by
different people, the environmental information (i.e., the
knowledge) can be distributed, consulted, and
geographically located in different ambients (i.e., locations,
containers, nodes or domains) called Environmental Process
Units (EPU). Thus the system is formed by a cooperative
group of knowledge-based EPUs. These groups operate
separately by using an agent to find better solutions (queries
on ecological maps).

We accomplished the distributed cooperation of these
EPUs by developing a Web Trading Agent (WTA) based on
the ODP trader specification and extended to agent behavior.

244 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

Our trading agent mediates between HCI requests and EPU
services. EPUs manage two local repositories of
environmental information. One of these repositories
contains metadata of the information in the domain itself
(i.e., basically information related to ecological
classifications and satellite images), called Environmental

Information Map data: EIM documents (EIM). This
information is extracted from external databases (External
DB repository in the Figure). The EIM documents are
specified by an ontology in OWL [13] (<<OWL
Repository>>). These EIM documents are the first level of
information in SOLERES-KRS.

The second repository contains metadata called
Environmental Information metaData, or EID documents
(EID). These documents contain the most important EIM
metadata that could be used by the information retrieval
service, and further, incorporate other new metadata
necessary for agent management itself. To a certain extent,
an EID document represents a “template” with the basic
metadata from the EIM document. The EID documents have
also been specified by an ontology to accomplish open
distributed system requirements. EID documents represent
the second level of information in the KRS subsystem. Each
EPU keeps its own EID document (or sets of documents)
locally and also registers them with the Web Trading Agent
(WTA). This way, the WTA has an overall repository of all
the EID documents from all EPUs in an ambient and can
thereby offer an information search service, as described in
the following sections.

III. REQUIREMENTS AND TRADING MODELS FOR OWT

The OWT model developed here is based on the
traditional functionality of a trading service, adapted to the
management of any type of information (not only on
services) through ontologies. Next we will identify a set of
requirements necessary for the design of an ontological
trading service for open and distributed environments. Later
on, we will describe the trading models implemented in our
model.

I. Requirements for OWT

For the design of an OWT model, we established a set of
properties or requirements that must be met. Table I shows a
list of such properties from the ODP standard constraints.

TABLE I. OWT PROPERTIES.

Property Name

#1 Heterogeneous data model
#2 Federation
#3 Composition and adaptation of services
#4 Weak pairing
#5 Usage of heuristics and metrics
#6 Extensible and scalable
#7 “Storage and forwarding” policy
#8 Delegation
#9 Push and pull storage model

Property #1 (Heterogeneous data model) means that a
trading service should be able to work with different data
models and platforms and should not be restricted to just one
data model. Thus it should be able to mediate with different
protocols of access to information and adapt to the evolution
of current and future models.

Property #2 is related to the federation. For the
cooperation among traders there should exist a federation
among trading services by using different strategies. For
instance, a “repository-based” federation strategy allows
more than one service to read and write on the same
repository, each being unaware of the presence of others
inside the federation, and thus allowing a scalable approach.

Current trading services use “one-to-one” pairing
according to the clients’ demands and availability of services
stored in the repositories they can access. Nevertheless, the
ontological trading service should also provide
“one-to-many” pairing linking (property #3), where a
client’s query should be satisfied through the composition of
two or more instances of metadata available in the
repositories.

In the trading service processes, especially those working
for open systems (like Internet) where methods and
operations refer to the services offered, it is essential to
consider the kind of pairing imposed (weak or accurate)
(property #4), as services are chosen randomly, in an
unstandarized way and without agreement. That is why a
trading service, when getting the list of chosen metadata
during the information searching/retrieval processes, should
allow using partial pairing to select (from repositories) those
metadata that completely adapt to the request for
information or just to a part of it.

Fig. 3. SOLERES architecture.

JOSÉ-ANDRÉS ASENSIO ET AL.: INFORMATION RETRIEVAL USING AN ONTOLOGICAL MODEL 245

Property #5 points out that a trading service should allow
users to specify heuristics and metrics functions when
searching for metadata, especially for weak pairing. Thus,
among other aspects, the trading service would return results
organized according to a search conditions.

Property #6 defines the extensibility and scalability
characteristics of a trading service. Here the trading service
should consider any piece of information on services (or
metadata) such as data of creators, marketing information
and so on, and allow users to independently include new
pieces of information for metadata they export (register). In
turn, it should be able to use the new piece of information as
part of the exported metadata.

In view of a client metadata query, a trading service
should retrieve a result. Such result can refer either to a list
of chosen metadata that satisfy the query or to a “fail”
message if there is no search result. In the latter case, we
should also be able to require a trading service to
compulsorily satisfy the query or, if that is not the case, store
it with the information available by that time and postpone
the response until one (or several) metadata providers
register (export) a metadata that satisfies the client query.
This “response-query” behavior is called behavior “on hold”
or “storage-and-forwarding” behavior (property #7).

Regarding the previous property, a trading service should
also allow delegating (property #8) (complete or partial)
queries to other trading services if the trading service itself
were not able to satisfy such queries.

Property #9 defines the push and pull storage models of a
trading service. A push model is the model in which
exporters directly get in touch with the trading service to
register their metadata. An alternative for metadata
registration, suitable for trading services, which work in
open and distributed environments on a broad scale, consists
of making use of a pull storage model. Here, exporters do
not get in touch with traders but rather publish metadata on
their websites so that the trading services themselves later on
“track” the network in search of new metadata.

Now that the requirements demanded of the trading
service have been identified, the OWT model operations in
the query process can be described.

II.OWT Model Operations

Let us now see how the OWT model operates in the query
process, since an object or component makes a query until
the results are retrieved.

This model is a trading-based version of the three-level
client/server model. It is comprised basically of a series of
elements <I,T,D>, each of which intervenes on a different
level, depending on the treatment of the query. Level 1 (L1)
is like the client side. Queries are generated and dealt with
by an interface object (I). Level 3 (L3) is the server side.
System data (D) reside on this level. In our case, these are
the EIM repositories with the environmental information.
Level 2 (L2) is the middleware that enables the source
information to be located. This is the level where the trader
objects (T) operate. Associated with the trader (T), the EID
repositories with the source environmental information
metadata (EIM) also reside there. All three objects use the

Lookup ontology (described later) to communicate between
them. As the premise for their functioning, an interface
object must be associated with a trader object. However, a
trader object can also be associated with one or more
external data sources or resources, in our case, with the
environmental source data (which reside in the EPU, as
discussed above). This “trader-information source”
association arises from the production of environmental
information, where each EPU has an associated trader in
which a subset (metadata) of environmental information
generated by it is registered. On the other hand, each trader
can be associated with one or more traders in federations.

In this three-level architecture, three operating scenarios
are possible: Trading Reflection, Trading Delegation, and
Trading Federation. Figure 4 shows the three levels (L1, L2,
L3), where the three basic objects (I,T,D) reside, and the
three scenarios permissible in OWT, as described below.

Fig. 4. Operational models of trading.

The Trading Reflection scenario in which the query may
be solved directly by the trader. The query is generated on
the interface and the information can be reached by the
metadata that reside in the repository associated with the
trader. In this case, the model <I,T> pair intervenes.

The Trading Delegation scenario indirectly mediates
with the trader. The query is partly resolved by the trader. A
query is generated on the interface level that goes on to the
trading level (T). The trader locates the data source (or
sources) (D), inferring this information from its metadata
repository. Therefore, the trader delegates the query to the
outside data source (D). In this case, the object series is
<I,T,D>.

Finally, the Trading Federation scenario is a case in
which two or more trader objects are able to federate. As in
the cases above, the query remains preset on the interface.
This query is passed on to the associated trader object. It can
propagate the query to another federated trader object, who
locates the external data source (D). In this case the object
series intervening is <I,T,T,D>.

For design reasons, the three basic OWT model levels
<I,T,D> have been implemented by agents using the JADE
platform in the following way. The interface (I) was
implemented by means of two agents: the Interface Agent
and the IMI Agent. The trading level (T) was implemented
by using two other agents: Query Agent and Trading Agent
(WTA). The data level (D) was implemented by means of a
Resource Agent. From the work perspective presented here,
we are interested in the information searching/retrieval

246 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

processes, so that the explanation concentrates only on the
WTA and the Lookup ontology used for it.

IV. WEB TRADING AGENT

This section describes the internal structure of our
Trading Agent and some details about its design and
implementation. It should be emphasized that this agent, like
all SOLERES system agents, was modeled, designed and
implemented based on run-time management of the
ontologies used. The trader therefore manages two kinds of
ontologies, data and service (or process):
(a) The first is related to the ecological information

repositories the trader can access. The information is
distributed in different OWL repositories on two levels,
as described in Section II-A. Some of them contain
environmental metadata (EIM repositories) and others
contain metadata from the first (EID repositories). A
trader manages an EID repository.

(b) The second kind of ontology refers to trader
functionality, that is, actions it can do and demand from
others. In this case, behavior and interaction protocols
must also be defined. These definitions set the operating
and interaction rules for agents, governing how the
functions the trader provides and demands to work
(behavior) are used and the order they are called up in
(protocols/choreography).

Figure 5 shows a data ontology from an EID repository
(described formally in UML). Let us recall that the
application domain to be modeled is ecological information
(a type of environmental information) on cartographic maps
and satellite images. Advanced algorithms based on
neuronal networks find correlations between satellite and
cartographic information. For the calculation of this
correlation, prior treatment of the satellite images and maps
is necessary (an image classification, Classification).

A cartographic map stores its information in layers
(Layer), each of which is identified by a set of variables
(Variable). For instance, we are using cartographic maps
classified in 4 layers (climatology, lithology, geomorphology
and soils) with over a hundred variables (e.g., scrubland
surface, pasture land surface, average rainfall, etc.).

Satellite images work almost the same way. The
information is also stored in layers, but here they are called
bands. An example of satellite images is the LANDSAT
image, which has 7 bands (but no variables stored in this
case). Finally, both the cartographic and satellite
classifications have geographic information associated
(Geography), which is made at a given time (Time) by a
technician or group of technicians (Technician).

Fig. 5. Ontology of the EID metadata that traders use.

As a complement and formalization of this conceptual
model, Table II shows the complete assertions of the eight
ontology entities expressed in OCL (Object Constraint

Language). As an example, we can describe two assertions.
The assertion #2 for the Classification entity shows it
has two required properties, Classification_id and
Classification_name. This entity (classification) is
related: (i) either with at least one Layer or
Satellite_image entity (never with both entities simulta-
neously) through the classification_shows_layer or
classification_uses_satellite_image relation-
ships, respectively; (ii) always with one Geography
entitythrough the classification_shows_geography
relationship; (iii) with at least one Technician entity
through classification_is_made_by_technician;
and (iv) also with two Time entities,
classification_starts_time and
classification_ends_time. Analogously, the
assertion #4 for the Layer entity indicates that it has two

TABLE II. EID ONTOLOGY ASSERTIONS IN OCL.

Entity Assertions

#1 Band (band_id exactly 1) and (band_is_shown_by_satellite_image min 0) and (band_name exactly 1)

#2 Classification (classification_id exactly 1) and ((classification_shows_layer min 1) or (classification_
uses_satellite_image min 1)) and (classification_ends_time exactly 1) and (classification_
is_made_by_technician min 1) and (classification_name exactly 1) and (classification_
shows_geography exactly 1) and (classification_starts_time exactly 1)

#3 Geography (geography_id exactly 1) and (geography_is_shown_by_classification min 0) and (geography_
locality exactly 1) and (geography_name exactly 1) and (geography_town exactly 1)

#4 Layer (layer_id exactly 1) and (layer_has_variable min 1) and (layer_is_shown_by_classification
exactly 1) and (layer_name exactly 1) and (layer_observations max 1)

#5 Satellite_image (satellite_image_id exactly 1) and (satellite_image_is_used_by_classification min 0) and
(satellite_image_shows_band min 1)

#6 Technician (technician_id exactly 1) and (technician_first_name exactly 1) and (technician_last_name
exactly 1) and (technician_makes_classification min 0) and (technician_organization max 1)

#7 Time (time_id exactly 1) and (time_day exactly 1) and (time_month exactly 1) and (time_year
exactly 1) and (time_is_started_by_classification min 0)

#8 Variable (variable_id exactly 1) and (variable_name exactly 1) and (variable_is_had_by_layer exactly 1)

JOSÉ-ANDRÉS ASENSIO ET AL.: INFORMATION RETRIEVAL USING AN ONTOLOGICAL MODEL 247

required properties, layer_id and layer_name, as well
as another optional, layer_observations, and it is
always related with
layer_is_shown_by_classification and, at least
with one Variable through layer_has_variable.

The functionality of our trader [14], [15] is divided into
three clearly differentiated components (see Figure 6): (a) a
component that manages the agent-communication
mechanism (Communication); (b) a parser that codes and
decodes the trading ontology-based messages exchanged
(Parser); and (c) trading itself (Trader).

The third component is inspired by the ODP specification,
which indicates how offers and demands must be
implemented among objects in a distributed environment
and proposes grouping all the different functionalities that a
trader may include. Although the standard specifies five
trader interfaces (i.e., Lookup, Register, Admin, Link and
Proxy), its specification does not demand a trader to
implement these five interfaces to work. In fact, we have
only developed ontologies for the Lookup, Register, Admin
and Link interfaces, but none has been implemented for the
last one yet. The Lookup interface offers the
search-information in a repository under certain query
criteria. The Register interface enables objects in this
repository to be inserted, modified and deleted. The Admin
interface can modify the main parameters of the trader
configuration, and finally, the Link interface makes trading
agent federation possible.

As previously explained, this paper focuses on identifying
and explaining how ontologies appear and intervene in the
Web Trading Agent. Of the interfaces implemented, we only
explain here the Lookup interface works, because it takes

part in the search, which is the primary subject of this
article.

V. THE LOOKUP ONTOLOGY IN OWT

The Lookup ontology (Figure 7) is used between system
objects. The trader uses the Query action and the
QueryForm concept. The QueryForm concept expresses the
query in a specific language, whose properties, among others
are: an id (a query identifier) and an uri (reference to the
file where the query is stored). In addition, there could be a
set of query policies (Policy) through the PolicySeq
concept, and each “policy” is represented by means of a
tuple (name, value). For instance, some of the tuples
implemented are:

Fig. 7. Lookup Ontology metamodel expressed in UML.

Fig. 6. Web Trading Agent view.

248 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

def_search_cardPolicy or
max_search_cardPolicy, indicating the number of
records to be located by default, and the maximum number
of records to be located in the query, respectively. It is
possible some exceptions.

Thus, UnknownQueryForm indicates that the query
cannot be answered because the file specified in the uri is
not accessible; PolicyTypeMismatch indicates that the
type of value specified is not appropriate for the Policy;
InvalidPolicyValue indicates that the Policy value
specified is not within the permissible value range for that
Policy; DuplicatePolicyName indicates that more than
one value for the same Policy has been specified in the
PolicySeq; and QueryError indicates that an error has
occurred during the query. If there is no exception and the
query is successfully executed, either the EmptyOfferSeq
predicate is used when no record is returned by the query, or
the NotEmptyOfferSeq predicate, when it is. This, in turn,
uses the OfferSeq concept to represent the set of records
located in the query, the properties of which are the query
“id” and the file “uri” where the found records are stored.

VI. CONCLUSION

Today, web-based EMIS greatly facilitate information
search and retrieval, favoring user cooperation and
decision-making. Their design requires the use of
standardized methods and techniques that provide a
common vocabulary to represent the knowledge in the
system and a capability for mediation to allow interaction
(communication, negotiation, coordination, etc.) of its
components. Ontologies are able to provide that shared
vocabulary, and trading systems can improve the
interoperability of open and distributed system.

The present paper shows how traditional traders, properly
extended to operate in WIS, are a good solution for
information retrieval. For that we have introduced
Ontological Web-Trading (OWT), an extension of the
traditional ODP trading service to support ontological
information retrieval issues on Web-based EMIS, as is the
case of the SOLERES system.

Future work will focus on the implementation of
SOLERES-HCI (Human-Computer Interaction). This
subsystem of our EMIS is defined by means of the
Computer Supported Cooperative Work (CSCW) paradigm
[16] and implemented by using an innovative technology of

intelligent agents and multi-agent architectures. Further-
more, we are working on this subsystem and studying how
to decompose the user tasks into actions that will have to be
performed by the SOLERES-KRS subsystem for retrieval of
the information requested and the ontology mapping
problems involved.

Finally, we would like to study, develop and incorporate
new evaluation and validation techniques, such as measuring
the precision of data returned to queries, response time in
executing the query, usability, etc.

REFERENCES

[1] Goh, D., Foo, S., 2007. Social information retrieval systems:
Emerging technologies and applications for searching the web
effectively. Idea Group Reference.

[2] Gama, J., May, M., 2011. Ubiquitous Knowledge Discovery. Intell.
Data Anal. 15 (1), 1.

[3] Ramos, A. C., Gensel, J., Villanova-Oliver, M., and Martin, H. (2005).
Adapted information retrieval in web information systems using
PUMAS. In AOIS, pages 243-258.

[4] Trader, I., 1996. ISO/IEC DIS 13235-1: IT–Open Distributed
Processing– ODP Trading Function–Part 1: Specification.

[5] Craske G, Tari Z, Kumar K. R. (1999) DOK-Trader: A CORBA
Persistent Trader with Query Routing Facilities. Proc. of the Int.
Symp. on Distributed Objects and Applications, pp. 230

[6] Merz M, Müller K, Lamersdorf W. (1994) Service Trading and
Mediation in Distributed Computing Systems. Conf. on Distributed
Computing Systems, pp. 450–450.

[7] Busse S, Kutsche R. D., Leser U, H Weber (1999) Federated
Information Systems: Concepts, Terminology and Architectures.
Technical Report 99-9, Technical University of Berlin.

[8] Lamparter S, Schnizler B. (2006) Trading Services in Ontology-driven
Markets. Proc. of the 2006 ACM Symp. on Applied Computing, pp.
1679–1683.

[9] Tsai WT, Huang Q, Xu J, Chen Y, Paul R. (2007) Ontology-based
Dynamic Process Collaboration in Service-Oriented Architecture.
Proc. Service-Oriented Comp. & App., pp. 39–46

[10] Collins J, Ketter W, Gini M. (2009) Flexible decision control in an
autonomous trading agent. Electronic Commerce Research and
Applications.

[11] Ziming Z, Liyi Z (2007) An integrated approach for developing
e-commerce system. Proc. Of the Wireless Communications,
Networkig and Mobile Computing, pp. 3596–3599.

[12] Iribarne, L., Padilla, N., Asensio, J., Criado, J., Ayala, R., Almendros,
J., Menenti, M., 2011. An Open-Environmental Ontology Modeling.
IEEE Trans. on SMC Part A 41 (4), 730–745.

[13] Padilla, N., Iribarne, L., Asensio, J., Muñoz, F., Ayala, R., 2008.
Modelling an Environmental Knowledge-Representation System.
Lecture Notes in Computer Science (LNCS), 5288: 70-78. Springer.
DOI: 10.1007/978-3-540-87781-3_8.

[14] Asensio, J., Iribarne, L., Padilla, N., Ayala, R., 2008. Implementing
trading agents for adaptable and evolutive COTS components
architectures. In: Proceedings of the International Conference on
e-Business, Porto, Portugal. pp. 259–262.

[15] Iribarne, L., Troya, J., Vallecillo, A., 2004. A trading service for COTS
components. The Computer Journal 47 (3), 342–357.

[16] Pendharkar, P., 2007. The theory and experiments of designing
cooperative intelligent systems. Decision Support Systems 43 (3),
1014–1030.

JOSÉ-ANDRÉS ASENSIO ET AL.: INFORMATION RETRIEVAL USING AN ONTOLOGICAL MODEL 249

