
Quadratic TSP: A lower bounding procedure and
a column generation approach

Borzou Rostami, Federico Malucelli
Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy

Email: rostami@elet.polimi.it, malucell@elet.polimi.it

Pietro Belotti
Department of Mathematical Sciences, Clemson University, Clemson, USA

Stefano Gualandi
Dipartimento di Matematica, Università degli Studi di Pavia, Pavia, Italy

Abstract—In this paper we present a Column Generation
approach to the Quadratic Traveling Salesman Problem. Given
a graph and a function that maps every pair of edges to a cost,
the problem consists in finding a cycle that visits every vertex
exactly once and such that the sum of the costs over all pairs of
consecutive edges of the cycle is minimum. We propose a Linear
Programming formulation that has a variable for each cycle in the
graph. Since the number of cycles is exponential in the graph size,
we solve our formulation via column generation. Computational
results on some set of instances used in the literature show that
our approach is promising. As it obtains a lower bound close to
the optimal solutions for all instances.

I. INTRODUCTION

T
HE TRAVELING SALESMAN PROBLEM (TSP) is one

of the most studied optimization problems. Given an

undirected graph G = (V,E) with costs ce, e ∈ E, the

problem consists in finding a cycle C that visits each vertex

in V exactly once, and such that the sum of the costs ce of

each edge in C is minimum. In its most common form, the

TSP has a linear cost function.

In this paper we study a variant of the TSP that has a

quadratic cost function, the so-called Quadratic TSP (QTSP).

The input of this problem is an undirected (or directed) graph

G = (V,E) and a cost function r : E × E → ℜ+ that maps

every pair of edges (or arcs) to a non-negative cost. The QTSP

consists in finding a cycle C of minimum cost that visits every

vertex of G exactly once. This problem is NP-hard [4]. We

distinguish between Asymmetric QTSP and Symmetric QTSP,

depending on the fact that the direction of the cycle matters.

The QTSP was introduced with an application to bioinfor-

matics [4] and also has application in robotics and telecom-

munications. The QTSP can be viewed as a generalization of

the Reload Cost TSP (RTSP) introduced in [1]. In the RTSP,

one is given a graph whose every edge is assigned a color and

there is a reload cost when passing through a node on two

edges that have different colors.

The QTSP has been tackled in [4] with heuristic algorithms

based on well-known heuristics for the TSP, with an ad-hoc

branch-and-bound solver, and with a branch-and-cut approach

based on a linearization of a 0-1 Quadratic Programming

formulation of the problem. In [2] and [3], a polyhedral study

is used to develop a branch-and-cut algorithm for symmetric

and asymmetric QTSP respectively that are the current state-

of-the-art for QTSP.

In this paper we present a Linear Programming formulation

of the QTSP with an exponential number of variables that

is solved via Column Generation (CG). The basic idea is to

have a variable for each cycle of G. This yields a pricing

subproblem that consists in finding a cycle of minimum

quadratic cost. We formulated the pricing subproblem as a

0-1 Quadratic Program, which is linearized and solved with

standard techniques. We resort to stabilization techniques to

overcome the tailing-off effect of CG approach.

In Section II we present mathematical formulations and

some linearized models for the symmetric QTSP and the

asymmetric QTSP. In Section III we present our Linear Pro-

gramming formulation of the problem. In Section IV we solve

the LP model presented in Section III by a column-generation

technique and present different formulations of the pricing

subproblems for both the symmetric and the asymmetric cases.

Computational results are discussed in Section V.

II. THE QUADRATIC TRAVELING SALESMAN PROBLEM

In this section we present mathematical formulations for

both symmetric QTSP (SQTSP) and asymmetric QTSP

(AQTSP). We denote the edge incident with vertices i and

j as {i, j} in the symmetric case while in the asymmetric

case the arc from vertex i to vertex j is denoted as (i, j).

A. The Symmetric QTSP and a Linearized formulation

Consider a complete undirected graph G on a vertex set

V = {1, 2, . . . , n} and let r : E×E → ℜ+ be a cost function

that maps a pair of edges to a non-negative cost. The cost

of a subgraph in G is equal to the sum of the costs of the

pairs of edges incident in the same vertex. The SQTSP seeks

a tour (i.e., a cycle passing through each vertex exactly once)

of minimum cost. We define the binary variable xij that is

equal to 1 if edge {i, j} belongs to the minimum cost tour,

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 377–384

978-1-4673-4471-5/$25.00 c© 2013, IEEE 377

Fig. 1. Graph G and its corresponding Gadget graph Ĝ. Note that we assume
G to be complete, but this example shows the connections in the gadget graph
when G is not complete, or when some of its edges have infinite cost

and 0 otherwise. The SQTSP can be modeled as a integer

linear programming (ILP) problem as follows:

min
∑

{i,j}∈E

∑

{j,k}∈E

rijkxijxjk (1)

s.t.
∑

j:{i,j}∈E

xij = 2 ∀i ∈ V (2)

∑

{i,j}∈E:
i∈S,j∈S

xij ≤ |S| − 1 ∅ 6= S ⊂ V (3)

xij ∈ {0, 1} ∀{i, j} ∈ E. (4)

The objective function is straightforward and considers all

costs between edges incident on the same vertices. Constraints

(2) ensure that each vertex has degree two in the tour, and

constraints (3) ensure that no subtour is formed among the

subsets of vertices.

A simple linear relaxation of (1)–(4) can be obtained by

replacing the term xijxjk with a binary variable uijk subject

to the following constraints.

uijk ≤ xij , uijk ≤ xjk, and uijk ≥ xij + xjk − 1.

Motivated by the desire to develop a linearized formulation, we

reformulate the SQTSP by creating a new graph Ĝ = (V̂ , Ê),
called the Gadget graph, as follows:

• For each edge in the graph G, create two nodes 〈i, j〉 and

〈j, i〉 and add them to V̂ .

• For each node i ∈ V in G, define a super node

Si = {〈i, j〉 : j = 1, 2, . . . , n, j 6= i}. This is only an

aggregation of nodes of V̂ .

• For any i, j, k ∈ V , create an edge between each two

nodes 〈i, j〉 and 〈i, k〉 in the super node Si and assign

the weight rjik to it.

• For any i, j ∈ V , create an edge between each two nodes

〈i, j〉 and 〈j, i〉 in super node Si and Sj respectively and

assign null weight to it.

In Figure 1 we present an example of a graph G and the

corresponding Gadget graph Ĝ.

By introducing the decision variables ujik to indicate

whether edge {〈i, j〉, 〈i, k〉} in super node Si is selected or

not in the optimal solution, we can rewrite the SQTSP on

graph G as the following integer linear problem on the graph

Ĝ:

min
∑

i∈V

∑

j,k∈V :
{〈i,j〉,〈i,k〉}∈Si

rjikujik (5)

s.t.
∑

j,k∈V :
{〈i,j〉,〈i,k〉}∈Si

ujik = 1 ∀i ∈ V (6)

∑

〈i,k〉∈Si:
k 6=j

ujik −
∑

〈j,k〉∈Sj :
k 6=i

uijk = 0 ∀〈i, j〉 ∈ V̂ (7)

∑

i∈S

∑

{〈i,j〉,〈i,k〉}∈Ê:
j,k∈S

ujik ≤ |S| − 1 S ⊂ V (8)

ujik ∈ {0, 1} ∀{〈i, j〉, 〈i, k〉} ∈ Ê. (9)

Constraints (6) guarantee that within every super node we se-

lect exactly one edge, constraints (7) indicate that the number

of the edges incident on node 〈i, j〉 is equal to the number

of incident edges on node 〈j, i〉, and constraints (8) are the

subtour elimination constraints. Note that in terms of feasible

solutions in the Gadget graph, a tour is called feasible if it

is simple and passes through each super node Si by visiting

exactly one edge of Si. In the example shown in Figure 1, the

bold lines illustrate a feasible tour (a subtour of Ĝ) correspond-

ing to the feasible tour {(1, 2), (2, 5), (5, 4), (4, 3), (3, 1)} in

the original graph G.
An alternative model in the case of reload costs spanning

tree was studied in [10], where it is assumed that the triangle

inequality holds for reload costs at each node of the graph.

B. The Asymmetric QTSP and Linearized formulation

Suppose that the given graph G is a complete directed graph

on the vertex set V = {1, 2, . . . , n}, and let r : E ×E → ℜ+

be a cost function that maps every pair of arcs to a non negative

integer cost. The Asymmetric QTSP (AQTSP) can be modeled

as follows:

min
∑

(i,j)∈E

∑

(j,k)∈E

rijkxijxjk (10)

s.t.
∑

(i,j)∈E

xij = 1 ∀i ∈ V (11)

∑

(i,j)∈E

xij = 1 ∀j ∈ V (12)

∑

i∈S,j /∈S:(i,j)∈E

xij ≥ 1 S ⊂ V (13)

xij ∈ {0, 1} ∀(i, j) ∈ E, (14)

where the binary variable xij is equal to 1 if the arc (i, j)
belongs to the minimum cost tour. Constraints (11) and (12)

force to select a single outgoing arc and a single incoming arc

for each node, respectively, and constraints (13) are the well

known subtour elimination constraints.
In order to linearize the model, we follow the idea of

constructing an auxiliary graph as in the symmetric case. We

378 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

call this auxiliary graph the extended graph and denote it as

G. For each arc (i, j) in the graph G we create a node 〈i, j〉
in G, a link between each two nodes 〈i, j〉 and 〈j, k〉 in G and

assign a weight rijk to each edge (〈i, j〉, 〈j, k〉) in G. If in G
we partition the set of nodes into n clusters V1,V2, . . .Vn such

that Vi = {〈i, j〉 : j = 1, 2, . . . , n, j 6= i} for i = 1, 2, . . . , n,

then all arcs are defined between nodes 〈i, j〉 and 〈j, k〉 from

different clusters such that rijk > 0; therefore there are no

intra-set arcs.

Proposition 2.1: Any feasible tour in G corresponds to a

tour in G that goes through each cluster exactly once.

Figure 2 represents the extended graph, K4, of a directed

complete graph, K4. The bold lines illustrate a feasible tour.

Definition 2.1: Given a directed graph G = (V,E) and

a partition {Vi : i = 1, . . . , k} of the set V such that⋂k
i=1 Vi = ∅ and

⋃k
i=1 Vi = V , the Asymmetric Generalized

TSP (AGTSP) can be stated as the problem of finding a

feasible cycle T ⊂ E which includes exactly one node

from each cluster Vi, i = 1, . . . , k, and whose global cost∑
e∈T re is minimum. Therefore the AGTSP involves two

related decisions: (i) choosing a node subset S ⊂ V such that

|S∩Vi| = 1 for all i = 1, 2, . . . , n and (ii) finding a minimum

cost Hamiltonian cycle in the subgraph of G induced by S.

Corollary 2.2: Solving the AQTSP on graph G is equiva-

lent to solving the AGTSP on G.

Using Corollary 2.2, instead of solving the original AQTSP

one can solve an AGTSP on graph G which is again NP-hard,

as it can be reduced to an Asymmetric TSP [8], [9].

We can formulate an integer linear programming model for

the AGTSP. Variables uijk indicate whether arc (〈i, j〉, 〈j, k〉)
is selected or not in the optimal solution, and variables yij
indicate whether node 〈i, j〉 is visited or not. The problem is

displayed as follows:

GTSP1:

min
∑

(〈i,j〉,〈j,k〉)∈E

rijkuijk (15)

s.t.
∑

j∈V :
〈i,j〉∈Vi

yij = 1 ∀i ∈ V (16)

∑

k∈V :
〈j,k〉∈V

uijk = yij ∀〈i, j〉 ∈ V (17)

∑

k∈V :
〈k,i〉∈V

ukij = yij ∀〈i, j〉 ∈ V (18)

∑

i∈S

∑

j /∈S:
〈i,j〉∈Vi

∑

k∈V :
〈j,k〉∈Vj

uijk ≥ 1 S ⊂ V (19)

uijk ∈ {0, 1} ∀(〈i, j〉, 〈j, k〉) ∈ E (20)

yij ∈ {0, 1} ∀〈i, j〉 ∈ V . (21)

Constraint (16) guarantees that from every cluster we select

exactly one node. Constraints (17) and (18) require a solution

to include exactly one of the arcs entering and exactly one of

Fig. 2. Extended graph K4 of the complete graph K4

the arcs leaving the node 〈i, j〉 if this node is visited. Finally,

constraint (19) eliminates all subtours.

Note that relaxing the integrality requirement on the vari-

ables uijk for all (〈i, j〉, 〈j, k〉) ∈ E does not have any effect

on problem GTSP1.

By eliminating variables yij we can write the problem as

follows:

GTSP2:

min
∑

(〈i,j〉,〈j,k〉)∈E

rijkuijk (22)

s.t.
∑

j∈V

∑

k∈V :
(〈i,j〉,〈j,k〉)∈E

uijk = 1 ∀i ∈ V (23)

∑

k∈V

∑

j∈V :

(〈k,i〉,〈i,j〉)∈E

ukij = 1 ∀i ∈ V (24)

∑

k∈V :
〈j,k〉∈V

uijk −
∑

k∈V :
〈k,i〉∈V

ukij = 0 ∀〈i, j〉 ∈ V (25)

(19), (20). (26)

Constraint (23) requires a solution to include exactly one

of the arcs entering a cluster, while constraint (24) requires a

solution to include exactly one of the arcs leaving a cluster.

Constraint (25) is equivalent to network flow conservation

constraints and ensure that a solution tour is uninterrupted and

continuous.

Theorem 2.3: Constraints (23) in problem GTSP2 are re-

dundant and can be removed from the model.

Proof: Suppose u∗ is a feasible solution for problem

GTSP2 after removing constraint (23) and define, for each

i ∈ V ,

ǫi =
∑

j∈V

∑

k∈V :
(〈i,j〉,〈j,k〉)∈E

u∗
ijk.

We show that ǫi = 1 for all i ∈ V .

Consider cluster Vs. Then constraint (24) is satisfied for

BORZOU ROSTAMI ET AL.: A LOWER BOUNDING PROCEDURE AND A COLUMN GENERATION APPROACH 379

cluster Vs by u∗, i.e.,
∑

k∈V

∑

j∈V

(〈k,s〉,〈s,j〉)∈E

u∗
ksj = 1.

Therefore there exists a node 〈s, t〉 ∈ Vs with in-degree one

in the tour, while the in-degree of all other nodes in cluster

Vs is zero. Hence by (25) the out-degree of node 〈s, t〉 must

be equal to one while the out-degree of all the other nodes in

the same cluster must be zero.

As a consequence of Theorem 2.3 GTSP2 simplifies as

follows:

GTSP3: min
∑

(〈i,j〉,〈j,k〉)∈E

rijkuijk (27)

s.t. (24), (25), (26). (28)

III. CYCLE REFORMULATION OF QTSP

In this section we present a new formulation of the QTSP

which is based on a cycle generation approach in the given

graph. Let C be a cycle of G represented by the set of

edges (arcs) that appear in the cycle. The cost of cycle C
is r(C) =

∑
i,j,k∈V :(i,j),(j,k)∈C rijk, i.e. the sum of the costs

of the pairs of consecutive edges (arcs) contained in the cycle.

Let C and T denote the collection of all cycles and all tours

of G, respectively. Clearly, we have that T ⊆ C, and hence

minC∈C c(C) ≤ minT∈T c(T).
Following the approach of Held and Karp to the TSP [6],

we add a penalty πi to every vertex i in V , and denote by

π(C) =
∑

i∈C πi. Let us consider a new cost function defined

as follows: d(C) = c(C) + π(C). Let T ∗ denote an optimal

tour of G, i.e. c(T ∗) = minT∈T c(T). Then, the following

relations hold:

min
C∈C

d(C) = min
C∈C

{c(C) +
∑

i∈C

πi} ≤ d(T ∗) = c(T ∗) +
∑

i∈V

πi

min
C∈C

{c(C)−
∑

i∈V \C

πi} ≤ c(T ∗).

For any vector of penalty terms π we get a lower bound.

However, we are interested in finding π that maximizes the

lower bound:

max
π∈ℜn

min
C∈C

{c(C)−
∑

i∈V \C

πi}. (29)

We describe an LP equivalent to (29) by introducing a variable

z as follows:

P:max z (30)

s.t. z +
∑

i∈V \C

πi ≤ c(C) ∀C ∈ C (31)

z, π unrestricted. (32)

Let λC be the dual multiplier of constraint (31). The dual

of problem P is called master problem and has the following

form:

D1:min
∑

C∈C

c(C)λC (33)

s.t.
∑

C∈C:i/∈C

λC = 0 ∀i ∈ V (34)

∑

C∈C

λC = 1 (35)

λC ≥ 0 ∀C ∈ C. (36)

Since all multipliers in (34) are non-negative, and, in each

iteration of a column generation approach, exactly one column

is generated (as we explain in Section IV), an optimal solution

to the problem must satisfy λ∗
C = 1 for some C∗ ∈ C and

λ∗
C = 0 for all C ∈ (C \ C∗). It follows that the cycle C∗

(single or multiple) is optimal and c(C∗) provides a lower

bound for the original QTSP.
By subtracting each constraint (34) from (35) and removing

(35) from D1, one can find a relaxation of the problem D1 as

follows:

D2:min
∑

C∈C

c(C)λC (37)

s.t.
∑

C∈C:i∈C

λC = 1 ∀i ∈ V (38)

λC ≥ 0 ∀C ∈ C. (39)

Problem D2 seeks a minimum-weight “combination of cycles”

such that each vertex appears, on average, in one cycle.

IV. COLUMN GENERATION APPROACH

In this section we develop a column generation approach

to solve problems D1 and D2. Since the number of cycles

in C is exponential with respect to the number of vertices, we

first consider a restricted version of the master problem (RMP)

with a feasible subset of cycles, C̄ ⊆ C. Note that the subset C̄
for problem D1 must include at least one tour, while an initial

set C̄ for problem D2 must satisfy constraints (38). Let us first

start with problem D1 and suppose that π = (π1, π2, . . . , πn)
and z are the dual variables corresponding to constraints (34)

and (35) respectively. The reduced cost of the variable λC

for each C ∈ C is r(C) = r(C) − (π(C))′ − z, where

(π(C))′ =
∑

i/∈C πi. A column to enter the basis can be found

by computing a minimum cost cycle with respect to rijk +πj

for each (i, j) ∈ E, (j, k) ∈ E. Let r(Cp) = minC∈C r(C). If

r(Cp) ≥ 0 then the current solution is optimal. Otherwise we

select column Cp to enter the basis.
Theorem 4.1: If the column Cp to enter the basis corre-

sponds to a tour, then it is an optimal tour.
Proof: Consider any cycle C. Since column Cp is the

selected column to enter the basis we have

r(Cp) = r(Cp)− (π(Cp))′ − z ≤ r(C)− (π(C))′ − z. (40)

If cycle C is also a tour, then r(Cp) ≤ r(C).
Note that for problem D2, the reduced cost of the variable

λC for each C ∈ C is modified to:

r(C) = r(C)− π(C). (41)

380 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

A. Pricing subproblems

A column to enter the basis can be found by computing a

minimum cost cycle in the original graph G with respect to

rijk + πj . Looking for a cycle having minimum negative cost

with respect to a quadratic objective is itself an interesting

combinatorial optimization problem, which is NP-hard [5]. In

this section we explain how to update the linearized models,

presented in Section II, to solve the pricing problems. In order

to define a suitable model for the pricing subproblem of the

restricted master problem D1, we consider the SQTSP and

AQTSP separately.

a) Symmetric case: Consider the pricing problem of D1

in the symmetric case. As we mention in Section II-A, instead

of looking for a cycle in the original graph one can easily find

a cycle in the Gadget graph; i.e., finding a negative reduced

cost of problem D1 is the same as finding a negative cost

feasible cycle in the Gadget graph. Defining a binary variable

wi to indicate whether the super node Si is on the cycle or

not, the minimum negative cost cycle is then found by solving

the following problem:

min
∑

i∈V

∑

{〈i,j〉,〈i,k〉}∈Si

rjikujik −
∑

i∈V

πi(1− wi)− z

s.t.
∑

j,k∈V :
{〈i,j〉,〈i,k〉}∈Si

ujik = wi ∀i ∈ V

(42)

(7) − (9) (43)

wi ∈ {0, 1} ∀i ∈ V. (44)

Considering the definition of the w variables, one can

obtain an equivalent formulation for the pricing problem by

replacing constraint (42) with the so-called resource constraint∑
j,k∈V

{〈i,j〉,〈i,k〉}∈Si

ujik ≤ 1 and removing the variables w from

the model. Also, it should be observed that by forcing the

solution of the pricing problem to be a cycle with negative

cost one can easily remove the constraint (8) from the pricing

model. Therefore, finding a cycle with negative reduced cost

is simply a matter of finding a path between each node of the

Gadget graph and itself with a negative cost which satisfies the

resource constraint. Since the dual variables π are defined on

each super node of the Gadget graph, the problem of finding

a negative reduced cost cycle can be formulated as resource-

constrained elementary shortest path problem. Let qst denote

the cost of the resource-constrained elementary shortest path

from origin node 〈s, t〉 to itself in the Gadget graph. The

pricing problem can be written as: min〈s,t〉∈V̂ {qst}, where

qst is the optimal value of the following problem.

min
∑

i∈V

∑

{〈i,j〉,〈i,k〉}∈Si

(rjik + πi)ujik −
∑

i∈V

πi − z (45)

s.t.
∑

j∈V :
{〈s,t〉,〈s,j〉}∈Si

utsj = 1 (46)

∑

j∈V :
{〈s,j〉,〈s,t〉}∈Si

ujst = 1 (47)

∑

〈i,k〉∈Si:
k 6=j

ujik −
∑

〈j,k〉∈Sj :
k 6=i

uijk = 0 ∀〈i, j〉 6= 〈s, t〉

(48)
∑

j,k∈V
{〈i,j〉,〈i,k〉}∈Si

ujik ≤ 1 ∀i ∈ V (49)

ujik ∈ {0, 1} ∀{〈i, j〉, 〈i, k〉} ∈ Ê. (50)

Constraints (46), (47), (48) and (50) find a path from the source

node 〈s, t〉 to itself. The resource constraint (49) guarantee that

each super node Si is visited at most once.

b) Asymmetric case: In the asymmetric case, finding

a negative reduced cost directed cycle for problem D1 is

equivalent to solving the modified version of the GTSP1 or

GTSP3 explained in Section II-B. Here we provide a version of

the latter so that the resulting problem gives the most negative

directed cycle.

min
∑

(〈i,j〉,〈j,k〉)∈E

rijkuijk −
∑

i∈V

πi(1− ti)− z

s.t.
∑

k∈V

∑

j∈V

(〈k,i〉,〈i,j〉)∈E

ukij = ti ∀i ∈ V

(20), (25), (24)

ti ∈ {0, 1} ∀i ∈ V.

The binary variable ti is equal to 1 if cluster i is visited,

otherwise it is zero. Following the same process as the sym-

metric case, one can obtain an equivalent formulation based

on resource-constrained elementary shortest path problem in

the extended graph.

The solution of the subproblems provides either a certificate

of optimality of the current solutions (λ, π, z) or a new column

Cp that will be added to the master problem. It is worth

pointing out that solving the subproblem to optimality is only

needed to prove optimality of the current primal and dual

solutions; one can stop solving the subproblem whenever a

negative reduced cost column is found [16]. This happens

because adding this column to C̄ ensures that the new dual

solution (π, z) will be different, and therefore the termination

of the algorithm.

B. Stabilized column generation

Column generation methods usually suffer from slow con-

vergence to the optimal solution. Primal degeneracy, dual

degeneracy and instability in the behavior of dual variables are

well known to cause slow convergence and tailing off effects

to column generation procedures [11], [12].

To control the dual variables during the solution process,

we use the stabilized column generation approach proposed in

[15]. This approach combines the box step method [14] with a

BORZOU ROSTAMI ET AL.: A LOWER BOUNDING PROCEDURE AND A COLUMN GENERATION APPROACH 381

kind of descent method proposed in [13]. The box step method

introduces a box around the previous dual vector and modifies

the master problem such that the feasible dual space is limited

to the area defined by these boxes, while the latter tries to

adapt the master problem so that the distance separating a dual

solution from the previous optimal dual solution is linearly

penalized.

In order to present the idea, let us rewrite the restricted

version of the master problem D1, for C̄ ∈ C, as the following

model:

RD1:min
∑

C∈C̄

c(C)λC (51)

s.t.
∑

C∈C̄:i∈C

λC ≥ 1 ∀i ∈ V (52)

(35), (36).

Note that since the set partitioning constraints allow negative

dual values which can be problematic for the sub-problem, we

used a relaxed version of the problem as the first step of the

stabilization approach.

Consider the dual variables π associated with the constraints

(52) and bound each πi in the interval [δ−i , δ+i]. These bounds

are first given as parameters to the model and then automat-

ically updated during the process. The dual variable πi can

take values outside the given bounds, but the dual objective is

then penalized by ε−i (δ
−
i −πi) if πi < δ−i and by ε+i (δ

+
i −πi)

if πi > δ+i . The dual of the problem RD1 then becomes:

SP:max z +
∑

i∈V

πi − ε−i w
−
i − ε+i w

+
i (53)

s.t. z +
∑

i∈C

πi ≤ c(C) ∀C ∈ C̄ (54)

πi + w−
i ≥ δ−i ∀i ∈ V (55)

πi − w+
i ≤ δ+i ∀i ∈ V (56)

π,w−, w+ ≥ 0, z unrestricted. (57)

The primal of the stabilized restricted master problem, and

hence the dual of SP, is:

SD1:min
∑

C∈C̄

c(C)λC +
∑

i∈V

−δ−i µ−
i + δ+i µ

+
i (58)

s.t.
∑

C∈C̄:i∈C

λC − µ−
i + µ+

i ≥ 1 ∀i ∈ V (59)

∑

C∈C̄

λC = 1 (60)

µ−
i ≤ ε−i ∀i ∈ V (61)

µ+
i ≤ ε+i ∀i ∈ V (62)

λ, µ−, µ+ ≥ 0. (63)

This method is referred to as BoxPen stabilization since

the bounds (δ−, δ+) on the original dual variables π can be

represented by a bounding box containing the current dual

solution. Note that the stabilized version of the problem D2 is

the same as SD1 without the convexity constraint (60) and is

called SD2. In order to use the stabilized models efficiently,

one must initialize and update the parameters correctly. With

desire to reduce the dual variables’ variations, select [δ−, δ+]
to form a small box containing the current dual solution, and

solve the problem SD1 (SD2). At the first iteration, when no

solution is available to the problem, the dual variables π can

be simply estimated. If the new π lies in the box [δ−, δ+],
reduce its width and augment the penalty given by ε− and

ε+. Otherwise, enlarge the box and decrease the penalty. The

update could be performed in each iteration, or alternatively,

each time a dual solution of currently best value is obtained.

In Section V we discuss more about the updating process.

V. COMPUTATIONAL EXPERIMENTS

In this section we present our computational experiments

on a class of randomly generated instances with size rating

from n = 5 to n = 25 introduced in [4]. All instances consist

of complete graphs with n vertices and m = n(n − 1)/2
edges. The cost function r : E×E → ℜ+

0 for both symmetric

and asymmetric instances is defined as an integer number

which is chosen from the set {0, 1, ..., 10000} uniformly for

all (i, j), (j, k) ∈ E such that i 6= k and set to infinity for all

(i, j), (j, i) ∈ E. We used the AMPL modeling language [17]

with GUROBI 5.0.0 [18] as linear solver for the RMP and as

a mixed integer linear solver for the pricing problem on an

Intel Core i5-2410M CPU with 2.30 GHz and 6 GB RAM in

single processor mode.

A. Stabilization

We implemented the stabilized column generation approach

using different sets of initial values. In the following we

present the results of some preliminary experiments whose

purpose was to initialize and update the parameters for both

SD1 and SD2.

For the problem SD1, we initialized δ− and δ+ at −1000
and 1000 respectively. The vector parameter ε− and ε+ were

selected as −5 and 5 respectively and were kept fixed through-

out the solution process. We updated the parameter (δ−, δ+)
from (−1000, 1000) to (π̃ − 100, π̃ + 100), (π̃ is the current

dual solution), only if the column returned by the subproblem

had a non-negative reduced cost and (µ−, µ+) 6= (0, 0). The

stopping criteria of the stabilized column generation algorithm

is r(C) ≥ 0 and (µ−, µ+) = (0, 0).

In order to find potentially good initial values of (δ−, δ+)
for problem SD2, we first solved the problem D2 with a

feasible subset of cycles. By using the dual variables π̃ of

problem D2, we initialized (δ−, δ+) with (π̃ − 10, π̃ + 10).
The vector parameter ε− and ε+ were initially set to 0.0001.

If the subproblem is able to find negative reduced cost cycle,

then the values of ε− and ε+ were increased by 10%. However,

when there was no more such column and (µ−, µ+) 6= (0, 0),
the values of ε− and ε+ were decreased by dividing each

one by 100 and the parameter (δ−, δ+) were updated to

(π̃−100, π̃+100), where π̃ is the current dual solution of the

SD2. The stopping criteria of the stabilized column generation

algorithm is the same as case of problem SD1.

382 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

TABLE I
COMPUTATIONAL TIME OF COLUMN GENERATION (CG) AND STABILIZED CG APPROACHES FOR BOTH THE SQTSP THE AQTSP INSTANCES

CPU time (Symmetric) CPU time (Asymmetric)

size CG2 SCG2 CG1 SCG1 CG2 SCG2 CG1 SCG1

10 2.15 1.91 4.36 4.12 3.91 3.26 8.93 7.35
20 43.57 33.34 205.94 60.70 97.43 34.92 508.53 271.81

In order to show the effectiveness of stabilization, we

compare the computational time of column generation to its

stabilized version on two instances of different dimensions in

Table I. Each row of the table reports the average compu-

tational time over ten instances of the same size. CG1 and

CG2 stand for Column Generation approach to the problem

SD1 and SD2 respectively. SCG1 and SCG2 are for the

stabilized version of the CG1 and CG2 respectively. The

results show that stabilization is effective for both symmetric

and asymmetric instances.

B. Lower bound Computation

As we mentioned in Section III, a solution of the pricing

problem, which may contain a single or multiple cycles, is

optimal for the master problem RD1 if it covers all the

nodes i ∈ V . Since looking for a single cycle in the pricing

problem requires some kind of subtour elimination constraint,

we restrict the search to find a cycle (single or multiple) with

negative cost. In other words, we allow subtours in the optimal

solution of the original QTSP, which is in fact a relaxation of

the problem. Therefore, when no more new columns can be

priced out, a solution of the master problem RD1 gives a lower

bound on the original problem. Note that the optimal value of

the problem RD2 always gives a lower bound on the original

problem, regardless of the solution being a single cycle or

multiple ones.

In Table II we present computational results of the lower

bounding schemes for both the symmetric and the asymmetric

QTSPs. Each row of the tables reports the average results over

ten instances of the same size. The problem size is found

in the first column of the table. The second column shows

the average optimal values (opt) of the 10 instances for each

dimension. We compare three different average lower bounds

(LB) on the optimal objective values, their computing time

(time), number of iterations (iter), and the average gap. The

first lower bound LB(LP) in column three is the lower bound

obtained with the linear relaxation of problem (5) – (9) and

the linear relaxation of problem GTSP3 for the SQTSP and

the AQTSP respectively. The computation time of the LP

relaxation is less than two seconds for all instances; therefore

we did not mention it in the table. The second lower bound is

obtained via the Stabilized Column Generation approach to the

problem SD2 (SCG2); and the third lower bound is obtained

via the Stabilized Column Generation approach apply to the

problem SD1 (SCG1). Columns four to seven and columns

eight to eleven represent the optimal value, computation time,

number of iterations needed to identify the optimal solution

and the gap. The formula we used to compute these gaps is

(opt − LB(SCG))/(opt − LB(LP)), where opt and LB()
stand for the optimal value and the lower bound, respectively.

We can see in this table that the bounds obtained by SCG1

outperforms the other two in all instances and are close to

the optimal values in both the SQTSP and the AQTSP. Also

the lower bond obtained by SCG2 is indeed better than the

one obtained with LP relaxation except for the instances of

dimension five, for which the LP relaxation gives on average

a tighter bound. On average the ratio of gap between the

lower bound obtained by SCG2 and the optimal solution,

and the gap between the lower bound obtained by linear

relaxation and the optimal solution for the symmetric instances

is 0.72, while this ratio for the asymmetric instances is 0.73.

As we see, on average, the improvement of lower bound by

applying the SCG2 for both symmetric and the asymmetric

cases is almost the same, while the computational time for

the asymmetric instances is more than the computational time

for the symmetric ones.

According to Table II, applying SCG1 yields a considerable

improvement of the lower bounds in both the symmetric and

the asymmetric cases, i.e., on average the ratio of gap between

the lower bound obtained by SCG1 and the optimal solution

over the gap between the lower bound obtained by linear

relaxation and the optimal solution for the symmetric instances

is 0.09, and for the asymmetric instances is 0.20. These gaps

show the improvement of lower bounds in both the symmetric

and asymmetric cases in compare to the SCG2. Also it should

be noted that the improvement of the lower bounds and also

the computational time in the symmetric case is more attractive

than in the asymmetric case.

VI. CONCLUSIONS

In this paper we first proposed two different linearization

models to the SQTSP and the AQTSP. We also presented a dif-

ferent cycle formulation for the QTSP (in general) and solved

the resulting LP problem by Column Generation approach. We

have shown how the linearized formulations can be applied to

finding the negative reduced cost in the pricing problem. To

overcome the problems of instability in the behavior of dual

variables of the presented master problem, we used a stabilized

column generation approach. Our experiments show that our

column generation approach outperforms the LP relaxation of

the QTSP in both the symmetric and the asymmetric cases.

The main goal of this paper is to show the advantage of column

generation and the weakness of the LP relaxation in finding a

good lower bound for the QTSP.

BORZOU ROSTAMI ET AL.: A LOWER BOUNDING PROCEDURE AND A COLUMN GENERATION APPROACH 383

TABLE II
COMPARISON OF THREE DIFFERENT LOWER BONDING APPROACHES

SCG2 SCG1

size Opt. LB(LP) LB time iter Gap LB time iter Gap

Symmetric:
5 14922.2 13839.5 13606.3 0.62 6 1.21 14922.2 3.89 65 0.0
6 12217.5 11817.1 11816.2 0.53 7 0.99 12160.4 3.35 43 0.14
7 14648.6 13200.4 13747.9 0.85 11 0.62 14356.5 3.51 41 0.20
8 15055.7 12544.1 12623.9 1.12 14 0.96 14542.6 4.06 43 0.20
9 14562.2 11909.4 12710.7 1.91 16 0.73 14225.7 4.12 37 0.12

10 15018.6 11939.9 13104.5 1.77 18 0.62 14718.7 4.86 45 0.09
11 13819.6 10367.8 11175.9 1.75 17 0.76 12958.9 6.37 33 0.24
12 14719.4 10896.2 12036.6 3.15 21 0.70 13740.2 7.96 31 0.25
13 13174.3 9826.6 10954.4 4.90 23 0.66 12705.5 12.11 32 0.14
14 13548.7 9823.7 11089.7 9.34 25 0.66 12974.4 13.83 32 0.15
15 12531.0 9354.7 10697.8 12.38 28 0.57 12219.3 14.20 25 0.09
16 13426.1 9065.7 10253.3 13.24 26 0.72 12573.4 20.56 28 0.19
17 13022.5 9324.8 10420.6 18.55 30 0.70 12735.9 27.35 32 0.07
18 12388.6 8522.8 9831.7 22.35 34 0.66 12137.6 28.38 29 0.06
19 12697.5 8630.6 10036.8 29.98 39 0.65 12394.9 45.92 34 0.07
20 13246.0 8797.3 10092.8 33.34 40 0.70 12491.8 60.70 35 0.16
21 12699.4 8352.0 9868.1 45.71 45 0.65 12260.4 75.16 34 0.10
22 12032.2 8078.2 9519.4 50.81 47 0.63 11859.1 98.45 32 0.04
23 12378.4 8123.9 9376.2 53.98 46 0.70 11911.7 154.01 37 0.10
24 11871.1 7996.5 9250.5 65.78 51 0.67 11480.9 203.40 41 0.10
25 11673.5 7494.2 8717.8 81.18 54 0.70 11187.1 172.77 28 0.11

Asymmetric:
5 12372.2 10758.2 11126.8 1.80 46 0.77 12373.2 2.10 56 0.0
6 11883.1 10291.6 10596.9 1.79 38 0.80 10684.6 1.51 37 0.75
7 13204.9 10486.3 11369.9 1.95 42 0.67 12746.3 2.98 55 0.16
8 13363.4 10116.3 11194.4 2.08 38 0.66 12878.5 3.24 45 0.14
9 13063.2 9610.1 10546.5 2.52 37 0.72 12135.1 5.24 48 0.26

10 12921.5 9427.1 10461.9 3.26 33 0.70 12500.8 7.35 43 0.12
11 12997.5 8965.8 9891.20 4.41 34 0.77 12089.9 11.99 49 0.22
12 11434.8 8723.3 9682.4 5.79 29 0.64 10897.9 10.87 35 0.19
13 12171.5 8421.6 9608.1 8.55 33 0.68 11584.3 21.11 41 0.15
14 11838.3 8182.7 9005.6 9.95 37 0.77 10635.6 20.66 38 0.32
15 12428.8 8094.6 9564.7 16.83 35 0.66 11748.8 37.05 45 0.15
16 12135.7 7726.8 8764.6 16.64 35 0.76 11119.8 47.34 51 0.23
17 11832.2 7241.3 8682.7 21.69 35 0.68 10094.7 60.02 50 0.37
18 11662.2 7380.9 8544.8 24.40 36 0.72 11104.6 119.24 59 0.13
19 12095.9 7264.6 8560.4 31.22 38 0.73 11207.8 157.51 57 0.18
20 11802.8 6951.1 8200.1 34.92 37 0.74 11162.4 271.81 63 0.13
21 11288.2 6948.5 8140.5 51.44 40 0.72 10819.1 435.246 58 0.10
22 11741.0 6906.8 7950.1 51.61 43 0.78 10517.2 480.15 58 0.25
23 11549.7 6821.3 7688.3 59.05 45 0.81 10549.3 671.15 68 0.21
24 11239.1 6580.4 7716.1 84.03 43 0.75 10180.1 877.83 69 0.22
25 11434.8 6663.1 7785.6 105.36 44 0.76 10422.3 1698.31 70 0.21

REFERENCES

[1] Amaldi, E., G. Galbiati, and F. Maffioli, On minimum reload cost paths,

tours, and flows, Networks, 57 (2011), 254–260.

[2] Fischer, A., and C. Helmberg, “The symmetric quadratic traveling
salesman problem,” F. Mathematik, T.U. Chemnitz, Preprint 2011-8,
2011.

[3] Fischer, A., “The asymmetric quadratic traveling salesman problem,” F.
Mathematik, T.U. Chemnitz, Preprint 2011-19, 2011.

[4] Fischer, F., G. Jäger, A. Lau, and P. Molitor, “Complexity and algorithms
for the traveling salesman problem and the assignment problem of
second order,” F. Mathematik, T.U. Chemnitz, Preprint 2009-16, 2009.

[5] Galbiati, G., S. Gualandi, and F. Maffioli, On minimum reload cost cycle

cover, Electronic Notes in Discrete Mathematics, 36 (2010), 81–88.

[6] Held, M., and R. M. Karp, The Traveling-Salesman Problem and

Minimum Spanning Trees, Operations Research, 18 (1970), 1138–1162.

[7] Jäger, G., and P. Molitor, Algorithms and experimental study for the

traveling salesman problem of second order, Lecture Notes in Computer
Science, 5165 (2008), 211–224.

[8] Laporte, G., H. Mercure, Y. Nobert, Generalized Traveling Salesman

Problem through n set of nodes: the assymmetric case, Discrete Applied
Mathematics, 18 (1987), 185–197.

[9] Noon, C.E, and J.C. Bean, A Lagrangian Based approach for the Assym-

metric Generalized Traveling Salesman Problem, Operations Research,
39 (1991), 623–632.

[10] Gamvros, I., L. Gouveia, and S. Raghavan, Reload Cost Trees and

Network Design, Networks, 59 (2012), 365–379.
[11] Gilmore, P.C, and R.E. Gomory, A Linear Programming approach to

the Cutting-stock problem, Operations Research, 9 (1961), 849–859.
[12] Kallehauge, B., J. Larsen, O. B. G. Madsen,“Lagrangian duality applied

on wehicle routing with time windows”, Technical report IMMM-IR-
2001-9, Information and Mathematical Modeling, Technical University
of Denmark, KGS, Lyngby, Denmark, 2001.

[13] Kim, S., K.-N. Chang, J.-Y. Lee, A descent method with linear

programming subproblems for nondifferentiable convex optimization,
Math. Programming, 71 (1995), 17–28.

[14] Marsten, R. E., W.W. Hogan, J.W. Blankenship, The BOXSTEP method

for large-scale optimization, Operations Research, 9 (1975), 389–405.
[15] Du Merle, O., D. Villeneuve, J. Desrosiers, P. Hansen, Stabilized column

generation, Discrete Math. 194 (1999), 229–237.
[16] Barnhart, C., Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W.P. and

Vance, P.H., Branch-and-Price: Column Generation for Solving Huge

Integer Programs, Operations Research 46 (1998), 316–329.
[17] Fourer, R., D. M. Gay, B. W. Kernighan, AMPL: A Modeling Lan-

guage for Mathematical Programming, Duxbury Press, ISBN 978-0-
534-38809-6, (2002).

[18] http://www.gurobi.com/documentation/5.5/reference-manual.

384 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

