
Real-time Implementation of the ViBe Foreground
Object Segmentation Algorithm

Tomasz Kryjak
AGH University of Science and Technology,

Krakow, Poland

e-mail: kryjak@agh.edu.pl

Marek Gorgon
AGH University of Science and Technology,

Krakow, Poland

e-mail: mago@agh.edu.pl

Abstract—This paper presents a novel real-time hardware
implementation of the ViBe (VIsual Background Extractor)
background generation algorithm in reconfigurable FPGA device.
This novel method combines the advantages of typical recursive
and non-recursive approaches and achieves very good foreground
object segmentation results. In this work the issue of porting ViBe
to a FPGA hardware platform is discussed, two modification to
the original approach are proposed and a detailed description of
the implemented system is presented. This is the first, known to
the authors, FPGA implementation of this algorithm.

I. INTRODUCTION

DETECTION of moving objects (foreground objects) is

one of the most important issues in video sequences

processing and analysis. It is used in advanced, automated

video surveillance systems and traffic monitoring systems,

where the robust segmentation of peoples or vehicles is

essential to perform reliable tracking or recognition. Intensive

work on the mentioned systems can be observed in the image

processing researcher community as well as in the industry.

Foreground object detection methods can be divided into

three categories: simple successive frame differencing, the

so-called background modelling approach followed by back-

ground subtraction and optical flow.

In this paper, a hardware implementation of a method

belonging to the second of these categories is presented. An

extensive review of different approaches to foreground object

detection can be found in [3].

The concept of background subtraction involves object

detection based on the difference between the current video

frame and the background, where the background is under-

stood as an empty scene, i.e. without objects of interest

(people, cars). It is worth noting that foreground object de-

tection is not just a simple moving object detection issue.

The background may contain moving elements: flowing water,

moving leaves and shrubs, which should not be detected. On

the other hand, some objects (eg. a pedestrian) may remain

still for a while and should be continuously detected. Another

source of segmentation errors are objects that start to move

(eg. a parked car). The left empty space is than usually

misclassified as foreground (a so called ”ghost”). That is why

the background representation should be adaptive in order to

compensate some normally occurring changes such as lighting

or movement of certain objects (i.e. chair in an office), as well

as handle difficult cases like ghosts. The process is referred to

as background generation or modelling.

In the literature one can find many descriptions of FPGA

implementations of background generation methods. An ex-

tensive discussion of this issue is presented in [6]. The most

important and recent articles are:

• Mixture of Gaussian [4] – HD greyscale video stream

processing (1920 × 1080 @ 20 fps),

• Horparsert method [9] — 1024 × 1024 @ 32.8 fps, video

stream processing, the high level synthesis language

Impulse-C was partially used,

• Codebook [8] — 768 × 576 @ 60 fps video stream

processing,

• Clustering [6] – HD colour video stream processing.

An FPGA implementation of background generation al-

gorithms can be used in hardware accelerators (e.g. frame-

grabbers with an FPGA device, which perform some image

pre-processing and analysis) or smart cameras, where all the

image processing, analysis and recognition is performed in

the camera and only the results are transmitted to the main

processing unit of a surveillance system.

II. THE VIBE ALGORITHM

The foreground object segmentation algorithm ViBe (VIsual

Background Extractor) was proposed by O. Barnich and M.

Van Droogrnbroeck and described in detail in [1], [2], [12]. It

contains several innovative elements (the solution is patented)

and allows to obtain very good results, which is confirmed by

a high place in the object detection algorithms ranking [5].

The background model in ViBe consists of a set of observed

pixel values. This is an important difference compared to

the most common methods, where the background model is

based on probability distribution function. The authors of ViBe

justify this concept, pointing out the difficulties in selecting

the appropriate probability distribution and the corresponding

update mechanism.

Let v(x) denotes the pixel value in a given colour space

at the point x in the image, and vi the i-th sample from the

background model. Then the model for each pixel x is defined

as a set of N samples:

M(x) = {v1, v2..., vN} (1)

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 591–596

978-1-4673-4471-5/$25.00 c© 2013, IEEE 591

In order to classify the pixel v(x) a sphere Sr(v(x)) of

radius R centred at the point v(x) is defined. The analyzed

pixel is considered as background, if at least #min samples

from the model M(x) lie inside the sphere. The distance is

defined as Euclidean, and the procedure requires, in the worst

case, N distance calculations and N comparisons.

The authors proposed a method of initializing the back-

ground model using a single video frame. This results in fast

initialization and re-initialization i.e. in case of a sudden light-

ing change or surveillance system reboot. In this approach,

however, the temporal context (history of the pixel) is not

available, therefore, the assumption has been made that the

adjacent pixels should have similar values. The initialization

procedure involves filling the buffer M(x) with randomly

selected samples from the pixel’s spatial context (size 3× 3).

The disadvantage of this approach is its susceptibility to

artefacts in the form of ”ghosts” — a collection of pixels clas-

sified as belonging to the foreground, but actually not related to

any real object. The elimination of such interference provides

the discussed below background model update mechanism.

The ViBe algorithm uses a conservative update approach —

the background model is modified only in the case of classify-

ing a pixel as part of the background. On one hand, it prevents

the penetration of moving objects into the background model,

but at the same time it can lead to irreparable segmentation

errors (e.g. ”empty” space left by a car which drove away is

classified as an object).

Contrary to popular background generation algorithms that

use a pixel buffer approach (average of the buffer, the median

of the buffer) where the update process relays on replacing

the oldest sample by a new value (FIFO scheme) in ViBe the

temporal context is not considered. The sample, to be updated,

is chosen at random. In conjunction with the conservative

approach this results in an exponential lifespan of a given

sample. To further extend the time interval, which is covered

by the background model, the update is performed with a fixed

probability (e.g. 1/16).

In order to counteract the negative effects of the assumed

conservative approach, a mechanism of updating the adjacent

background models was proposed. It can be described as

follows. If the current pixel v(x) is regarded as belonging

to the background, two update procedures are executed: for

the current and the neighbouring background models. First

of all, in a random fashion, it is determined whether the

update should be executed (the proposed by the authors

likelihood equals 1/16). Then, in the first case the sample to be

substituted is randomly selected (1 out of N). In the second,

the neighbouring model (1 out of 8 assuming a 3× 3 context)

and the sample (1 out of N) are chosen. The selected samples

are then replaced by the value v(x).
It is worth noting that the ViBe method requires very

few parameters. The authors of the paper [2] proposed

the following values: N = 20 (number of samples in

the model), R = 20 (the radius of the sphere, value for

greyscale images), #min = 2 (the minimum number of

samples, which must lie within the sphere) and the up-

date probability (1/16) and they were used in the mod-

ule.

III. CONSIDERATIONS ABOUT IMPLEMENTING VIBE IN

HARDWARE

One of the main problems with implementing background

generation algorithms in hardware is providing a quick access

to the external memory resources, where the background

model is stored [6]. In the case of the ViBe algorithm is

necessary to ensure the following transfer rate:

T = N ×B × PC × 2 (2)

where: N – model size (number of samples), B – number

of bits per one sample (for greyscale images B = 8, for

RGB B = 24, for CIE Lab B = 23), PC – pixel clock

(for VGA resolution 640 × 480 PC is 25 MHz). The use

of the multiplier two, results from the need to perform write

and read operations. Substituting the appropriate values the

following rates are obtained: T ∼= 690 MB/s for greyscale and

T ∼= 2070 MB/s for RGB. In case of HD image processing (i.e.

1920×1080, pixel clock 148.5 MHz) the rates are respectively:

T ∼= 4898MB/s i T ∼= 12293 MB/s.

Modern FPGA boards are usually equipped with an exter-

nal DDR3 RAM module. In this study two platforms were

analyzed: ML605 (Virtex 6 device) and VC707 (Virtex 7

device), both from Xilinx. The first of these is equipped with

a memory with a maximum theoretical transfer rate of 6400

MB/s, and the other 12800 MB/s. Wherein, in the case of

dynamic memory, it is impossible to obtain the maximum

values, because of the necessity of refreshing and accessing

individual banks, and columns.

Analysis of the presented numbers allows to draw the

following conclusions. VGA-resolution algorithms can be im-

plemented on both platforms. In the case of an HD video

stream only the grey-scale version can be realized on the

newer VC707 board. Also, there are a few possibilities to

process a HD video stream without increasing the memory

bandwidth: processing every n-th frame (lower FPS) or storing

for example only one out of four pixels (3 from the 2 × 2

context are approximated).

The ViBe method can be quite easily implemented in hard-

ware. The distance calculation between the current pixel and

the samples in the model is possible to realize in parallel. Other

operations, including the pseudo-random number generation

are also feasible. Quite complex is only the propagation of the

current pixel value to neighbouring models mechanism, which

requires the generation of a very wide (more than N×B bits)

context and therefore large number of delay lines - usually

implemented in Block RAM memory resources.

IV. THE MODIFICATIONS PROPOSED TO THE ALGORITHM

In the first stage of the research the paper [12], in which

the authors propose a series of improvements to the ViBe

algorithm was examined in detail. Unfortunately, implement-

ing most of the presented ideas in reconfigurable resources in

592 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

Fig. 1. Sample test images from the changedetection.net database.
Left coloum - input images, right column - groundtruth. First row — fountain

sequence (movement in background), second row — office, third row — park

(thermal image)

a pipeline data processing scheme cause huge difficulties or

seems to be impossible.

However, in order to enhance the algorithm, two ideas:

changing the colour space and a false detection reduction

mechanism in areas with background motion (e.g. flowing

water) were examined in detail in this paper.

A software model of the algorithm was implemented in

C++ using the OpenCV library [7] and examined on the

IEEE Workshop on Change Detection (changedetection.net)

[5] database to evaluate the proposed improvements. The

database contains sequences divided into six categories: ba-

sic, dynamic background (e.g. flowing river), camera jitter,

intermittent object motion, shadows and thermal images. In

each of them 4 to 6 videos are included. It can be con-

cluded that the database contains sequences which cover a

large part of the situations occurring in surveillance system

which are problematic to background generation algorithms.

However, the main advantage of the database and a feature

that distinguishes it from other collections (e.g. Wallflower

[11]), is a large number of manually annotated reference

frames with areas marked as: background, shadow, move-

ment, slight blurring and motion (foreground objects). This

allows for a reliable assessment of the algorithms perfor-

mance in different situations. Furthermore, performance results

for the most state of the art algorithms are avaliable on-

line (http://www.changedetection.net/). Sample

images are presented in Figure 1.

The methodology used in the experiments can be described

as follows. The object mask computed by the algorithm was

compared with the reference mask. Because the ViBe method

does not contain a build-in shadow detection procedure, only

TABLE I
PERFORMANCE OF THE VIBE ALGORITHM DEPENDING ON THE USED

COLOUR SPACE

Colour space Distance PWC [%] P
Greyscale L1 3.78 0.67 %

RGB L1 2.71 0.62 %
RGB L2 2.28 0.69 %

CIE Lab eq. (5) 2.18 0.71 %

the foreground and background classification were considered.

The following rates were calculated:

• TP (true positive) – pixel belonging to a foreground object

classified as a pixel belonging to the foreground,

• TN (true negative) — pixel belonging to the background

classified as a background pixel,

• FP (false positive) — pixel belonging to the background

classified as a pixel belonging to the foreground,

• FN (false negative) — pixel belonging to a foreground

object classified as a background pixel.

Then, based on the calculated parameters two measures

were determined: the percentage of wrong classifications:

PWC =
FN + FP

TP + FN + FP + TN
× 100% (3)

and precision:

P =
TP

TP + FP
(4)

In the first experiment three colour spaces were examined:

greyscale, RGB and CIE Lab. In the first two cases the

Manhattan (L1) distance metric was used. Additionally for

RGB the Euclidean (L2) metric was calculated. In the case of

CIE Lab the fo following formula was used:

dCIELab = α · |LI − LB |+ β · (|aI − aB |+ |bI − bB |) (5)

where: LI , aI , bI – current pixel in CIE Lab colour space, LB ,

aB , bB – background model sample in CIE Lab colour space,

α, β - weights (in the experiments set to α = 1, β = 1.5). The

parameter values for α and β were chosen after evaluation on

several test images. The analysis of the CIE Lab colour space

was performed due to good segmentation results obtained in

a previous work [6]. The experimental results are summarized

in Table I.

The presented values are the average rates for the entire

dataset. The only modified algorithm parameter was the R

threshold. It was set experimentally to obtain best PWC and

P ratios.

The results indicate a slight advantage of the CIE Lab

over the RGB (L2 metric) colour space. In addition, the

hardware implementation of equation (5) is much easier than

the Euclidean distance calculation (square and the square root

operations require large amounts of FPGA logic resources).

Therefore in the final hardware module it was decided to use

the CIE Lab colour space, which is a modification to the

original proposal from [2].

TOMASZ KRYJAK, MAREK GORGOŃ: REAL-TIME IMPLEMENTATION OF THE VIBE FOREGROUND 593

O

B
frame0 1 2 3 4 5 6 7 8

O

B
frame0 1 2 3 4 5 6 7 8

Fig. 2. Two kinds of blinking pixel. O – classification as foreground object,
B – classification as background

In the paper [12] an extension to the ViBe method was

proposed to detect pixels that are alternatively classified as

object and background. They occur most often in cases

where small background movement is present (flowing water,

fountain, moving grass or leaves). The authors introduced the

following mechanism to compensate these interferences. The

pixels belonging to the inner boundary of the background that

in the previous iteration were classified differently than in the

current were detected. In this case the auxiliary variable ”blink

rate” was incremented by 15, otherwise decremented by 1. If

the ratio exceeded the threshold value (set to 30), this pixel

was removed from the object mask 1.

This paper proposes an extension to that analysis, which

uses two counters: the consecutive classifications of a pixel as

background and as an object. This made it possible not only

to detect the pixels that change every single iteration (video

frame), but also every few ones (Figure 2, bottom graph).

The proposed approach yielded slightly better results. For

example, for the ”changedetection.net” sequence ”Ca-

noe” (flowing water) the original approach obtained results:

PWC = 2.19 and P = 0.63, and the proposed PWC = 1.97
and P = 0.68. It is worth noting that the modification only

slightly complicates the algorithm, especially few the hardware

implementation.

As post-processing the binary median filter (square window,

size 7 × 7) was selected. It is worth noting thant adding

the filter significantly improves the results obtained by the

algorithm. An example is presented in Table II.

TABLE II
THE IMPACT OF THE POST PROCESSING MEDIAN FILTERING ON THE

ALGORITHMS PERFORMANCE. MEAN RESULTS FOR THE WHOLE

DATABASE

Post-processing PWC [%] P
none 2.18 0.71 %

median 7× 7 1.76 0.88 %

1in [12] the mask has been divided into two categories (object and update)
and the blinking pixel detection affected only the second. Due to the significant
complexity of implementing in pipeline the filling holes operation, which was
proposed as post-processing of the update mask, in the presented research
this topic was omitted and only one mask was used. For the same reasons the
determination of the inner boarder was omitted.

F

M

C
RAM DDR3

FPGA

ML605

Fig. 3. Scheme of the proposed foreground object detection system

VIDEO IN
RGB

TO

CIELab

RNG

RAM CONTROLLER

ViBe

INIT

ViBe

RUN

VIDEO OUT

MASK

Fig. 4. Block diagram of the modules implemented in the FPGA device

MUXPIXEL

MODEL

RNG

CONTEXT

3x3

MUX

MUX

1

2

N

M

O

D

E

L

(N)

Fig. 5. Block diagram of the ViBe INIT module

V. HARDWARE IMPLEMENTATION

Schematically, the proposed system is presented in Figure

3. It consists of an HDMI source (camera or graphic card),

HDMI display (LCD screen), Avnet FMC DVI IO mod-

ule (FPGA Mezzanine Card) with HDMI input and output,

and ML605 development board with Virtex 6 FPGA device

(XC6VLX240T) from Xilinx. The board is also equipped with

an external DDR3 RAM.

All modules were described in VHDL and Verilog hardware

description languages. The block diagram of the FPGA design

is shown in Figure 4. The RGB TO CIELab module is re-

sponsible for the colour space conversion [6]. Pseudo-random

number generation (RNG) was carried out using the concept

described in [10]. It is worth noting that the authors made the

VHDL code of different RNG versions available, which easy

integrates with the project. The used external RAM controller

was very similar to the described in [6].

The ViBe INIT module is responsible for initializing the

background model. The scheme is presented in Figure 5. It

consists of a 3 × 3 context generation module, which uses

594 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

DIST

DIST

DIST

D

D

PIXEL

MODEL

SUM

20

MASK

RNG

AKT

P0 P0 P0

AKT AKT

AKT

P0 P1 P0

AKT AKT

AKT

P0 P0 P0

AKT AKT

640-3 x D

640-3 x D

UPDATED

MODEL

MEDIAN 7x7
MASK

RANDOM

P0 P1

Fig. 6. Block diagram of the ViBe RUN module

a delay line approach and N (N = 20) multiplexers (MUX),

which are responsible for the selection of the appropriate

sample from the context (1 out of 9 for each MUX). The

selected value is then stored in the background model. The

multiplexers are controlled using a vector obtained from the

RNG module, thus the model is randomly initialized.

The main module is ViBe RUN, which detailed diagram is

presented in Figure 6. The inputs are: RNG (pseudo-random

number vector), PIXEL (current pixel in the CIE Lab colour

space), MODEL (background model read from the external

RAM). In the first phase, the distances between the current

pixel and the samples from the model are calculated and then

compared with the value R (DIST - realization of equation

(5)). Then it is checked whether the number of distances

less than R exceeds the #min threshold. In the next stage,

the 3 × 3 context consisting of the following signals PIXEL,

MODEL and MASK (foreground object mask) is generated. It

is worth noting the significant resource usage of this solution -

it requires the use of 28 block memory modules (Block RAM).

The delay block D allows synchronizing the pipeline. The ACT

module has both a function of a single delay and contains logic

that implements the update procedure. The substitution of a

background model sample with the current pixel is controlled

by the variable P0 (for neighbouring pixels) or P1 (for the

central pixel) and depends on the random factor (see Chapter

2) which is schematically illustrated in the form of the

RANDOM module. The last stage of the process is the median

filtering (MEDIAN 7×7). The updated model is stored in the

DDR RAM and the foreground mask displayed. The blinking

pixel detection logic is omitted for clarity reasons.

The presented system was integrated and synthesized for

the Virtex 6 FPGA device using the Xilinx ISE Design Suite

14.4. The maximum operating frequency (reported after place

& route) was 140 MHz, which is more than enough for

processing a VGA colour stream in real-time. FPGA resource

TABLE III
FPGA RESOURCE USAGE

Resource Used Available Percentage
FF 12571 301440 3 %

LUT 6 9278 150720 6 %
DSP 48 13 768 1 %

BRAM 18 172 832 20 %

usage is summarized in Table III. It is worth noting that due

to the large context used in the design and buffers required

for the DDR RAM controller, the BRAM 18 (Block RAM)

utilisation is quite high. The compatibility of the hardware

module with the software C++ model was confirmed using

the ISim simulation tool.

VI. CONCLUSION

This paper describes the implementation of the ViBe back-

ground generation algorithm in FPGA. Two modifications

were proposed: the use of the CIE Lab colour space and

improved detection of blinking pixels that have both increased

the effectiveness of the method. The results show that, using an

appropriate hardware platform, with a fast external RAM, al-

lows implementing in a pipeline manner a quite complex video

stream analysis algorithm in real-time. The proposed system

enables processing of a colour video stream with a resolution

of 640 × 480 and 60 frames per second. The module can be

used in advanced, automated video surveillance systems and

other application with require a reliable foreground mask and

real-time image processing.

ACKNOWLEDGMENT

This work was supported by the AGH University of Science

and Technology grant no 11.11.120.612. The authors would

like to thank Mateusz Komorkiewicz for his support in re-

designing the DDR RAM controller used in this project.

TOMASZ KRYJAK, MAREK GORGOŃ: REAL-TIME IMPLEMENTATION OF THE VIBE FOREGROUND 595

REFERENCES

[1] O. Barnich and M. Van Droogenbroeck, “Vibe: A powerful random
technique to estimate the background in video sequences,” in Acoustics,

Speech and Signal Processing, 2009. ICASSP 2009. IEEE International

Conference on, 2009, pp. 945–948.
[2] O. Barnichsz and M. Van Droogenbroeck, “Vibe: A universal back-

ground subtraction algorithm for video sequences,” Image Processing,

IEEE Transactions on, vol. 20, no. 6, pp. 1709–1724, 2011.
[3] A. S. H. Elhabian S. Y., El-Sayed K. M., “Moving Object Detection in

Spatial Domain using Background Removal Techniques - State-of-Art,”
Recent Patents on Computer Science, vol. 1, pp. 32–34, 2008.

[4] M. Genovese and E. Napoli, “FPGA-based architecture for real time
segmentation and denoising of HD video,” Journal of Real-Time Image

Processing, pp. 1–13, 2011.
[5] N. Goyette, P. Jodoin, F. Porikli, J. Konrad, and P. Ishwar, “Changede-

tection.net: A new change detection benchmark dataset,” in Computer

Vision and Pattern Recognition Workshops (CVPRW), 2012 IEEE Com-

puter Society Conference on, June, pp. 1–8.
[6] T. Kryjak, M. Komorkiewicz, and M. Gorgon, “Real-time background

generation and foreground object segmentation for high defnition colour

video stream in FPGA device,” Journal of Real-Time Image Processing,
pp. 1–17, 2012.

[7] OpenCV, “Strona www: http://http://opencv.org/ (last
acess: May 2013),” 2013.

[8] R. Rodriguez-Gomez, E. Fernandez-Sanchez, J. Diaz, and E. Ros,
“Codebook hardware implementation on FPGA for background subtrac-
tion,” Journal of Real-Time Image Processing, pp. 1–15, April 2012.

[9] ——, “FPGA implementation for real-time background subtraction
based on horprasert model,” Sensors, vol. 12, no. 1, pp. 585–611, 2012.

[10] D. Thomas and W. Luk, “FPGA-optimised uniform random number
generators using luts and shif registers,” in Field Programmable Logic

and Applications (FPL), 2010 International Conference on, 2010, pp.
77–82.

[11] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers, “Wallflower: prin-
ciples and practice of background maintenance,” in Computer Vision,

1999. The Proceedings of the Seventh IEEE International Conference

on, vol. 1, 1999, pp. 255–261.
[12] M. Van Droogenbroeck and O. Paquot, “Background subtraction: Ex-

periments and improvements for vibe,” in IEEE Change Detection

Workshop, 2012, pp. 32–37.

596 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

