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Abstract—The Molecular Distance Geometry Problem
(MDGP) is the one of finding an embedding of a molecular
graph in the three dimensional space, where graph vertices
represent atoms and edges represent known distances between
some pairs of atoms. The MDGP is a constraint satisfaction
problem and it is generally cast as a continuous global
optimization problem. Moreover, under some assumptions, this
optimization problem can be discretized and so that it becomes
combinatorial, and it can be solved by a Branch & Prune (BP)
algorithm. The solution set found by BP, however, can be very
large for some instances, while only the most energetically stable
conformations are of interest. In this work, we propose and
integrate the BP algorithm with two new energy-based pruning
devices. Computational experiments show that the newly added
pruning devices are able to improve the performance of the BP
algorithm, as well as the quality (in terms of energy) of the
conformations in the solution set.

I. INTRODUCTION

THE Molecular Distance Geometry Problem (MDGP) is

the one of finding the possible three-dimensional con-

formations of a molecule from the information about the

relative distances between some pairs of its atoms [1], [2]. Let

G = (V,E, d) be a weighted undirected graph representing

an instance of the MDGP. The vertex set describes the atoms

forming the molecule, and there is an edge joining two vertices

if and only if the distance between the two corresponding

atoms is known. The MDGP can be seen therefore as the

problem of finding a function x : V −→ ℜ3 such that

∀(u, v) ∈ E, ||x(u) − x(v)|| = duv,

where || · || represents the computed Euclidean distance be-

tween the coordinates x(u) and x(v), whereas duv is the

weight of the edge (u, v). The MDGP is NP-hard [3].

By its nature, the MDGP is a constraint satisfaction problem

that is generally formulated as a global optimization problem

in a continuous space [4]. When some particular assumptions

are satisfied, moreover, the search space of the optimization

problem can be discretized, so that it becomes combinatorial.

We refer to a subclass of MDGPs that can be discretized as

the Discretizable MDGP (DMDGP) [5], [6], [7]. Instances of

the DMDGP can be solved by applying an ad-hoc Branch &

Prune (BP) algorithm [8].

The basic idea behind BP is as follows. Suppose that

possible positions have already been computed for all the

atoms of a given molecule that have rank smaller than i

(we suppose that a total order relationship for the vertices

of G exists). Because of the discretization assumptions, there

are up to two possible positions for the current atom i, that

can be obtained by intersecting three spheres centered in the

already placed atoms i− 3, i− 2 and i− 1, and having radii

di−3,i, di−2,i and di−1,i respectively. In this way, a binary tree

can be defined, which is the conformational search space of

the discretized problem, where branches duplicate in number

when passing on higher level layers. By using some additional

information about the distances (that are not considered in the

tree construction), the feasibility of the atomic positions can

be verified, so that branches of the tree can be pruned in case

they contain infeasible positions. Moreover, additional pruning

devices can be conceived for improving the performance of the

BP algorithm [9], [10].

In this paper, we propose two new pruning devices to

be included in the BP algorithm in order to improve its

performance. For the first time, we consider pruning devices

that are based on the chemical nature of MDGP instances;

in other words, in these new pruning devices, we exploit the

chemical structure of the molecule, and not only the distance

information. We will present two new pruning devices. The

former basically considers the van der Waals (vdW) radii [11]

and forbids any configuration where non-bonded atoms are

too close to each other, by verifying the relative distances

between spheres centered in the atoms and having as radii the

corresponding vdW radii. The latter pruning device is instead

based on the well-known Lennard Jones (LJ) potential [12],

which is related to the internal energy of the molecule.

The rest of the paper is organized as follows. In Section II,

we will briefly describe the BP algorithm and we will focus our

attention on the symmetry properties of BP trees, that will be

exploited later in the paper. Section III will introduce the two

new pruning devices, while computational experiments will be

presented in Section IV. Conclusions and future works will be

discussed in Section V.
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Algorithm 1 The BP algorithm.

1: BP(v, n, d)
2: compute x′

v;

3: if (x′
v is feasible) then

4: if (v = n) then

5: let nsols = nsols+ 1;

6: else

7: BP(v + 1, n, d);
8: end if

9: end if

10: compute x′′
v ;

11: if (x′′
v is feasible) then

12: if (v = n) then

13: let nsols = nsols+ 1;

14: else

15: BP(v + 1, n, d);
16: end if

17: end if

II. THE BP ALGORITHM

The BP algorithm [8] is an exact algorithm for the solution

of DMDGPs. It explores recursively the discrete search do-

main (a binary tree) of the DMDGP and it prunes infeasible

branches of such a tree as soon as they are discovered. Alg. 1

gives a sketch of the algorithm. In the algorithm call, v ∈ V is

the current vertex for which we are looking for a position, n is

the cardinality of V , and d represents the weights associated

to the edges. During each call, the two possible positions for

the vertex v, x′
v and x′′

v , are computed, and their feasibility

is verified. If, for example, x′
v is feasible, then this position

could be part of a solution, and therefore the branch of the

binary tree rooted at x′
v needs to be explored. In this case,

the algorithm invokes itself for exploring the branch rooted at

x′
v . Instead, if for example x′′

v is not feasible, then the current

branch does not contain any solution. It is therefore pruned:

the algorithm does not invoke itself in this case.

The conditions in the two if control structures (see lines 3

and 11 of Alg. 1) can be verified by employing the so-called

pruning devices. The easiest to conceive and to implement

(and probably the most efficient) is the Direct Distance Fea-

sibility (DDF) pruning device. DDF simply verifies whether

additional distances (that are not employed in the computation

of x′
v and x′′

v ) are satisfied by the obtained candidate positions.

In the following, we will refer to such additional distances as

pruning distances. The BP algorithm, together with the DDF

pruning device, was shown to be very efficient for the solution

of protein-like instances [5].

Fig. 1 shows a BP tree for a small instance and the set

of solutions obtained when only the DDF pruning device

is employed. In the following, we will say that this is the

DDF solution set, in order to make a distinction between this

solution set and the ones that we will obtain while employing

the new pruning devices. In the tree representation, a solution

is given by a path from the tree root to one of its leaf nodes.

Fig. 1. The BP tree for a 7-atom instance, and the DDF solution set (in
yellow).

As it is graphically shown in the picture, DDF solution sets

are symmetric, i.e. one solution can be obtained from another

by replacing a branch with its symmetric one [13], [14].

On the other hand, BP trees are highly symmetric: when

no additional distances are available for applying the DDF

pruning device, then every tree branch has a symmetric branch.

A pair of symmetric branches shares the following property:

given two vertices v and w, in the two branches, even if their

coordinates are different, their relative distance is the same.

Conversely, if we consider a vertex u having rank smaller than

the common root of the two symmetric branches, its distance

from any vertex v on the two branches is branch-dependent.

Let us consider a pair of symmetric branches of the BP

tree that are rooted at the vertex v. If there is a vertex with

rank u < v and another vertex w > v (which belongs to the

two branches) such that the pruning distance duw is available,

then, with probability 1, at most one of the two coordinates

for w (one on the first branch, another on the second one)

can satisfy this distance [15]. As a consequence, this kind of

pruning distances are able to break the symmetries in BP trees,

so that only a subset of symmetries is left in the DDF solution

set. An easy test for verifying the presence of a symmetry in

the solution set (before its explicit computation) is to check

the existence of this kind of pruning distances. As reported in

[13], there is a symmetry on the layer v of the solution set if

and only if the vertex v belongs to the set

B = {v ∈ V : 6 ∃(u,w) s.t. u+ 3 < v ≤ w} .

In this work, we will exploit these symmetry properties for

generating instances having a predefined minimum number of

solutions, and we will also discuss a possible improvement

for the LJ pruning device which exploits the symmetries in

BP trees.

III. ENERGY-BASED PRUNING DEVICES

In this section, we propose two new pruning devices to be

included in the BP algorithm. The first one is based on vdW

radii (see Section III-A), while the second one is based on LJ

energy (see Section III-B).
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A. vdW radii pruning device

In this work, we consider the very common representation

for an atom through the coordinates of its center. An atom,

however, fills a certain portion of space: its nucleus, consisting

of neutrons and protons, has a predetermined volume, while

electrons orbit around this nucleus, at a given distance from

it. Therefore, an atom can be seen as a sphere centered in

its nucleus (which corresponds to the center of the atom) and

having radius equal to the distance between the nucleus and

the orbiting electrons. This distance can be estimated for each

kind of atoms, and it is generally referred to as atomic radius.

It is common to say that these electrons form a sort of cloud.
When two atoms are chemically bonded, their clouds of

electrons tend to overlap. If they are not bonded, however,

repulsion forces do not allow them to be too close to each

other. The half of the distance (between atoms of the same

kind) for which the attraction and repulsion forces are in

equilibrium is called van der Waals (vdW) radius [11]. The

vdW pruning device is therefore based on this simple idea:

when two atoms are not bonded, their relative distance should

be greater than the sum of the two corresponding vdW radii.

This verification can be applied to all pairs of atoms for which

no pruning distance is available.
Notice that, differently from the DDF pruning device, a

precise distance is not available but rather only a lower bound

for this distance. When the relative distance between two

vertices u and v, with u < v just positioned somewhere, goes

below the predefined threshold, then the candidate position

for v can be pruned. In the practice, we consider a relaxed

condition, by setting the threshold to the 80% of the sum of

the vdW radii. In the experiments presented in Section IV, we

will consider instances containing Carbons (C) and Nitrogens

(N) only. The vdW radius for C is set to 1.875; the vdW radius

for N is set to 1.688. These values were extracted from the

default parameters of the force field described in [16].

B. LJ pruning device

This pruning device is based on the overall internal energy

of a molecule. As it is well-known, an accurate description of

all interactions among the atoms in a molecule can be very

complex, so that the overall energy can be only approximated

by taking into consideration the most important interactions.
The vdW interactions between pairs of non-bonded atoms

[17] are usually modeled by the Lennard Jones energy. In this

case, we consider both repulsion and attraction forces, and for

modeling the overall energy, we use the sum of pairwise LJ

potentials 12–6 [12] :

ELJ =
∑

uv

4εuv

[

(

σuv

duv

)12

−

(

σuv

duv

)6
]

, (1)

where εuv and σuv are two parameters that can be defined

by the relationships between the pairs of atoms u and v. The

parameter σuv is the distance where the pair potential is zero,

whereas εuv is the well depth. The minimum value for the

LJ pair potential is −εuv achieved in ruv = 21/6 σuv (which

corresponds to the sum of vdW radii).

During the execution of the algorithm, every time a leaf

node is reached (on the layer n), a complete conformation is

found, and its energy En can be computed. Let us suppose that

Ên is the lowest energy found so far. The basic idea behind

the LJ pruning device is to verify in advance whether new

branches of the tree can actually contain conformations with

an energy that can be potentially smaller than Ên. This can be

done by computing a lower bound on the energy concerning

all the conformations belonging to a common branch.

Depending on the range in which the inter-atomic distances

can vary, however, we can compute an accurate lower bound

for the actual value. In case the BP algorithm is currently

positioned on the layer v, then we have a partial energy value

En(≤v) (computed by using the available coordinates) and a

lower bound L(>v) on the energy En(>v) (approximated by

summing the minimum values given by the Lennard Jones

terms for which no distance is available yet). Therefore,

if En(≤v) + L(>v) > Ên, there is no hope to identify a

conformation with an energy smaller than Ên while exploring

the current branch of the tree. This branch can be therefore

pruned.

Notice that the LJ pruning device considers implicitly the

vdW pruning device (see previous section). If a distance

between a pair of atomic coordinates (for the atom v and a

previous one) is small enough for the atomic position xv to

be pruned by the vdW pruning device, then the corresponding

LJ potential is large, so that the LJ pruning device declares

the atomic position infeasible as well. Therefore, when the

vdW and LJ pruning devices work together, it is appropriate

to apply LJ only after vdW.

IV. COMPUTATIONAL EXPERIMENTS

This section presents some computational experiments

where the BP algorithm is integrated with the new proposed

pruning devices. All codes were written in C programming

language and all the experiments were carried out on an Intel

Core 2 Duo @ 2.4 GHz with 2GB RAM, running Mac OS

X. The codes have been compiled by the GNU C compiler

v.4.0.1 with the -O3 flag.

In this paper, we suppose that all considered instances

consist of a list of precise distances between some pairs of

atoms of the molecule. This is an unrealistic assumption [18],

because this information can be obtained through experiments

of Nuclear Magnetic Resonance (NMR), where lower and

upper bounds on the distances are actually provided. This

assumption, however, allowed us to begin the investigation

of new ideas that are potentially able to help in the solution

of real instances of the problem (see Section V).

The instances considered in this paper are artificially gener-

ated by using the following procedure. Protein conformations

are downloaded from the Protein Data Bank (PDB) [19] and

the backbone atoms N–Cα–C of such proteins are extracted

from such conformations. Distances are then computed be-

tween each possible pair of atoms, and the distances that are

greater than 5Å are rejected (this is done because NMR data

only consists of short range distances). As previously remarked
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TABLE I
SOME COMPUTATIONAL EXPERIMENTS WITH BP AND THE NEW ENERGY-BASED PRUNING DEVICES.

Instance only DDF DDF + vdW DDF + LJ DDF + vdW + LJ
name n m BP calls #L time BP calls #L time BP calls #L time BP calls #L time
1mbn-0 459 3200 1951 8 0.03 1951 8 0.05 1951 3 0.03 1951 3 0.05
1mbn-2 459 3169 11327 512 0.35 4071 96 0.16 9229 5 0.27 4071 4 0.15
1rgs-0 792 4936 10883 8 0.43 9059 8 0.51 9127 5 0.35 9059 5 0.51
1rgs-1 792 4857 165317 128 6.82 108033 96 6.27 123025 13 4.90 108033 11 6.29
1bpm-1 1443 9056 73147 128 6.88 14775 20 1.89 36599 7 3.26 14775 4 1.89
1bpm-2 1443 9027 1150409 2048 111 90143 108 11.9 272474 9 24.9 90143 6 11.9
1n4w-1 1610 10860 51521 32 3.39 21785 6 1.52 32037 7 1.79 21785 3 1.53
1n4w-2 1610 10675 182433 512 18.75 26855 24 2.42 52962 17 4.24 26855 4 2.43
1mqq-1 2032 12820 54175 128 8.62 17347 32 4.64 22067 4 3.22 17347 4 4.65
1mqq-2 2032 12807 812927 2048 144 161265 344 49.80 256059 6 42.25 161625 4 49.84
1rwh-1 2265 13908 38261 32 5.39 9727 2 1.43 17101 4 2.06 9227 2 1.43
1rwh-2 2265 13868 1152495 1024 169 35649 8 5.43 77613 9 9.32 35649 4 5.45
2e7z-1 2907 27509 342675 64 38.63 229483 8 30.91 256046 7 25.44 229483 3 30.89
2e7z-2 2907 27157 2041939 2048 391 271435 16 42.61 470990 21 68.11 271435 5 42.63
1epw-0 3861 35028 11975 2 3.12 11299 2 5.67 11489 2 2.88 11299 2 5.72
1epw-1 3861 34707 123561 32 43.27 22457 4 12.72 38580 4 11.16 22457 2 12.74
1epw-2 3861 34052 2815081 4096 1282 48297 32 36.79 192497 23 81.09 48297 3 36.81

in [5], the obtained set of distances forms a DMDGP instance

in the majority of the cases (this is always the case for the

proteins considered in this paper).

Successively, for all generated instances, a certain number

of pruning distances is discarded. Let V̂ ⊂ V , containing K

randomly selected vertices. For each v ∈ V̂ , all the pruning

distances duw such that u + 3 < v < w are removed from

the instance. In this way, a symmetry in the DDF solution

set is generated, and this makes the total number of solutions

increase (see Section II). An instance generated by using this

procedure has at least 2K solutions [15], [13].

Table I shows some computational experiments. The name

of each instance is composed by its label on the PDB, plus

a number, representing the cardinality K of V̂ . For every

instance, we also provide the number of atoms (n = |V |),
and the total number of available distances (m = |E|).

The experiments are performed for different setups of the

BP algorithm. We consider the four following setups:

• only the DDF pruning device is exploited;

• DDF is integrated with the vdW pruning device;

• DDF is integrated with the LJ pruning device;

• the three pruning devices are considered together.

For every setup and for every instance, we monitor the total

number of BP calls necessary for enumerating the whole

solution set, the number #L of times that BP reaches a leaf

node of the search tree (#L corresponds to the cardinality of

the solution set when only DDF is employed), and finally the

CPU time, in seconds. CPU times in bold are used to mark

the fastest executions.

The quality of the obtained solutions can be evaluated in

two ways. In order to verify whether all available distances are

satisfied, we use the Largest Distance Error (LDE) function:

LDE(x) =
∑

(u,v)∈E

1

m

| ||x(u)− x(v)|| − duv |

duv
.

In this work, moreover, it is of interest to verify the LJ energy

of the obtained solutions, by employing Equation (1). In the

presented experiments, the LJ energy is computed even when

the LJ pruning device is disabled. The partial energy E(>k)

is computed at each recursive call of BP, because we noticed

empirically that this is more efficient than computing the LJ

energy for the whole DDF solution set after the execution

of the algorithm. For lack of space in the table, LDE and LJ

values are omitted for all experiments, but some examples will

be given in the text.

The experiments show the effectiveness of the two new

pruning devices. Even if very simple, the vdW pruning device

is able to reduce the total number of BP calls, as well as the

computational time, because it can identify infeasible branches

that were not selected by DDF. A similar observation can be

done for the LJ pruning device. It is interesting to remark that,

when the two new pruning devices are considered together

with DDF, the performance of BP is similar to the case

in which only the vdW pruning device is considered. As a

consequence, the repulsive term in LJ, which dominates the

potential for small distances (also considered in vdW), plays

the most important role during the pruning process. However,

notice that #L decreases when vdW and LJ work together:

fewer leaf nodes are reached during the execution of BP.

Fig. 2 shows two solutions for the instance 1mbn-2. The

leftmost conformation has minimum LDE value 1.79e-10

(energy -131.21), but it does not correspond to the solution

having the smallest energy value. In fact, as it can be seen from

the figure, one helix in this conformation slightly diverges

from the rest of the molecule, so that some energetic terms

increase in value. The rightmost conformation is the one with

minimum LJ potential energy: -136.12, while the LDE value

is 5.36e-08.
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Fig. 2. Two solutions for the instance 1mbn-2. The leftmost conformation has minimum LDE value, while the rightmost conformation has minimum LJ
energy.

V. CONCLUSIONS AND FUTURE WORKS

We introduced two new pruning devices that are based on

internal energy in molecules. We showed, through computa-

tional experiments, that they are able to improve the pruning

capabilities of BP algorithm. The energetically most stable

conformations, that previously could be selected from the

entire DDF solution set, can be actually obtained by employing

these two new pruning devices. The solution set is therefore

reduced to energetically stable conformations only, while the

performance of BP improves.

This work represents the first step for the integration of

energy-based pruning devices inside BP. Next step will consist

in testing such new pruning devices on instances of the

problem containing interval data. As mentioned above, this

kind of instances is more realistic, because, in biological

applications, experimental data are generally imprecise. While

the adaptation of these pruning devices to interval data is rather

trivial, their impact on the performance of the algorithm is

expected to be much more pronounced.

When working with interval data, the number of branches

in BP trees increases because, instead of 2 possible positions

for the current atom, we have 2D possible positions, where

D corresponds to the number of samples in the discretized

interval distance [20]. Thus, it is also expected an increase

in the computational cost for the execution of these new

pruning devices. For this reason, it will be worth implementing

suitable strategies for making the new pruning devices more

efficient. In the LJ pruning device, for example, the quality

of the lower bound L(>v) can be improved by taking into

consideration the symmetry properties of BP trees. Distances

between pairs of atoms belonging to two symmetric branches

coincide, and therefore their LJ energy is the same. Once

one of the two branches has been explored, and its total

energy has been computed, it is known in advance that

the second branch has the same energy. This property can

therefore help in finding better approximations of the lower

bound L(>v). Unfortunately, when using this strategy in BP

with exact distances, the trade-off between increased cost and

performance improvement is not relevant.
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