
Abstract—Through the last decades multigrid methods have
been used extensively in the solution of large sparse linear sys-
tems  derived  from  the  discretization  of  Partial  Differential
Equations in two or three space variables, subject to a variety
of  boundary  conditions.  Due  to  their  efficiency  and  conver-
gence behavior, multigrid methods are used in many scientific
fields  as  solvers  or  preconditioners.  Herewith,  we  propose  a
new algorithm for  N-body simulation,  based on the  V-Cycle
multigrid  method  in  conjunction  with  Generic  Approximate
SParse Inverses (GenAspI). The N-body problem chosen is in
toroidal 3D space and the bodies are subject only to gravita-
tional forces. In each time step, a large sparse linear system is
solved to compute the gravity potential at each nodal point in
order to interpolate the solution to each body and through the
velocity Verlet method compute the new position, velocity and
acceleration of each respective body. Moreover, a parallel ver-
sion of the multigrid algorithm with a truncated approach in
the parallel levels is utilized for the fast solution of the linear
system. Furthermore parallel results are provided which depict
the  efficiency  and  performance  for  the  proposed  multigrid
N-body scheme.

I. INTRODUCTION

ET US consider the Partial Differential Equation (PDE)

describing the gravity potential in a domain Ω, [19]:L
ΔΦ=4πGρ ,( x , y , z )∈Ω (1)

subject to Dirichlet boundary conditions

Φ=0, ( x , y , z )∈ϑΩ (1.a)

where  Ω denotes the region where the problem resides, ∂Ω

is the boundary of the region, G is the Gravitational constant

and  ρ is the mass density in each nodal point computed by

the mass of the neighboring bodies. 

Applying  the  Finite  Difference  method,  with  the  seven

point stencil, for the PDE (1)-(1.a) results in solving a seven

diagonal linear system,

Aφ=f, (2)

where  A is a  large sparse diagonally dominant  symmetric

matrix,  f  is  the  right  hand  side  vector  consisting  of  the

forcing term and respective boundary conditions and φ is the

gravity potential at each nodal point.

The linear system (2) derived from the discretization of

the 3D PDE can be solved by the multigrid method. Multi-

grid  methods  have  been  used  extensively,  during  the  last

decades,  in a variety of scientific fields such as Computa-

tional Fluid Dynamics, Computational Economics and Par-

tial Differential Equations, due to their near optimal compu-

tational complexity and convergence behavior, [3, 4, 5, 10,

15, 16, 17, 18, 21, 23, 24]. Multigrid methods are based on

the observation  that  the low-frequency components  of  the

error  are  not  effectively  damped  by  a  stationary  iterative

method. However, the high frequency components of the er-

ror are quickly reduced towards zero within the first few it-

erations,  [3,  4,  21].  In  order  to  handle  the low frequency

components of the error, multigrid methods utilize a grid hi-

erarchy consisting of coarser  levels with higher mesh size

(h) and by projecting the finer problem to the coarser levels

the lower frequency components are becoming more oscilla-

tory and can be damped efficiently by a stationary iterative

solver. The vectors required in each level are transferred be-

tween the respective grid with the use of two operators: the

prolongation  and  the  restriction  operator,  which  transfer

vectors from coarser to finer grids and vice versa, [3, 4, 21].

The sequence in which the coarser grids are visited and the

respective  coarse  grid  corrections  to  the  solution  are  ob-

tained is referred to as the cycle strategy, [3, 4, 21]. A 3D

Geometric multigrid hierarchy is depicted in Figure 1. In or-

der  to accelerate the convergence of the multigrid method

the Dynamic Over / Under Relaxation (DOUR) scheme is

used,  [18],  in conjunction  with the GENeric Approximate

SParse Inverse (GenAspI)  matrix, as the smoother  for  the

multigrid method, [8].

Approximate inverses have been used as preconditioners

for various iterative schemes due to their inherent parallel-

ism and convergence behavior,  [5, 11, 12, 13, 20]. More-

over,  approximate  inverses  have  been  used  effectively  in

conjunction with the multigrid method for a variety of prob-

lems, [5, 9, 10, 14]. Recently, classes of Generic Approxi-

mate Inverses have been proposed, [8,14], that can handle

any sparsity pattern of the coefficient matrix A, based on In-

complete LU factorization with zero fill-in. Unlike their pre-

decessors, [11, 12, 13, 20], these Generic schemes are not

limited  by  the  structure  of  the  coefficient  matrix  or  the

method used for the discretization and produce approximate

inverses with sparsity patterns, based on Powers of Sparsi-
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fied  Patterns  (PSM’s),  [6,  7],  using  adequate  dropping

strategies to further sparsify the initial sparsity pattern of the

coefficient matrix A, thus leading to sparser more efficient

approximate inverses. The GenAspI matrices are then com-

puted using a modified procedure introduced in the GENeric

Approximate Banded Inverses class (GenAbI), [14], accord-

ing to an a priori known sparsity pattern. The GenAspI ma-

trices are used as preconditioners in the damped Richardson

scheme, in conjunction with the DOUR scheme, and V-cy-

cle strategy to derive the GenAspI-MGV method which is

used to obtain the gravity potential in each time step of the

N-body simulation scheme proposed. The parallelization of

the  GenAspI-MGV method  is  performed  with  a  new  ap-

proach where the lower order  levels are executed sequen-

tially in order to avoid overhead in levels with low computa-

tional cost.

Fig.  1 Grid hierarchy of a three-dimensional PDE discretized with the
Finite Differences method for mesh size h=1/2 (red points) and h=1/4

(red and white points).

The  N-body simulation  is  a  simulation  of  a  dynamical

system of particles, under the influence of, mainly the gravi-

tational  force.  N-body  simulations  have  become a  funda-

mental tool in the study of complex physical systems, [19].

Starting from a basic physical interaction (e.g., gravitational,

Coulomb) one can follow the dynamical evolution of a sys-

tem of bodies, which represent the phase-space density dis-

tribution of the system. The greater the number of the parti-

cles  used  on  the  simulation  results  in  more  accurate  and

complete results, [19]. There are a lot of methods that can be

used to calculate such kind of forces in a confined space. A

direct approach to the problem called particle-particle simu-

lation (P-P) assumes that on a simulation containing N bod-

ies, there are N×(N-1) force pairs (Newtonian gravitation),

[19]. This direct approach to the problem scales with O(N2)

complexity, where N denotes the number of bodies, render-

ing the scheme restrictive for large values of particles. 

Herewith,  we propose a new scheme for computing the

gravity potential and thus the forces in the bodies, using the

Particle Mesh method and the GenAspI-MGV method to ac-

celerate the solution of the linear system. The Particle Mesh

method neglects the close interactions between particles and

takes into account only the dynamics of superparticles con-

sisting of a great number of particles. The density of these

masses is then added according to weights computed from

the distance of each node to the grid points surrounding each

respective particle resulting in the rhs vector  of  the linear

system (2). The assignment of the respective weights in each

nodal  point  is  performed  using  the  Cloud  in  Cell  (CIC)

method, [19]. The linear system is solved using an iterative

method and the potential is computed at the cell centers. Fi-

nally,  by  integrating  the  equations  of  motion  through  the

Verlet integrator, [22], the new position of each particle is

computed.  Repeating  the  aforementioned  process  leads  to

the simulation of the system of particles. The Particle Mesh

method is efficient due to the fact that the nodal points are,

in general, less than the number of particles and thus a large

number  of  pairing  forces  is  not  computed.  Moreover,  the

low computational complexity of the mutligrid method uti-

lized in each time step for the solution of the linear system

renders  the  algorithm  efficient  especially  for  increasing

numbers of particles.

The  proposed  N-body  algorithm  is  parallelized  using

OpenMP. OpenMP is a collection of directives available for

a variety of languages including C/C++/Fortran used to par-

allelize programs for Symmetric Multi-Processing Units.

Finally, numerical results on the performance and conver-

gence behavior of the proposed GenAspI-MGV schemes are

given  for  solving  three-dimensional  N-body  simulation

problems.

II.  MULTIGRID METHOD IN CONJUNCTION WITH GENERIC

APPROXIMATE SPARSE INVERSES

The multigrid method, especially in the last  decades,  is

used extensively by the scientific community in the fields of

computational physics, computational fluid dynamics and fi-

nancial engineering due to its near-optimal complexity and

its  convergence  behavior,  [3,  4,  5,  9,  14,  15,  16,  17,  21,

23, 24]. 

Multigrid methods are composed by four distinct compo-

nents:  Smoothers,  Prolongation  and  Restriction  operators

and Cycle strategy. The smoothers are an essential compo-

nent of the multigrid algorithm and are used to obtain the re-

spective  corrections  for  the  solution  on  each  level.

Smoothers are stationary iterative methods that can be de-

scribed by the following relation, [4,5,21,23],

( ) 0,1,2,....k  ,xAbωMxx
(k)
llll

(k)
l

1)(k
l

=−+=
+  (3)

where l denotes the level in which the smoother is applied,

Ml is the preconditioner to the Richardson’s iterative method

and  ω is  the  damping  parameter  with  values  between  0

and 2. In case where the Ml=Dl
-1, the iterative scheme (3) re-

sults in the Damped Jacobi method, [4, 21, 23]. Substituting

M l = M lfill

drptol( )
l
, where  M lfill

drptol( )
l
 is the l-th level Generic

Approximate Sparse Inverse with lfill levels of fill and drp-

tol drop tolerance results in the proposed parametric smooth-

ing  scheme.  The  Generic  Approximate  Sparse  Inverse
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(GenAspI)  is  inherently  parallel  and  can  be  adjusted  by

modifying the drptol and lfill parameters.

A. Generic Approximate Sparse Inverse smoothing

Let  us  consider  the  ILU(0),  [1],  factorization  of  a  ma-

trix A,

A=LU+E (4)

where E is the error matrix and L and U are the lower and

upper factors of the matrix A, retaining the same profile. In

order to compute the GenAspI matrix a sparsity pattern must

be known a priori. The approximate inverse sparsity pattern

is computed through Powers of Sparsified Matrices (PSMs)

of the filtered version of the coefficient matrix, [6,7]. Let the

sparsified version of the matrix A be described as follows,

Ã
ij
={1,i == j and ∣( D−1/2 AD−1/2 )i,j∣>drptol

0,otherwise
(5)

where D is a diagonal matrix such that

Dii={∣Aii∣,∣Aii∣>0

1,otherwise
(6)

and drptol is the so called drop tolerance, [6,7]. The coeffi-

cient matrix A is sparsified with the process  described by

equation (5), which denotes the normalization of each ele-

ment with the diagonal element, [6,7]. Then each element is

compared in absolute value against a given drop tolerance in

order to withhold or discard the element. The sparsification

process  is  succeeded  by  the  augmentation  of  the  sparsity

pattern by raising it to powers denoted by lfill, [6,7]. The re-

maining nonzero elements of the coefficient matrix represent

the strong connections (neighbors) of each element, by con-

sidering the equivalent graph of the matrix, [6,7]. The k–th

row of the ℓ –th level sparsity pattern  can be computed

as  which denotes that the k–th row of the 

pattern is composed by “fusing” the non–zero indices of col-

umns in the rows of  corresponding to the nonzero col-

umns of  the k–th  row of  the sparsified  coefficient  matrix

Ã , [6,7]. By increasing the levels of fill the approximate

inverse tends to the exact inverse of the linear system. The

algorithm for  the  computation  of  an  approximate  inverse

sparsity pattern is given in [6,7,8]. More information con-

cerning  the  approximate  inverse  sparsity  patterns  can  be

found in [6,7].

The GenAspI matrix is computed, according to the spar-

sity pattern defined by the previous procedure,  by solving

recursively the following system, [8],

UM
drptol
lfill =I  and M

drptol
lfill L=0 (7)

where L and U are the lower and upper triangular factors

computed  by  the  ILU(0),  [1],  factorization,  (4).  The

GenAspI algorithm has been presented in [8]. The complex-

ity of  the GenAspI algorithm in terms of  its  nonzero  ele-

ments  and  its  order  can  be  shown  to  be

≈( 3/4 ) (nnz ( M )2/ n)−(3 /8) ( nnz ( M ) )+( 5/8) n  multiplica-

tions and  ≈( 3/4 ) (nnz ( M )2/ n)−(3 /2 ) ( nnz ( M ))+ (3 /4 ) n  ad-

ditions, [8].

The GenAspI matrix could be used in conjunction with

the iterative scheme (3) in order to derive a parametric paral-

lel smoother. The proposed smoother is inherently parallel

because the smoothing procedure is limited to matrix – vec-

tor multiplication while complex orderings and parallel algo-

rithmic schemes are avoided. In order for a smoother to be

effective the smoothing property must be satisfied, [4, 15,

16, 17, 21, 23]. The smoothing property has been proven for

the  Optimized  Banded  Generalized  Approximate  Inverse

(OBGAIM) matrix, [9]. Equivalently,  the smoothing prop-

erty can be proven for the GenAspI matrix. Moreover, sharp

estimates for  the convergence  of  multigrid  algorithms, for

generalized smoothing, have been proven by Bank and Dou-

glas in [2]. Furthermore, Hackbusch has proven the optimal

values  for  the  damping  parameter  for  various  iterative

schemes and various PDEs, [15, 16, 17]. It can be observed

that the resulting scheme requires a damping parameter  ω,

which cannot be defined optimally for every problem. In or-

der to tackle the problem of the value of the damping param-

eter,  the  Dynamic  Over/Under  Relaxation  (DOUR)  algo-

rithm is used, [18]. The DOUR scheme is predictor – correc-

tor scheme that dynamically determines the value of ω to en-

sure convergence of the smoothing scheme. 

Let  us  consider  the  equivalent  expression  for  the

relaxation scheme (3),

x
l
(k+1) =x

l
( k )+ω (S ( x

l
( k ) )-xl

(k )) (8)

where S ( x
l

(k ))=x
l

( k )+( M
drptol
lfill )l ( f

l
-A

l
x

l

(k )) .

By  applying  the  predictor–corrector  scheme,  [18],  we

have

x̃
l
(k ) =x

l
(k )+ω (S ( x

l
(k ) )-xl

( k )) (9)

x
l

(k+1)
=x

l

(k )+κ ( Δx
l

(k )) , Δx
l

(k )= x̃
l

(k )
-x

l

( k )
(10)

where

κ=
〈 Δxl

( k )
,b l -A l x̃ l

(k )〉

〈 Δxl
(k )

,Al Δx l
( k )〉

(11)

From (8), (9), (10) and (11) we obtain

x
l
(k+1) =x

l
( k )+ω

e (S ( x l
(k ))-xl

( k ) ) ,ωe
=ω (1+ κ ) (12)

where  ω
e  is the effective relaxation parameter and equa-

tion (12) is the proposed iterative scheme, [18]. The equa-

tion (12) denotes a two stage non-stationary approximate in-

verse smoother. Further information and convergence analy-

sis of the DOUR algorithm were given in [18].

B. Transfer Operators

The transfer operators are special operators that are used

to transfer vectors from coarser to finer grids and finer to

coarser  grids.  The  transfer  operators  for  the  multigrid

method are the restriction and prolongation operators.  The
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restriction operator is used to transfer vectors from finer to

coarser grids. An effective choice for the restriction operator

is the full-weighting, which for the three-dimensional case,

[21], can be expressed by the following stencil,

R=
1

64 [[1 2 1

2 4 2

1 2 1 ]
h

2h

[2 4 2

4 8 4

2 4 2 ]
h

2h

[1 2 1

2 4 2

1 2 1 ]
h

2h

]
It can be observed that both for the two-dimensional and

three-dimensional case the elements of the coarse vector are

the weighted  average  of  their  neighbors  in the finer  grid.

The prolongation operator is an interpolation procedure used

to transfer vectors from coarser to finer grids. An effective

choice for the prolongation operator is the tri-linear interpo-

lation. For three-dimensional problems the tri-linear interpo-

lation can be expressed by the following stencil, [21]

The full-weighting  operator  and  the  tri-linear  interpola-

tion  operator  are  related  through  the  Galerkin  condition

[ P ]=c [ R ]T , thus simplifying the mapping on the data, [4,

21]. Transfer operators occupy about 30% of the total com-

putational  work  of  the multigrid  algorithm, thus choosing

higher  order  interpolation  schemes  may lead  to  excessive

computational cost at no extra gain in the convergence be-

havior,  [4,  21].  The prolongation  and restriction  operators

for the proposed schemes are in sparse matrix representation

and thus the transfer operation between the levels is limited

to matrix “times” vector multiplication and their paralleliza-

tion is covered  by the parallelization of  the matrix-vector

multiplication.  Further  information concerning the transfer

operators can be found in [3, 4, 21, 23].

C.Cycle Strategy

The cycle strategy is the last component of the multigrid

method. The cycle strategy refers to the sequence in which

the grids are visited and the respective corrections are ob-

tained, [4,21,23]. The most commonly used cycle strategy is

the V-Cycle where the method descends to coarser level ex-

ecuting  ν1 smoother  iterations  in  each  level  and  then  the

method ascends  executing  ν2 iterations  in  each  level.  The

V-Cycle strategy is depicted in Figure 2.

The V-Cycle is parallelized only in the higher order levels

to ensure the efficiency of the scheme, because lower order

levels possess computational effort comparable to the paral-

lelization overhead produced during the procedure of creat-

ing and detaching threads present in the parallel computa-

tion. Thus, levels with many nodes are computed in parallel

using multiple threads, however levels with lower order are

executed sequentially. As the number of levels is increased

the sequential part is occupying lesser computational effort

compared to higher order levels, thus increasing the speedup

and efficiency of the proposed scheme.

The Parallel truncated V-Cycle multigrid algorithm with

GenAspI parallel smoothing is the following, [4,21,23],

    vh←MGV ( Ah , (M drptol
lfill )h ,vh ,f h ,l ) (13)

if l is the coarsest level

relax (Alh ,( M
drptol
lfill )lh ,v lh ,f lh )  ν3  times (14)

else

if order (n) large enough

        Prelax (Ah ,(M drptol
lfill )h ,vh ,f h)  ν1  times (15)

        ←
h2f Prestrict f

h
- A

h
v

h( ) (16)

0v h2
←   (17)

v2h ←MGV ( A2h ,(M drptol
lfill )2h

,v2h ,f 2h ,l-1)   (18)

v
h←v

h+ Pprolong (v h)   (19)

Prelax (Ah ,(M drptol
lfill )h ,vh ,f h )  ν2  times   (20)

else

relax (Ah ,(M drptol
lfill )h ,vh ,f h )  ν1  times   (21)

f
2h← restrict f h - Ahvh( )   (22)

v
2h← 0   (23)

v2h← MGV ( A2h , (M drptol
lfill )2h

,v2h ,f 2h ,l-1 )   (24)

v
h←v

h+ prolong (v h)   (25)

relax (Ah , (M drptol
lfill )h ,vh ,f h )  ν2  times   (26)

where  ν3 denotes  the iterations for  the inexact solution on

the coarsest level. The prefix “P” denotes the parallel ver-

sion of the method used. More information concerning the

V-Cycle  strategy  as  well  as  more  Cycle  schemes  can  be

found in [3,4,21,23].

Fig.  2 The multigrid V – Cycle for four levels with ν1 pre-smoothing
iterations and ν2 post-smoothing iterations.
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III. PARTICLE MESH METHOD BASED ON MULTIGRID

ITERATIVE SCHEME

The Particle Mesh method (PM), introduced by Hockney

in  [19],  significantly  reduces  the  computational  cost  of

N-body simulation algorithms in cosmological  simulations

of large scale structure formations. The PM method is based

on the computation of the forces of the so-called “superpar-

ticles”, which are composed by large formations of smaller

particles and react together through their gravitational force

as a whole.

In the PM method each particle contributes to the density

of the concentrated mass along the grid points. Thus, each

particle contributes to the neighboring points of the mass by

a fraction analogous to the distance of the body from the

surrounding nodes. The most commonly known method for

adding the contribution of each body to the density of mass

in the region  is  the Nearest  Grid  Point  (NGP),  [19].  The

NGP method, however, increases the overall error of the PM

scheme, because bodies inside a single cell share the same

acceleration  and force  without  considering the position of

the particle. In order to decrease the computational error in-

troduced  during the discretization or  the interpolation,  the

multilinear  interpolation  is  used,  namely  Cloud  in  Cell

(CIC), [19]. The Cloud In Cell method is used to interpolate

the  contribution  of  mass  to  every  nearby  grid  point  and

raises significantly the accuracy of the computations. For the

computation of the mass density of a particle with mass mp

located at (xp, yp, zp) the Cloud In Cell (CIC) method is used

and the respective mass densities for the eight surrounding

grid points are given by equations (27), [19].

The grid points where each respectable mass contributes

are depicted in Figure 3.

Let us consider the PDE (1) subjected to Dirichlet bound-

ary conditions (1.a), discretized with the Finite Differences

method and solved with the parallel GenAspI-MGV method.

The  solution  of  the  resulting  linear  system  provides  the

gravity potential in each point of the mesh.

The gravity potential is acquired from the solution of the

linear  system  and  the  acceleration  g  is  computed  by  the

following equation, viz.

g=−∇ Φ=−(∂Φ

∂ x
,
∂Φ

∂ y
,
∂Φ

∂ z ) (28)

The computation of the acceleration in the center of the

cells is commencing by using centered differences to retain

the accuracy of the computed results. For the x-direction the

acceleration can be computed by the following equation,

∂Φ

∂ x
≈

Φ
i+1, j , k

−Φ
i−1, j , k

2h
+O (h2) (29)

Fig.  3 Neighboring points in a three-dimensional cell of mesh size h.

The acceleration in the centers of the cells is interpolated

back to the particles  using the CIC method.  Applying  the

CIC method for a particle in the three-dimensional space re-

sults in the following formula for the acceleration, [19],

g
p
=κ

1
g

i , j , k
+κ

2
g

i , j , k+1
+κ

3
g

i , j+1, k
+κ

4
g

i , j+1, k+1

        +κ
5

g
i+1, j , k

+κ
6

g
i+1, j , k+1

+κ
7

g
i+1, j+1,k

        +κ
8

g
i+1, j+1,k +1

(30)

where

κ1=( h−Δpi )(h−Δ pj )( h−Δpk )

κ
2
=(h−Δ

pi
)( h−Δ

pj
)( Δ

pk
)

κ3=( h−Δpi )( Δ pj )(h−Δpk )

κ
4
=(h−Δ

pi
)( Δ

pj
)( Δ

pk
)

κ
5
=( Δ

pi
)(h−Δ

pj
)(h−Δ

pk
)

κ
6
=( Δ

pi
)(h−Δ

pj
)( Δ

pk
)

κ
7
=( Δ

pi
)( Δ

pj
)(h−Δ

pk
)

κ
8
=( Δ

pi
)( Δ

pj
)( Δ

pk
)

(31)

while the Δ operator denotes the difference between the two

points as denoted by the subscripts.

ρ
i , j , k

=
m

p

h6
(h−Δ

pi
)( h−Δ

pj
)( h−Δ

pk
)

ρi , j , k+1=
m

p

h6
(h−Δ pi )( h−Δpj )( Δ pk )

ρ
i , j+1,k

=
mp

h6
(h−Δ

pi
)( Δ

pj
)( h−Δ

pk
)

ρ
i , j+1,k+1

=
m

p

h6
(h−Δ

pi
)( Δ

pj
)( Δ

pk
)

ρi+1, j , k=
m

p

h6
( Δ pi )( h−Δpj )( h−Δpk )

ρ
i+1, j , k+1

=
m p

h6
( Δ

pi
)(h−Δ

pj
)( Δ

pk
)

ρ
i+1, j+1,k

=
m

p

h6
( Δ

pi
)( Δ

pj
)(h−Δ

pk
)

ρ
i+1, j+1,k+1

=
m

p

h6
( Δ

pi
)( Δ

pj
)( Δ

pk
)

(27)
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The acceleration of each mass is subject to weights com-

puted by the distances from the nodal points of the grids. To

compute the final displacement of a body, the equations of

motion have to be integrated. In this article the velocity Ver-

let  integrator  is  utilized due to its  low computational cost

and O(h2) accuracy, [22]. The Verlet integration of the equa-

tions of motion leads to the following equations,

x⃗ (t+ Δt )= x⃗ (t )+u⃗ (t ) Δt+
1

2
a⃗ (t ) Δt2

(32)

u⃗ (t +Δt )=u⃗ (t )+
1

2
( a⃗ (t )+a⃗ (t+ Δt ) ) Δt (33)

where u⃗ , a⃗ , x⃗  are the three-dimensional vectors of the ve-

locity,  the acceleration and the position, respectively.  This

process is repeated according to the chosen time step and the

maximum time of the simulation. It should be noted that par-

ticles cannot escape from the domain because the region is

forced to be toroidal.  The parallelization of the method is

simplified  and  based  on  loop  level  parallelism  using

OpenMP, because  the proposed  schemes are mainly com-

posed  of  matrix-vector  multiplications  and  vector-vector

computations.  Further  information  concerning  the  Particle

Mesh method can be found in [19].

IV. NUMERICAL RESULTS

In  this section the applicability and  performance of  the

proposed scheme is demonstrated by simulating the 3D spa-

ces with different numbers of particles.

The  numerical  tests  were  performed  on  a  Dual  Socket

AMD Opteron Processor 6128 HE, with 16GB RAM, run-

ning Ubuntu Linux 12.04.1.

The domain chosen for the simulations was the unit cube.

The time step for the method was set to 0.001 and the simu-

lation was executed for 10 consequent time steps.

The 3D region chosen was 10 parsec in each direction and

the masses of the bodies were chosen to be 1032 kg. These

variables were normalized in order to model the system on

the unit cube.

The termination criterion was set  to ||ri||<1e-10||r0||.  The

pre-smoothing  and  post-smoothing  steps  were  set  to  ν1=2

and  ν2=2.  The  drop  tolerance  for  the  computation  of  the

GenAspI  matrices  was  set  to  drptol=0.0.  The  method  for

lfill=1 presented the fastest performance and required 7 iter-

ations to converge to the desired tolerance. The levels below

n=343  were  executed  sequentially  because  the  computa-

tional overhead exceeds the computational effort required in

order to obtain the coarse grid corrections.

In Table 1, the overall performance of the designed simu-

lation  algorithm based  on  the  GenAspI-MGV method  for

various numbers of bodies, various numbers of threads and

various resolutions, is presented. In Table 2, the speedups of

the  designed  simulation  algorithm  based  on  the

GenAspI-MGV method for various numbers of bodies, vari-

ous  numbers  of  threads  and  various  resolutions,  are  pre-

sented. In Table 3, the efficiency of the designed simulation

algorithm based on the GenAspI-MGV method for various

numbers of bodies, various numbers of threads and various

resolutions, is presented.

It should be noted that the preprocessing cost of the de-

signed simulation algorithm concerning the computation of

the  Generic  Approximate  Sparse  Inverses  for  resolutions

h=1/16  and  h=1/32  was  tpre=0.030093  seconds  and

tpre=0.248670 seconds respectively,  which is several orders

less than the computational time needed for the model prob-

lems rendering the method efficient by slightly enlarging the

computational cost.

V. CONCLUSION

The proposed schemes were proven experimentally effec-

tive for various choices of bodies and resolutions. Addition-

ally, it should be stated that the proposed scheme presented

satisfactory scalability as the number of particles increases

and resolution is refined. Research efforts are under way to

improve the parallel  performance of the method with new

hybrid schemes. Moreover, new computational schemes that

will enhance convergence behavior and accuracy of the sim-

ulation are under further research.
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TABLE I.

THE OVERALL PERFORMANCE OF THE DESIGNED SIMULATION ALGORITHM BASED ON THE GENASPI-MGV METHOD FOR VARIOUS

NUMBERS OF BODIES, VARIOUS NUMBERS OF THREADS AND VARIOUS RESOLUTIONS.

N Threads h=1/16 h=1/32

105

1 1.260010 3.182530

2 0.874061 2.036820

4 0.534355 1.139530

8 0.330208 0.722727

16 0.269090 0.646396

106

1 10.821700 12.841400

2 6.224200 7.336500

4 3.630050 4.041050

8 2.325110 2.350280

16 1.488090 1.605920

107

1 110.123000 119.286000

2 60.767680 65.667200

4 34.057200 34.706500

8 19.708600 19.180160

16 12.293300 11.013100
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TABLE III.

THE EFFICIENCY OF THE DESIGNED SIMULATION ALGORITHM BASED ON THE GENASPI-MGV METHOD FOR VARIOUS NUMBERS OF

BODIES, VARIOUS NUMBERS OF THREADS AND VARIOUS RESOLUTIONS.

N Threads h=1/16 h=1/32

105

2 0.72 0.78

4 0.59 0.70

8 0.48 0.55

16 0.29 0.31

106

2 0.87 0.88

4 0.75 0.79

8 0.58 0.68

16 0.45 0.50

107

2 0.91 0.91

4 0.81 0.86

8 0.70 0.78

16 0.56 0.68

TABLE II.

THE SPEEDUPS OF THE DESIGNED SIMULATION ALGORITHM BASED ON THE GENASPI-MGV METHOD FOR VARIOUS NUMBERS OF

BODIES, VARIOUS NUMBERS OF THREADS AND VARIOUS RESOLUTIONS.

N Threads h=1/16 h=1/32

105

2 1.44 1.56

4 2.36 2.79

8 3.82 4.40

16 4.68 4.92

106

2 1.74 1.75

4 2.98 3.18

8 4.65 5.46

16 7.27 8.00

107

2 1.81 1.82

4 3.23 3.44

8 5.59 6.22

16 8.96 10.83
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