
Abstract—For  decades,  Domain  Decomposition  (DD)  tech-
niques have been used for the numerical solution of boundary
value  problems.  In  recent  years,  the  Algebraic  Multigrid
(AMG) method has also seen significant rise in popularity as
well as rapid evolution. In this article, a Domain Decomposition
method is presented, based on the Schur complement system
and  an  AMG  solver,  using  generic  approximate  banded  in-
verses based on incomplete LU factorization. Finally, the appli-
cability and effectiveness of the proposed method on character-
istic two dimensional boundary value problems is demonstrated
and numerical results on the convergence behavior are given.

I. INTRODUCTION

OMAIN decomposition includes a significant range of
computing  techniques  for  the  numerical  solution  of

Partial Differential  Equations (PDEs).  Domain decomposi-
tion techniques are based on splitting the computational do-
main into smaller subdomains, with or without overlap. The
problems in the subdomains are independent, thus rendering
domain decomposition methods suitable for parallelization.
Domain decomposition techniques can themselves be used
as stationary iterative schemes, as well as preconditioners in
order to accelerate the convergence of other iterative meth-
ods, specifically Krylov subspace methods [14].

D

Domain decomposition methods can be split into two cat-
egories: overlapping and non-overlapping methods. In over-
lapping DD methods, often referred to as Schwarz methods
due to Schwarz’s work in 1870 [22], the subdomains overlap
by more than the interface. The overlapping methods have a
simple algorithmic structure, since there is no need to solve
special  interface  problems  between  neighbouring  subdo-
mains.  This  feature  differentiates  overlapping  from
non-overlapping  DD methods  [5],[23].  Overlapping  meth-
ods operate by an iterative procedure, where the PDE is re-
peatedly solved  within every subdomain.  For each  subdo-
main, the artificial internal boundary condition is provided
by its neighbouring subdomains. The convergence of the so-
lution on these internal boundaries ensures the convergence
of the solution in the entire solution domain. 

In non-overlapping DD methods, also referred to as itera-
tive substructuring methods, the subdomains intersect only
on  their  interface.  Non-overlapping  methods  can  further-
more be distinguished in primal and dual methods. Primal
methods, such as BDDC [7], enforce the continuity of the
solution across the subdomain interface by representing the
value of the solution on all neighbouring subdomains by the
same unknown.  In  dual  methods,  such  as  FETI  [10],  the
continuity is further enforced by the use of Lagrange multi-
pliers. Hybrid methods, such as FETI-DP [8],[9],[16], have
also been introduced.

In the past decades, the development of multigrid meth-
ods  has  also  been  critical  for  the  numerical  solution  of
PDEs.  An essential  component of  the multigrid method is
the relaxation  scheme,  which  efficiently reduces  high  fre-
quency components of the error, however is inefficient at re-
ducing the lower frequency ones [2]. Transferring the prob-
lem to a coarser  grid,  those low frequency errors  become
more oscillatory and can be effectively damped by a station-
ary iterative method. Recursive application of this process
produces the multigrid methods [18].

The algebraic multigrid algorithm (AMG) was first intro-
duced  over  twenty  years  ago  [1],[20].  Unlike  geometric
multigrid,  the algebraic multigrid method does not require
knowledge of the geometry of the problem to define its com-
ponents. This is the reason AMG is perfectly suited for un-
structured grids, both in two and three dimensions, and com-
plicated domains. Specifically, by considering a linear sys-
tem Au=f,  the AMG method requires  only the  coefficient
matrix A and the right-hand side vector f. As a result, AMG
solvers can easily be integrated into existing problem solv-
ing  environments  as  standard  solvers  or  precondition-
ers [18].

Consider a linear system Au=f, where A=(a i,j),i,j∈[ 1,n ]

is an (n×n) coefficient matrix. A “grid” is a set of indices of

the  variables,  thus  the  first  grid  is  Ω={1,2, .. . ,n } .  Since
AMG is independent  of the geometry of the problem, the
coarser grids, where the successive corrections to the solu-
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tion will be obtained, have to be constructed by the coarsen-
ing process, which is an essential component of the AMG al-
gorithm.

The components needed for AMG, where superscripts in-
dicate the level with 1 being the finest level [4],[27], are the
following:

• Grids Ω1⊃Ω2⊃. ..⊃ΩΝ  (Ω1=Ω) containing the fol-
lowing two disjoint subsets:

Coarse points set (C-points): Ck ,k=1,. . .,N−1 .

Fine points set (f-points): F k ,k=1, . .. ,N−1 .

• Grid operators: A1 ,A2 ,. .. ,AN , where A1=A .
• Interpolation and restriction operators:

I
k+1
k ,k=1, .. .,N−1 ; I

k
k+1 ,k=1, .. .,N−1 .

• A smoother (relaxation scheme) for each level.
AMG consists of two main phases: the setup phase, where

the above components  are created,  and the solution phase
that utilizes the components in the recursively defined multi-
grid cycle.

In  this  article,  a  domain  decomposition  method  is  pre-
sented,  based on the Schur complement system. An Alge-
braic Multigrid method is used to solve the resulting linear
systems for  each domain, based on the use of generic ap-
proximate banded inverses, derived from the ILU(0) factor-
ization  [13],[18].  In  section  II,  the  Schur  complement
method is showcased, while in section III, the AMG method
is presented.

Finally  in  section  IV, the  applicability  of  the  new pro-
posed scheme on two dimensional boundary value problems
is demonstrated  and numerical  results on the convergence
behavior and performance are given.

II.THE SCHUR COMPLEMENT METHOD

In this section, the Schur complement domain decomposi-
tion method is presented.

The Schur complement method is the earliest version of
non-overlapping  DD  methods.  Methods  such  as  Dirich-
let-Neumann  and  Neumann-Neumann  are  essentially  the
Schur complement method with the use of particular precon-
ditioners.

Let us consider the Poisson equation on a region Ω, with

zero Dirichlet data given on ∂Ω , the boundary of Ω. Let us
also suppose that Ω is partitioned into two non-overlapping
subdomains Ωi:

Ω=Ω1∪Ω2 ,Ω1∩Ω2=∅ , Γ =∂Ω1∩∂Ω2

as shown in Fig. 1 [25].
Assuming the boundaries of the subdomains are Lipschitz

continuous, we consider the problem:

−Δu (x,y )= f ( x,y)∈Ω (1)

u (x,y)=0 ( x,y)∈∂Ω (1.a)

Considering a triangulation of the domain Ω and a finite
element  approximation  of  the  problem (1),  assuming that
subdomains consist of unions of elements, leads to a linear
system

Au=f (2)

with a symmetric, positive definite matrix A. Partitioning the
degrees of freedom to those internal to Ω1, Ω2 and those in-
terior of Γ, the matrix A and vectors u, f can be expressed as:

A=[AII
(1) 0 AIΓ

(1)

0 AII
(2 )

AIΓ
(2)

AΓI
(1)

AΓI
(2 )

AΓΓ
] ,u=[u I

(1 )

u I
(2)

u
Γ

] ,f =[ f I
(1)

f I
(2 )

f
Γ
] (3)

The first  step of  many iterative domain decompositions
methods eliminates the unknowns in the interior of the sub-
domains uI

(i). This leads to a block factorization of the matrix
A (3) [25]:

A=LR=[
I 0 0
0 I 0

AΓI
(1)

AII
(1)

−1
AΓI

(2)
AII

(2)
−1

I ][
A

II
(1 )

0 A
IΓ
(1)

0 A
II
(2 )

A
IΓ
(2)

0 0 S
]

(4)

and the resulting linear system:

[AII
(1) 0 AIΓ

(1 )

0 AII
(2 )

AIΓ
(2)

0 0 S
]u=[ f I

(1 )

f I
(2 )

g
Γ

] (5)

where  I  is  the  identity  matrix  and

S=AΓΓ−AΓI
(1 )

AII
(1)−1

AΙΓ
(1)−AΓI

(2)
AII

(2)−1
AΙΓ

(2)
  is  the

Schur complement matrix relative to the unknowns on Γ.
Defining the local Schur complements by

S
(i ):=AΓΓ

( i )−∑
i=1

2

AΓI
(i )

AII
( i)−1

AΙΓ
( i)

(6)

Fig.  1 Ω partitioned into two non-overlapping subdomains.

we find the Schur complement system for uΓ to be [25]:

Su
Γ
=g

Γ (7)

with
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S=S
(1)+S

(2)
(8)

g
Γ

:=g
Γ

(1)+g
Γ

(2)=( f
Γ

(1 )−AΓI
(1)

AII
(1 )−1

f
I

(1))

             +( f Γ
(2)−AΓI

(2)
AII

(2)
−1

f I
(2))

(9)

Once uΓ is found by solving (7), the internal components
can be found by using (5):

u
I

( i)=AII
(i )−1

( f
I

(1)−AIΓ
(i )

u
Γ
) (10)

Equations (8) and (9) can be extended to a generic case,
where there are more than two domains.

In  the  method  presented  in  this  paper,  equation  (7)  is
solved  by using  a typical  direct  solver,  such  as  Gaussian
Elimination. An AMG solver, based on the Generic Approxi-
mate Banded Inverse (GenAbI) algorithm [13], is used in or-
der to solve the equations (10) for each domain.

III. THE AMG SOLVER

In  this  section,  we  present  the  AMG  method  [13],[18]
used for the solution of the systems that arise from the Schur
complement method described in the previous section.

The key part of AMG’s setup phase is the coarse-grid se-
lection, which is the process of creating the degrees of free-
dom of a coarse-level problem. The goal of coarse-grid se-
lection is to determine the sets C and F of coarse-grid and

fine-grid points respectively, as well as a small set CCi ⊂

of  interpolating  points  for  each  fine-grid  point  [20],[24].
This is called a C/F splitting, where C-points are variables
that exist on both the fine and coarse levels and F-points are
variables only on the fine level. Interpolation can then be de-
fined as follows:

( I k +1
k

u
k+1)i={ u

i
k+1 ,i∈C

∑
j∈C

i

wij u j
k+1 ,i∈F

(11)

An important concept in the coarse grid selection is that
of strong influence and strong dependence. It is highly likely
that not all matrix coefficients are equally important to the
selection  of  the  coarse  grids  and  thus only those  that  are
“large enough” should be considered [18],[27].

It should be stated that point i depends on point j if ija

is sufficiently large, denoting that in order to satisfy the i-th
equation of  the system, the node ui is affected more from
node uj than other neighbouring nodes. We can then define
the set of dependencies for point i as: 

S
i
={ j≠ i,−a ij≥θ max

k≠i

(−a ik )} (12)

where θ is called strength threshold and is important for its
influence  on  stencil  size  and  convergence  [27].  A typical
value for θ is 0.25. The set of influences for point i can be
defined as the transpose of the dependencies set.

The concept of strong influence/dependence in conjunc-
tion with the following two heuristics is vital to creating a
valid coarse grid [4],[20],[27]:

• H1: For each point j that strongly influences a fine-grid
point i, j is either a coarse-grid point or strongly
depends on a coarse-grid point that also strongly
influences i.

• H2:  C  is  a  maximal  set  with  the  property  that  no
C-point influences another C-point.

Condition H1 ensures the quality of the interpolation and
condition H2 restricts the size of coarser grids.

The coarsening schemes of early AMG methods are based
on  the  Ruge-Stüben  (RS)  coarsening  method  [20].  The
Ruge-Stüben coarsening is the classical coarse-grid selection
algorithm, based on enforcing heuristic H1, while implicitly
using heuristic H2 as a guideline. It is a two-pass process,
where the first pass selects a maximal independent set guar-
anteeing that  every fine-grid  point  strongly depends  on at
least one coarse-grid point. Further details on the two-pass
RS coarsening are given in [20].

Since RS coarsening selects only a single C-point in each
iteration, its main drawback is its sequential nature.  How-
ever,  RS exhibits  optimal  scalability and  convergence  be-
havior for a variety of problems.

In recent years, there has been significant progress in the
development of parallel coarse grid selection schemes, most
of which are based on their sequential predecessors, such as
CLJP [4]  and PMIS [6].  An overview of such coarsening
schemes and their performance is presented in [27].

The interpolation formula used for the purposes of this ar-
ticle is direct interpolation, in which the weights w ij are de-
fined as follows:

w ij=−(∑k ∈N
i

a ik

∑l∈C
i

a il ) a ij

a ii

(13)

This formula is easy to implement and only requires im-
mediate neighbours of i, however, it generally leads to worse
convergence rates  compared  to interpolation formulas  that
use extended neighbourhoods [27]. The interpolation opera-
tor can now be computed according to (11).

The restriction operator is defined as the transpose of the
interpolation operator through the Galerkin condition [19].
Thus the next coarser  level  matrix  is defined as the triple
matrix product of the restriction operator, the finer grid ma-
trix and the interpolation operator. When the current grid is
considered “coarse enough”, then the setup phase terminates
and AMG proceeds to the solution phase.

The cycle strategy is an essential component of any multi-
grid algorithm and refers to the sequence in which the vari-
ous grids are visited and the respective coarse grid correc-
tions are obtained. The common cycle strategy is the V–cy-
cle algorithm and is shown in Fig. 2 [18].

The solution can be achieved by successive applications
of the cycle according to arbitrary termination criterion. The
proposed  multigrid  scheme descends  to  the coarsest  level
and then, the multigrid method ascends to the finer levels
and corrects the respective solution [18].
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Fig.  2 The V–Cycle with finest grid Ωh, coarsest grid Ω8h, and v1,v2

pre–smoothing and post–smoothing steps, respectively.

An important component in multigrid methodology is the
stationary iterative solver, namely smoother, that can be de-
scribed by the following recurrence relation [13],[18]:

x(i+1)
k =x( i)

k +M k rk ,rk = f k−Ak x(i )
k (14)

where f k ,Ak  are the right-hand side and coefficient ma-

trix (at the k-th coarse level) and x(i)
k   is the solution vec-

tor at the i-th iterative step. Equation (14) describes a family
of stationary iterative methods, according to the choice of

the M k   matrix.
Generic approximate banded inverses in conjunction with

the general iterative method (14) can be used as smoothers

for multigrid schemes, by choosing M k=(M k )δl , where

(M k )δl  is a class of approximate inverses.  The class of
smoothing methods proposed can be described as follows:

x(i+1)
k =x( i)

k +ω ( M k )r
δl

( f
k−A

k
x( i)

k ) (15)

where ω is the damping parameter with 0<ω≤1  [13].
Let us assume the incomplete LU factorization, such that

A≈LU+R (16)

where L and U are upper and lower matrices of the same
nonzero structure as the lower and upper parts of coefficient
matrix A respectively and R is some error matrix. This is the
so-called  incomplete LU factorization  with zero fill-in,  or
more commonly ILU(0) factorization [21].

Let  M δl=(μ i,j ),i∈[ 1,n ] ,j∈[1−δl+1,i+δl−1 ]  be

the  generic  approximate  banded inverse  of  the coefficient
matrix A. The elements of a class of banded forms of the
generic approximate inverse,  by retaining δl  and δl-1 ele-
ments  in  the lower  and  upper  parts,  can  be  computed  by
solving recursively the following systems [11],[13],[17]:

M δl L=U−1  and UMδl=L−1 (17)

Then, the elements of the approximate inverse are com-
puted  by the  Generic  Approximate  Banded  Inverse  (Gen-
AbI) algorithm [13].

Specific information on the smoothing and approximation
property for the GenAbI algorithm, as well as the use of the
DOUR scheme [15]  in  order  to  dynamically  compute the
relaxation  parameter  ω  for  the  smoothing  scheme can  be
found in [12],[13],[18]. 

IV. NUMERICAL RESULTS

In this section we examine the effectiveness of the new
proposed  scheme,  namely  Domain  Decomposition-Alge-
braic Multigrid method in conjunction with the Generic Ap-
proximate Banded Inverse matrix.

The convergence factor depends on the required number
of iterations for convergence [2],[3],[26]. The convergence
factor with respect to the 2-norm is defined as:

q=m√∥rm∥2/∥r0∥2 (18)

where rm is the residual vector at the m-th iteration. The ter-
mination  criterion  for  the  AMG  solver  is

∥r
m
∥2<10−10∥r 0∥2  and the numbering of the grid is lex-

icographical. The maximum number of iterations was set to
200 iterations.

The strength  threshold  θ  was  set  to  0.25  for  the  AMG
solver. The values for the pre-smoothing and post-smoothing
steps were set to v1, v2=2. The coarsest level, with its maxi-
mum amount of variables allowed set to 15, was solved us-
ing the BiCGSTAB method.

The coarsening scheme used in the first problem was the
CLJP algorithm,  while  for  the  second  problem the  PMIS
coarsening technique was utilized.  It  should also be men-
tioned  that  for  the  second  problem,  the  AMG solver  was
modified  to  use  the  V-cycle  as  a  preconditioner  for  the
BiCGSTAB method in order to accelerate convergence.

Model Problem I: The model problem to be solved with
the proposed scheme is the Poisson equation:

−Δu (x,y )= f (19)

u (x,y)=0 ( x,y)∈∂Ω (19.a)

discretized with the finite element method, where f(x,y)=1,

Ω is  [ 0,1 ]×[ 0,2 ]  and  ∂Ω  denotes the boundary of Ω.
The domain Ω was  split  into  8 subdomains,  as  shown in
Fig. 3.

In Table I, the convergence factors and convergence be-
havior are presented for various values of the order of the
linear system n and “retention” parameter δl of the generic
approximate banded inverse. Additionally, the convergence
factors and convergence behavior for the same values of n
and δl using AMG as a standalone solver  without domain
decomposition techniques are given. In Table II, the perfor-
mance,  in  seconds,  of  both  the  DD/AMG and  standalone
AMG methods is showcased for various values of the order
of the linear system n and “retention” parameter δl of the
generic approximate banded inverse. 

Model Problem II: Let us consider the following elliptic
PDE:

−Δu (x,y )+α(x,y)u (x,y)= f ( x,y) (20)

u (x,y)=0 ( x,y)∈∂Ω (20.a)

discretized   with   the   finite   element   method,  where
α(x,y)=-40x+70y, f(x,y)=19x-44y2,  Ω is the unit square and

∂Ω  denotes the boundary of  Ω. The domain  Ω was split
into 16 subdomains, as shown in Fig. 4.

490 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013
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Fig.  3 Domain Ω split into 8 subdomains for model problem  I.
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Fig.  4 Domain Ω split into 16 subdomains for model problem  II.

In Table III,  convergence behavior for various values of
the order of the linear system n and “retention” parameter δl
of the generic approximate banded inverse is presented. Ad-
ditionally, convergence  behavior  for  the same values  of  n
and δl using AMG-BiCGSTAB as a standalone solver with-
out domain decomposition techniques is given. In Table IV,
the  performance,  in  seconds,  of  both  the
DD/AMG-BiCGSTAB  and  standalone  AMG-BiCGSTAB
methods is showcased for various values of the order of the
linear system n and “retention” parameter δl of the generic
approximate banded inverse.

It  should be noted  that,  for  both problems,  the conver-
gence and performance results for the DD/AMG method are
the average of the results taken from all domains, since the
domains were not identical.

As already expected considering past results [18], increas-
ing the value of  the “retention” parameter  δl  leads to im-
proved convergence  behavior. Additionally, we notice that
solving the linear  systems arising from the subdomains is

significantly more efficient,  both in performance and con-
vergence.

One of the drawbacks of AMG methods is the computa-
tional work added by the setup phase in addition to the solu-
tion phase. The resulting smaller linear systems from the do-
main decomposition method significantly reduce the work-
load for both phases. Considering that these systems can be
solved in parallel since domain decomposition methods are
well suited for parallel  computing, the combination of do-
main decomposition with AMG can be very efficient.

Finally, it should be stated that the effectiveness and ap-
plicability of the new proposed method will be shown when
applied  to  more  general  problems,  such  as  quasilinear
boundary-value problems or convection-diffusion problems.

V.CONCLUSIONS

A Schur complement domain decomposition method, uti-
lizing an AMG solver, based on generic approximate banded
inverse matrices,  for  solving the resulting subdomain sys-
tems was presented. The use of domain decomposition tech-
niques was proven to be effective by improving the perfor-
mance  and  convergence  behavior  of  Algebraic  Multigrid
method.  Since  domain  decomposition  methods  lead  to
smaller  linear  systems,  arising  from  each  subdomain,  the
load  for  both  the  setup  and  solution  phase  of  the  AMG
solver is significantly reduced.
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TABLE I.

CONVERGENCE BEHAVIOUR OF THE DD/AMG METHOD FOR MODEL PROBLEM I

n=24353 n=96833 n=386177

Method δl q its q its q its

DD/AMG

1 0.2152 15 0.2556 17 0.3074 20

2 0.2102 15 0.2467 17 0.3024 20

50 0.1946 14 0.2374 16 0.2873 19

AMG

1 0.3483 22 0.4137 27 0.4881 33

2 0.3427 22 0.4090 26 0.4839 32

50 0.3142 20 0.3794 24 0.4667 30

TABLE II.

PERFORMANCE, IN SECONDS, OF THE DD/AMG METHOD FOR MODEL PROBLEM I

n=24353 n=96833 n=386177

Method δl time time time

DD/AMG

1 0.0971 0.4499 2.4231

2 0.0990 0.4653 2.4991

50 0.2994 1.3975 7.1642

AMG

1 1.1680 6.025 33.2329

2 1.1954 6.2288 33.7139

50 3.339 15.4747 87.9342
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TABLE III.

CONVERGENCE BEHAVIOUR OF THE DD/AMG-BICGSTAB METHOD FOR MODEL PROBLEM II

n=11457 n=45441 n=180993

Method δl its its its

DD/AMG-BiCGSTAB

1 10 11 14

2 9 10 13

50 7 9 11

AMG-BiCGSTAB

1 15 21 34

2 13 17 27

50 12 15 23

TABLE IV.

PERFORMANCE, IN SECONDS, OF THE DD/AMG-BICGSTAB METHOD FOR MODEL PROBLEM II

n=11457 n=45441 n=180993

Method δl time time time

DD/AMG-BiCGSTAB

1 0.0174 0.0704 0.3441

2 0.0182 0.0706 0.3618

50 0.0399 0.1962 1.0097

AMG-BiCGSTAB

1 0.3936 2.2724 17.0591

2 0.3854 2.003 14.9678

50 1.2891 5.5477 32.5779
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