
Abstract—This paper presents a concept of a software
platform and a method of hybrid composition of web services
and hybrid grounding of abstract composition plans. The paper
also describes the architecture of the implemented platform
and its modules.

I. INTRODUCTION

ECENT scientific and industrial progress in the field of

information technology clearly shows a tendency to

switch data processing and computation from traditional

models to network architectures. There is also another trend

of switching over from large, complex monolithic software

systems to groups of smaller, well-defined and interoperable

applications. Due to this reason Service Oriented Architec-

ture paradigm and its specific realization – Web Services –

naturally fit these general trends. The practice of SOA ser-

vices composition is a promising approach to developing

new software systems with highly refined functionality that

is achieved by using a combination of different services cho-

sen from those available in a computer network. Very im-

portant parts of such software systems include service com-

position and grounding. Service composition focuses on cre-

ating complex plans from available services, while ground-

ing is a process that transforms abstract composition plans

into execution plans so that every abstract service used in an

abstract composition plan is effectively associated with a

real-world service instance and thus can be called during the

execution process.

R

Hybrid service composition is a method that allows its

users to combine different service composition techniques. It

offers more flexibility and control of the composition

process itself due to the ability to choose different composi-

tion techniques for different parts of the composed plan. Hy-

brid grounding is also a method that allows similar flexibil-

ity and control of a grounding process. It allows to mix and

match different grounding techniques for different parts of

an abstract composition plan.

A. Service Composition and Grounding in SOA

SOA is a software engineering paradigm which generally

describes various aspects of software systems that utilize

specific entities called services. On the other hand, SOA

does not define services strictly – they just have to be rela-

tively independent from each other and offer various func-

tionalities. Such an engineering approach offers different ad-

vantages like easier integration of legacy software into new

business processes, safer and more reliable upgrades of

software components, etc. Web Services are possibly the

most common SOA implementation nowadays.

Service composition is a concept of combining different

services for data processing purposes. It enables engineers to

create complex processes by combining various functionali-

ties offered by available services. So far numerous service

composition techniques have been developed.

Manual and semi-automatic service composition methods

e.g. [1] and [2] are relatively popular in the scientific com-

munity. Such kinds of approaches are fairly easy to under-

stand and implement. When creating service compositions

all decisions are made by the user who is provided with

some kind of advice or narrowing choice options at most.

However, such methods do not offer service composition

process automation.

Different automatic service composition approaches have

been proposed. Variations of forward and backward chain-

ing methods as in [3], [4], etc. were presented. Hierarchical

Task Networks methods were proposed in such works as [5]

and [6]. Ontological descriptions of services can be used by

reasoners for composition creation [7]. Petri nets were used

for service modeling and composition in [8].

Composition methods can, but do not have to, assume

that service instances are available and reachable somewhere

in a network. So, if a method is not concerned with the

availability of service instances, it will produce abstract

composition plans. On the other hand, grounding is a

process of enriching composition plans with vital informa-

tion that allows necessary service instances to be used dur-

ing the execution process. Therefore, abstract composition

plans have to be grounded prior to being ready for execu-

tion. Several service composition grounding methods have

been proposed, some of them are based on brokers [9] while

some others are matching-based [10], heuristic [11],

agent-based [12] or even ontology-based [13] and [14]. Each

one of these approaches uses different perspectives on the

grounding process thus allowing their users to fit their needs

in a very varied and not always interoperable ways.

B. Problem Statement

There are numerous methods for creating and grounding

service compositions. However, every particular approach

cannot be an ideal solution from all points of view. Imagine

a situation when a user of an SOA software system wants to

use some predefined service composition parts and combine

Concept of Platform for Hybrid Composition, Grounding and
Execution of Web Services

Lev Belava
AGH University of Science and Technology, Mickiewicza 30, Cracow, Poland

Email: Lev.Belava@gmail.com

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 1071–1077

978-1-4673-4471-5/$25.00 c© 2013, IEEE 1071

them with an output of an automatic composition method.

The concept of hybrid service composition was specifically

proposed in order to solve such kind of problems [15]. This

concept allows to use multiple service composition methods

during the creation of a service composition plan.

A similar problem is observed in the grounding of ab-

stract composition plans because grounding methods may

vary a lot in terms of their work principles as well as opti-

mization targets (QoS, cost, etc.). The concept of hybrid

grounding tries to address this problem by utilizing different

grounding methods during the grounding of one particular

abstract service composition plan.

So far, several service composition platforms have been

presented in scientific literature. The most important ones

include SWORD [16], METEOR-S [17], MAESTRO [18],

SPICE [19]. However, none of them tries to solve the prob-

lem of more flexible composition or picking and using a

grounding method. SWORD uses first order logic, ME-

TEOR-S adopts the Constraint Satisfaction Problem engine

for producing a composition, MAESTRO is based on a par-

ticular graph method with backward chaining and SPICE

uses backward chaining with branching for optimization

purposes.

 A variety of concepts and methods for service composi-

tion and grounding methods, platforms and approaches has

been proposed. However, none of them is perfect from every

point of view, e.g. such perspectives as composition plan

languages or optimization targets for grounding. In order to

solve this issue a concept of a hybrid composition, ground-

ing and execution platform was developed. It adopts ap-

proaches that enable users to have more flexibility during

composition and grounding processes by allowing to use

different composition and grounding methods together.

II. PROPOSED PLATFORM CONCEPT

The architecture of the hybrid composition, grounding

and execution platform consists of five key modules that are

cooperating together. The concept also incorporates external

elements – web services. These services are used by various

modules to produce and execute composition plans. Fig. 1

shows the architecture of platform and data flows between

different modules.

The Composition Module is a platform component that

actually performs all hybrid service composition tasks and

produces abstract composition plans. This module interacts

closely with the Networked Service Repository from which

it gets web service descriptions. Moreover, it might use the

Export Import Module from which it obtains plans for the

static composition engine. Abstract composition plans that

are produced by this module are forwarded to the Grounding

Module for further processing. The module consists of four

different service composition engines which can work to-

gether to produce composition plans.

The static service composition engine provides necessary

functionality to combine different pieces of the composition

plan that can be imported or generated by other composition

engines. The static engine uses two main operations to work

on composition plans: DELETE and INSERT. The “Delete”

operation cuts out a specified part of a plan and “Insert”

pastes one plan into another. The INSERT (1, 2, plan1,

plan2, 4) operation scheme is presented on Fig. 2. Plan1 and

plan2 represent two input plans for the operation. Plan3 is

the result of inserting plan2 from the first non-root node to

“Service 4” node into plan1 between “Service1” and “Ser-

Fig 1. Architecture of Hybrid Composition, Grounding and Execution
Platform

Fig 3. DELETE operation scheme

Fig 2. INSERT operation scheme

1072 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

vice 2” nodes. The DELETE (2, 3, plan1) operation scheme

is presented on Fig. 3. Plan2 is the result of cutting a chain

of services from plan1 starting at “Service 2” and finishing

at “Service 3”.

To proceed further we need to provide a definition for a

service input and output type. Input or output service types

in the proposed approach consist of two parts: the first – a

formal description of the data format that the service accepts

as input or returns as output, the second – semantic informa-

tion that describes the meaning of that data.

A forward chaining service composition engine creates

service composition plans by using a simple chaining algo-

rithm similar to the one proposed in [4]. Its simplified

scheme of action is to successively add new elements to the

end of the plan if their input types are consistent with the

previous element's output type. The general idea is to create

such a chain of elements that its last element will have the

desired output type.

A tree-based service composition engine creates service

compositions by using a method that creates not just a chain

of elements, but a tree. This method is relatively similar to

forward chaining but it allows to search the produced trees

and because of that the results of its work are more optimal

than the results of simple chaining techniques.

A graph-based service composition engine uses a compo-

sition method that is similar to the one proposed in [20]. Ba-

sically, at the beginning the composition algorithm produces

a complete services dependency graph. This directed graph

is created by treating abstract services as nodes in a graph

and then connecting the nodes with directed arcs if one ser-

vice's output type is identical to other service's input type.

Then such a graph could be processed by Dijkstra or some

other pathfinding algorithms. Fig. 4 presents a sample com-

plete services dependency graph. Each node in that graph is

described by its input type (“IN”) and output type (“OUT”).

The Grounding Module allows abstract composition

plans, that were produced by the composition module, to be

grounded. It cooperates closely with the services repository

from which it gets full information profiles about service in-

stances that are available on the network. Such a profile con-

sists not only of the service address and input/output types

but also includes additional parameters such as QoS and

cost. The three grounding engines in the Grounding Module

include QoS, cost and complex. QoS and cost grounding

methods were chosen as sample approaches that can be

successfully combined in a complex engine. There is a

possibility to use and combine other grounding methods as

well.

The goal of the QoS optimization engine is optimizing

QoS parameters of composition plans or their parts. For ex-

ample, one can request that QoS parameters for some part of

the abstract composition plan have to reside between some

desired maximum and minimum values. In such case the

QoS engine will look for service instances that fit the pro-

vided values best.

The cost optimization engine works similarly to the QoS

engine, but it has a task to optimize the cost of composition

plans or their respective parts.

The complex optimization engine allows to create a hier-

archical structure of grounding preferences which let the

user apply additional optimizations in cases where the en-

gine on a higher level of hierarchy will find several equally

fitted service instances. For example, we can imagine a situ-

ation in which the cost parameter is the most important tar-

get of the composition optimization, but we would like to

choose a service with the best QoS in case there are several

service candidates with the same cost value.

The Export Import Module provides functionality that al-

lows the abstract and grounded composition plan to be im-

ported or exported from or to files. There are two export-im-

port engines that were implemented for the proposed plat-

form – BPEL and SCDG.

The BPEL engine is able to import [22] and export [21]

composition plans that are written in a BPEL language. Not

all the BPEL functionality is currently implemented, but

core elements like conditionals, loops and the parallel exe-

cution of services are fully supported.

The SCDG engine allows to work with composition plans

that are presented as Service Composition Directed Graphs.

The SCDG is a graph-based model of service composition

representation that was proposed in [22].

An Execution Module executes grounded service compo-

sition plans. To-date only the SCDG execution engine has

been implemented, although there is a possibility to include

other engines. To do that one might also need to develop an

appropriate import-export engine first.

A Networked Service Repository Module is a web service

that on the one hand allows web services to be registered in

it and on the other hand provides information about these

services for composition and grounding modules. This mod-

ule also employs a standalone database for service descrip-

tions to be stored in it. A database engine could be either ex-

ternal or internal in relation to the Networked Service

Repository. External database engines, however, are much

faster and reliable with large data sets and thus more prefer-

able.

III. USE CASE SCENARIO

We can imagine an on-line trading system which allows

its users to search for products, place orders and ultimately

buy goods by entering financial and personal data into the

system. There are all sorts of government regulations and in-

dustry standards for personal and financial data because of

its sensitive nature. Therefore, we can be sure that some

parts of the composition plans in such kind of software plat-

forms will be predefined specifically to obey all sorts of reg-Fig 4. Example of a complete service dependency graph

LEV BELAVA: CONCEPT OF PLATFORM FOR HYBRID COMPOSITION 1073

ulations and standards. On the other hand, such systems may

benefit from automatic or semi-automatic service composi-

tion techniques after all.

Hybrid service composition was proposed to solve exactly

such kinds of problems by providing the necessary interop-

erability between different service composition methods.

A. System's Internal Operation - From Composition to
Execution

Fig. 5 presents a diagram with an example of how a ser-

vice composition plan is made, grounded and executed in a

system which implements the platform concept proposed in

this article.

1. The user provides necessary personal and financial data

and the parameters of the desired products.

2. This data is delivered to a Composition Module.

3. The Composition Module sends a request to an Export

Import Module to make an import of a standard-required

part of the composition plan which will handle personal and

financial data.

4. The Export Import Module transfers the request to a

BPEL Import Engine which will actually perform the task of

importing.

5. The BPEL Import Engine sends a part of the imported

composition plan to a Static Composition Engine, so it can

be merged with automatically composed parts later.

6. The Composition Module initiates a Graph Composi-

tion Engine and transfers composition parameters to it.

7. The Graph Composition Engine makes a request to a

Networked Service Repository and asks for a list of avail-

able services types.

8. The Networked Service Repository makes an appropri-

ate query in a Service Descriptions Database.

9. The Service Descriptions Database processes the query

and sends back the results.

10. The Networked Service Repository provides the

Graph Composition Engine with a list of all available ser-

vices types (not instances).

11. The Graph Composition Engine sends the prepared

part of the future service composition plan to the Static

Composition Engine.

Steps 12..17 are similar to steps 6..11.

18. The Static Composition Engine merges all parts of the

composition plan into one abstract service composition plan

and delivers it to a Grounding Module for grounding.

19. The Grounding Module makes a request to the Net-

worked Service Repository and asks it to provide a list of

real-world service instances whose inputs and outputs corre-

spond to the inputs and outputs of the services in the abstract

composition plan.

Steps 20 and 21 are similar to steps 8 and 9.

22. The Networked Service Repository provides the

Grounding Module with a list of required real-world service

instances.

23. The Grounding Module initiates a QoS Engine and

delivers the appropriate part of the plan plus the lists of ser-

vice instances to it.

24. The QoS Engine grounds a part of the greater plan

and sends it back to the Grounding Module.

Steps 25 and 26 are similar to steps 23 and 24.

27. The grounded composition plan is delivered to the Ex-

port Import Module.

28 The Export Import Module initiates a SCDG Export

Engine and provides it with a grounded composition plan.

29. An exported composition plan is delivered back to the

Export Import Module.

30. The Export Import Module sends the exported compo-

sition plan to the Execution Module for plan execution to be

made.

31 The Execution Module initiates a SCDG Execution

Engine and provides it with a composition plan.

32. The SCDG Execution Engine executes the composi-

tion plan.

33. Plan execution results are delivered to the interface.

34. The interface renders the acquired results and presents

them to the user.

B. A Closer Look at Composition and Grounding

Fig. 6 presents a visualization of an abstract composition

plan which deals with sensitive personal and financial data

provided by the user. There are several service calls in it:

“AssignUniqueID” – assigns a unique ID number to a

user-provided data set, “Encrypt” – encrypts the data set,

“Archive” – archives the previously encrypted data, “Vali-

dateData” – makes appropriate validations of the user-pro-

vided data.

Fig 5. Service composition, grounding and execution diagram

Fig 6. Abstract composition plan in a BPEL language with predefined
service calls

1074 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

The automatic generation of the second and third parts of

a composition plan was done by graph and tree composition

engines. The graph-based engine composed the part of the

plan responsible for product finding, selecting and placing

an order in a system. The tree-based engine composed the

part responsible for the processing of the order that had been

placed earlier.

Fig. 7 presents a visualization of a complete services de-

pendency graph of all registered types of web services that

were registered in the Networked Service Repository. That

exact graph was generated by a Graph Composition Engine

during the composition process itself and visualized by the

visualization functionality of the software platform. All ser-

vice type IDs were automatically generated by the Net-

worked Services Repository. Each of these IDs consisted of

service input type name, “|” character and service's output

type name.

The left part of Fig. 8. presents a visualization of an ab-

stract plan that was generated by a Graph Composition En-

gine. “ValidationResultID” is an output type of the last ser-

vice call in a predefined part of the service composition

which was imported from a BPEL file, so it was passed to

the Graph Composition Engine as a desired input type. “Or-

derID” type is a type which corresponds to the output type

of the order creation service, so it was passed to the compo-

sition engine as a desired output type of the composition.

The subsequent steps of a plan generated by the Graph

Composition Engine are as follows:

1. “ValidationResultID|OfferPack” represents an auto-

matic wide search of possible products on the client's re-

quest.

2. “OfferPack|FilteredOfferPack” represents automatic fil-

tering of the previously found products.

3. “FilteredOfferPack|ClientApproval” represents the

client's acceptance of a product offer.

4. “ClientApproval|OrderID” represents generating an or-

der for the offer that had already been accepted.

The right part of Fig. 8. presents a visualization of an ab-

stract plan generated by a Tree Composition Engine. “Or-

derID” type was passed to the composition engine as a de-

sired input type because it has to be the same as the output

type of a Graph Composition Engine's work result. “Client-

NotificationID” represents the result of client notification

which always happens after an order is processed, so it was

passed to the Tree Composition Engine as a desired output

type.

The subsequent steps of a plan generated by the Tree

Composition Engine are as follows:

1. “OrderID|PaymentAndDeliveryOptions” represents a

user's process of choosing payment and delivery options for

a created order.

2. “PaymentAndDeliveryOptions|PaymentID” represents

the act of payment for the delivery by a client.

3. “PaymentID|WarehouseProcessingResults” represents

all background warehousing processing such as searching

for the warehouse nearest to the client, scheduling product

pickup from the shelf, packing etc.

4. “WarehouseProcessingResults|DeliveryRequest” repre-

sents creating a delivery request to a logistic company which

will actually deliver the products to the customer.

5. “DeliveryRequest|ClientNotificationID” represents the

client notification process during which the client receives

information about the delivery and other order related

things.

All three parts of a complete abstract service composition

plan were merged after they were created or imported by the

corresponding engines. After that the complete plan was di-

vided into three grounding areas and grounded in a hybrid

mode.

The first grounding area consisted only of the steps from

the first part of the plan which had been imported from the

Fig 7. Complete service dependency graph for Service Repository

Fig 8. Graph (left) and Tree (right) Composition Engines work results

LEV BELAVA: CONCEPT OF PLATFORM FOR HYBRID COMPOSITION 1075

BPEL. Because this part is very important and regulated by

government and industry standards, it was grounded only by

a QoS Engine which was tuned to select the best available

service instance no matter the cost.

The second grounding area was defined as a steps chain

from “ValidationResultID|OfferPack” service till

“OrderID|PaymentAndDeliveryOptions”. The main ground-

ing engine for that area was the Cost Engine and the second

one was the QoS engine. The Cost Engine, however, was

configured to choose not the absolutely best service from a

variety of the available ones, but a range of acceptable ser-

vices within a provided distance from the best one. The ad-

ditional grounding engine for the second area was the QoS

Engine which was able to choose the service instance with

the best cost from the range of the previously selected ones

by the Cost Engine.

The third grounding area was defined as a steps chain

from “PaymentAndDeliveryOptions|PaymentID” till “Deliv-

eryRequest|ClientNotificationID”. It was grounded similarly

to the second part but the difference was that the main

grounding engine was the QoS Engine and the second one

was the Cost Engine.

Fig. 9. presents a visualization of a grounded composition

plan. The only difference between the visualizations of the

abstract and grounded composition plans are URL addresses

of the WSDL files in every step of the composition. These

addresses unequivocally correspond to real-world service in-

stances due to that fact that the data in each WSDL file de-

scribes a concrete service instance.

The execution of a service composition plan was made

with the use of an Execution Module which was making ser-

vice calls to appropriate instances by their URLs.

C. Implementation Details

The described platform was implemented in Java 6 pro-

gramming language. Apache Tomcat 7 was used as the

servlet container which hosted all the services and the Net-

worked Service Repository as well. Spring Web Services 2

framework was used for the creation of the all web services

including the Networked Service Repository. All the com-

munication between the services, repository and Execution

Module was carried out using a SOAP protocol over HTTP.

Hibernate 4 was used as an object relation mapping frame-

work for storing all service descriptions data in an in-mem-

ory H2 version 1.3 database. Such kind of database was

used instead of a standalone one because it is easier to use

and maintain in projects of the prototype nature. The SCDG

was implemented upon JgraphT 0.8 library abstractions

which also provided valuable algorithms for the Graph

Composition Engine. Jdom 1.3 library for XML was used to

handle all XML operations across all platform modules.

JGraph 5 library was used to draw the visualizations of ser-

vice composition plans in the SCDG format such as Fig. 7, 8

and 9.

IV. CONCLUSION AND FUTURE WORK

This work presents an approach to creating a software

platform that allows its users to combine different composi-

tion and grounding methods. Such features enable software

users to control composition and grounding processes in a

different and more powerful way thus allowing them to cre-

ate better suited abstract and grounded composition plans.

The proposed approach was also verified during the im-

plementation and execution tests of the described platform.

The verification revealed that hybrid composition and hy-

brid grounding approaches are viable tools that can be used

to create a better suited abstract and executable service com-

position plans.

The main implication of the presented work is the fact

that users of software platforms that implement the proposed

approach will have more flexibility and control over service

composition and grounding processes. Many composition

and grounding methods have been proposed, yet each of

them is different and may not suit all the needs of the end-

point customer. Furthermore, to satisfy all the upcoming and

even hitherto unknown customer needs software systems

must allow changes to be introduced in them. The ability to

choose and combine different service composition and

grounding methods addresses these problems by enabling

users to select and merge optimal methods for their needs.

There are also three main directions of the upcoming

work for the proposed concept. The first one is studying the

desired properties of the service universe and service granu-

larity in order to achieve high automation rates. The second

one is a hybrid execution of grounded plans. The combined

usage of different execution engines might bring some addi-

tional features since these engines might employ different

approaches and thus be valuable from different points of

view. The last direction of the studies has to be made in the

field of dynamic composition, grounding and execution

methods. Such methods can be very desirable e.g. in soft-

Fig 9. Grounded composition plan

1076 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

ware platforms where the fault-tolerance level of services is

low or the environment itself may constantly be changing.

REFERENCES

[1] E. Sirin, J. Hendler, B. Parsia, "Semi-automatic composition of Web
Services using semantic descriptions", in Proc. Web Services:
Modeling, Architecture and Infrastructure workshop in ICEIS2003,
Apr. 2003, pp. 17–24.

[2] E. Sirin, J. Hendler, B. Parsia, "Filtering and selecting semantic Web
Services with interactive composition techniques", IEEE Intelligent
Systems, vol. 19, pp. 42–49, 2004.

[3] S. Thakkar, C. Knoblock, J. Ambite, C. Shahabi, "Dynamically
composing Web Services from on-line sources", in Proc. AAAI-2002
Workshop on Intelligent Service Integration, July 2002.

[4] M. Sheshagiri, M. Desjardins, T. Finin, "A planner for composing
services described in DAML-S", in Proc. AAMAS Workshop on Web
Services and Agent-based Engineering, July 2003.

[5] E. Sirin, B. Parsia, D. Wu, J. Hendler, D. Nau, "HTN planning for
Web Service composition using SHOP2", Web Semantics: Science,
Services and Agents Journal, vol. 4, pp. 377–396, 2004.

[6] S. Sohrabi, J. Baier, S. McIlraith, "HTN planning with preferences",
Web Semantics: Science, Services and Agents Journal, vol. 4, 2004,
pp. 377–384.

[7] A. Ankolekar, M. Burstein, J. Hobbs, O. Lassila, D. Martin,
"DAML-S:Web Service description for the Semantic Web", in Proc.
International Semantic Web Conference (ISWC) 2002, June 2002, pp.
348–363.

[8] R. Hamadi, B. Benatallah, "Petri Net-based model for Web Service
composition", in Proc. 14th Australasian database conference on
Database technologies, 2003, pp. 191–200.

[9] D. Chakraborty, Y. Yesha, A. Joshi, “A distributed service
composition protocol for pervasive environments”, in Proc. 2004
IEEE Wireless Communications and Networking Conference, Mar.
2004, pp. 2575–2581.

[10] S. Sun, X. Tang, X. Yan, D. Chen, "A symmetric matchmaking engine
for Web Service composition", in Proc. 15th International
Conference on Parallel and Distributed Systems, Dec. 2009, pp.
810–814.

[11] D. Liu, Z. Shao, C. Yu, D. Chen, G. Fan, "A heuristic QoS-aware
service selection approach to Web Service composition", in Proc. 8th
IEEE/ACIS International Conference on Computer and Information
Science, June 2009, pp. 1184–1189.

[12] J. Tang, X. Xu, "An adaptive model of service composition based on
policy driven and multi-agent negotiation", in Proc. 5th International
Conference on Machine Learning and Cybernetics, Aug. 2006, pp.
113–118.

[13] H. Yan, W. Zhijian, L. Guiming, "A novel Semantic Web Service
composition algorithm based on QoS ontology", in Proc. 2010
International Conference on Computer and Communication
Technologies in Agriculture Engineering, June 2010, pp. 166–168.

[14] S. Bleul, T. Weise, "An ontology for quality-aware service discovery",
in Proc. First International Workshop on Engineering Service
Compositions, Dec. 2005, pp. 35–42.

[15] L. Belava, "Concept of hybrid service composition in SOA
environment", Automatyka, vol. 13/2, pp. 189–197, 2009.

[16] S. Ponnekanti, A. Fox, "SWORD: A developer toolkit for Web
Service composition", in Proc. 11th International WWW Conference,
May 2002.

[17] R. Aggarwal, "Constraint driven Web Service composition in
METEOR-S", in Proc. IEEE International Conference on Services
Computing, Sep. 2004, pp. 22–30.

[18] V. Chifu, I. Salomie, A. Riger, V. Radoi, "A graph based backward
chaining method for Web Service composition", in Proc. IEEE 5th
International Conference on Intelligent Computer Communication
and Processing, Aug. 2009, pp. 237–244.

[19] E. Silva, L.F. Pires, M. Sinderen, "An algorithm for automatic service
composition", in Proc. 1st International Workshop on Architectures,
Concepts and Technologies for Service Oriented Computing, July
2007, pp. 65–74.

[20] Y. Wang, H. Wang, X. Xu, "Web Services selection and composition
based on the routing algorithm", in Proc. 10th IEEE International
Enterprise Distributed Object Computing Conference Workshops, pp.
69–73, Oct. 2006.

[21] L. Belava, "Algorithm for the conversion of service composition
directed graph into BPEL service composition plans", Automatyka, vol
15/2, pp. 71–80, 2011.

[22] L. Belava, "Transforming BPEL service composition into a service
composition directed graph for better composition plan management",
in Proc. 25th European Conference on Modelling and Simulation,
June 2011, pp. 424–429.

LEV BELAVA: CONCEPT OF PLATFORM FOR HYBRID COMPOSITION 1077

