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Abstract—Fiber To The Home (FTTH) deployment is crucial
for telecommunication operators for both economical and qual-
ity of service reasons. This paper deals with a real-life Passive
Optical Network (PON) design problem focusing on optical
cabling constraints. This decision problem is formulated as an
integer linear program (ILP) and several solving approaches are
designed. Tests performed on real instances assess the efficiency
of the proposed solution algorithms.

Index Terms—Fiber optics, cables, integer programming.

I. INTRODUCTION

INNOVATIVE bandwidth-requiring services lead telecom-

munication operators to the renewal of their fixed copper

access networks, with the introduction of optical fibers.

Among the optical fiber-based architectures, most telecom-

munication companies favor the PON architecture, appearing

the best long-term technological solution [2]. In this paper,

we thus focus on the design of FTTH-PON access network as

experienced by field deployment teams from France Telecom-

Orange. This decision problem arises as a joint optimization

problem of optical splitters location, and cable routing and

dimensioning.

Access network design problems have been intensively

studied in the past decades. For a relevant survey, the reader

can refer to [1]. To our knowledge, most papers related to

PON design focus on fiber-oriented models i.e. skipping thus

the cabling issues for later considerations (see. [3], [4]).

Despite these problems being highly combinatorial, strength-

ened formulations of fiber-oriented PON design problems

prove to be fairly tractable in practice (see. [4]). With regards

to cabling issues, closest related work remains from Kim et

al. [5] who propose ILP formulations for a global PON with

cables design problem in a tree graph and a two-dimensional

heuristic. The real-life PON deployment problem which is

here dealt with, has at least two major differences: first no

assumption is made on the underlying existing infrastructure

except being with sufficient capacity (i.e. uncapacitated), and

second, we exclude the possibility of gathering fibers with

different types of end points (splitters or demand points) into

the same cable, as well as fibers with different direction.

Notice that this last possibility may appear as our underlying

graph is not a tree. As far as the numerical experiment is

concerned, the size of the instances and the set of available

cables are as well very different in Kim et al. work compared

to the present article. Those differences seem to us major

requirements of an operational cabling policy. Formulated as

an ILP, this problem proves intractable due to the specific

cabling constraints. Therefore, we aim at proposing branch

and bound-based algorithm based on its ”fiber-oriented”

relaxation, taking benefit from the practical tractability of

the latter.

The remaining of this paper is organized as follows.

Section II is dedicated to the modeling of the problem,

proposing ILP formulations for both the real-life problem and

its ”fiber-oriented” relaxation. Section III reports for numeri-

cal tests performed on 4 real instances, before concluding in

Section IV.

II. PROBLEM MODELING

In this section, we introduce a model for the PON de-

ployment with cable constraints problem. Then, we show our

decomposition approach to solve it more efficiently.

A. Main model and Real life constraints

Let G = (V,E) be an undirected graph representing

the infrastructure where the PON shall be deployed. Give

orientation to each edge of G to obatin the directed graph
−→
G = (V,A) where for each edge ij ∈ E define two reverse

arcs ij and ji ∈ A. This architecture is modelled as in [4]

under the form of an integer multiflow. Every edge has a

length Dij and every node has a demand ai. We define 2

kinds of demand : ahi for ”high” ones and ali for ”low” ones.

High (respectively low) demands are defined as such if they

exceed (respectively do not exceed) a given threshold t. For

high demands, splitters of capacity m must be put directly

on the demand node. Then, we have to transform the initial

client demand into the last level splitter demand for the same

node. For a given node i ∈ V , if ai < t (resp. ai ≥ t), then

ahi = ⌈ai

m
⌉ and ali = 0 (resp. ahi = 0 and ali = ai. Low
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demands are to be filled with fibers coming from an optical

splitter. Splitters have a given capacity m, cost Cs and can be

put on every nodes and are denoted by sli. Fibers are coming

out from a single node called the Optical Line Termination

(OLT), of index 0. For the low demands architecture, there are

2 fiber levels. The level 1 fibers denoted by f l1
ij (for all arcs

(i, j) ∈ A), are used by splitters to produce level 2 fibers,

denoted by f l2
ij (for all arcs (i, j) ∈ A). For high demand

nodes, technological concerns impose to put splitters on the

demand node. It implies that there are only level 1 fibers

to route for high demand nodes. We denote these fibers by

fh
ij (for all (i, j) ∈ A). Fibers are aggregated within cables

of respective capacities q ∈ Q (given in decreasing order,

with q0 = maxQ q). We denote by ck,qij the number of cables

of level k ∈ {1, 2} of capacity q ∈ Q routed along the

arc (i, j) ∈ A. Cables of capacity q cost Cq
c . Finally, we

introduce the boolean variable bkij which controls whether

the arc (i, j) ∈ A is used or not.

zcable = min
c
k,q

ij
,si

∑

ij∈E

(Dij ·
∑

k∈{1;2}
q

Cq
c · c

k,q
ij ) +

∑

i∈V

Cs · si (1)

ck,qij ∈ N, f l1
ij ∈ N, f l2

ij ∈ N, fh
ij ∈ N, si ∈ N, bkij ∈ N (2)

∀i ∈ V \ {0} : si =
∑

j 6=i

f l1
ji −

∑

j 6=i

f l1
ij (3)

∀i ∈ V : ali ≤
∑

j 6=i

f l2
ji −

∑

j 6=i

f l2
ij +msi (4)

∀i ∈ V : ahi =
∑

j 6=i

fh
ji −

∑

j 6=i

fh
ij (5)

∀k ∈ {1; 2}, ∀i ∈ V :
∑

j 6=i

bkji ≤ 1 (6)

∀k ∈ {1; 2}, ∀ij ∈ A : bkij ≥

∑
q c

k,q
ij

N
(7)

∀ij ∈ A :
∑

q∈Q

q · c1,qij ≥ f l1
ij + fh

ij (8)

∀ij ∈ A :
∑

q∈Q

q · c2,qij ≥ f l2
ij (9)

∀k ∈ {1; 2}, ∀ij ∈ A :
∑

q∈Q\Q0

ck,qij ≤ 1 (10)

The objective function is denoted by zcable. In the model

presented above, constraints (3)-(5) ensure flow conservation

for all level of fibers, according to the number of splitters and

demand. Constraints (6) and (7) ensure that only one edge

incident to a node will be used, in order for the deployed

network to have tree properties. Constraints (8) and (9) allow

aggregation of fibers within cables. Constraints (10) ensure

that only one cable is routed through each edge (except for

the biggest cables q0).

B. Decomposing and using a warm start

The Pc model proves intractable on real-size instances

(refer to section III), but it can be decomposed so that we

obtain a model easier to solve. A fiber-based model, denoted

by Pf , can be derived from Pc as follows:

1) discard variable ck,qij describing the cables,

2) discard inequalities (8) to (10),

3) optimize along the objective function zfiber instead of

zcable, that is replace equation (1) by equation (11) with

Ck
f the cost1 of fiber fk for all k ∈ {h; l1; l2}.

zfiber = min
fk
ij
,si

∑

ij∈E

(Dij ·
∑

k∈{h;l1;l2}

Ck
f · f

k
ij) +

∑

i∈V

Cs · si (11)

Solving Pf allows us to get values for fibers and splitters

variables, so a solution of Pf is almost a feasible solution

of Pc in a sense that only cable variables remain to be

set. Therefore we design two solution algorithms based on

feasible solution of Pf .

• Pf + Hc : given any feasible solution of Pf , we set

cable constaints by use as much maximum capacity

cables as necessary and cover the remaining fibers with

the smallest cable whose capacity is greater than the

number. Hc is delailed in Algorithm 1.

• Pf + Pc : given any feasible solution of Pf , we set

arbitrarily large values to ck variables to satisfy the cable

constraints (8) to (10) and be able to set a warm start

to Pc.

Algorithm 1 Heuristic Hc

1: Initialize Ck,q
ij ← 0 ∀ij ∈ A; ∀k ∈ 1; 2; ∀q ∈ Q

2: for all arc ij ∈ A do

3: Set f := fk
ij

4: while f ≥ 288 do

5: Ck,288
ij := Ck,288

ij + 1
6: f := f − 288
7: end while

8: choose min q s.t. q ≥ f
9: Set Ck,q

ij := 1

10: Set Ck,288
ij ← ⌊ fk

ij288⌋

11: Set Ck,q̃
ij ← 1 where q̃ ← min q

s.t. q ≥ fk
ij − ⌊ f

k
ij/288⌋

12: end for

1Note that this cost is ”virtual” in a sense as it should depend on the size
of the cable which will be used for each level of fiber. In practice we will
assume that capacity of cables are decreasing with the level of fiber and,
given the concave cost structure of the cables, we will have decreasing fiber
cost (with respect to their level)
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III. NUMERICAL RESULTS

Our goal is to be efficient on our very specific operational

data. That is the reason why we have not conducted any

experiments on any public Network or MIP library. In this

context, we present numerical results from experiments on

4 data sets, named Data1 the smallest one, to Data4
the biggest one. The underlying infrastructure G and the

constants (such as cables costs Cq
c or demands ahi and

ali) have been set to their actual values; splitters capacity

set to m = 8, and the cables capacities are chosen in

Q = {288 = q0; 144; 96; 72; 48; 36; 24; 12}, while N is set

to 1000. The Linear Programming and the branch and bound

were performed by CPLEX 12.2 running on an AMD Athlon

II X3 powered by a Linux 2.6 kernel. Computation times

were set to 1800 seconds for Pf and Pc , meanwhileHc runs

quite instantly. Table (I) and (II) summaries some numerical

experiments.

TABLE I
EXPERIMENTATION Pf , 1800 SECONDS

Data |V | |E| Demand Cost Pf +Hc

Data1 583 838 8285 45606

Data2 808 2528 46294 110269

Data3 1232 3119 28080 105062

Data4 1624 2711 23774 110554

TABLE II
EXPERIMENTATION Pc , 1800 SECONDS

Data Cost Pc Gap Cost Pf + Pc Gap ∆

Data1 34624 23.95 34348 22.42 −24%

Data2 N/A N/A 60202 27.94 −45%

Data3 N/A N/A 71668 34.06 −32%

Data4 N/A N/A 106372 52.46 −3%

Let us explain some results shown in table (I). Pc finds

a feasible solution only on Data1, the smallest. Hence, by

solving Pf first, we help to find a feasible solution even on

biggest data sets. And then by solving Pc we lower the cost a

lot more than by solving Hc for the three smallest data sets

as shown in column ∆ where ∆ quantifies the difference

between the cost of Pf +Hc and Pf + Pc.

Moreover, since for Data1 the cost of Pc and Pf +Pc are

about the same, we think that the warm start helps to find

a solution as good as the one that would have been found

without it on other data sets.

Let us discuss about Data4. For this data set the gap is

almost twice the gap on smaller data sets, and the value in

column ∆ is rather small. We think the number of vertices

|V | is too big for CPLEX to solve efficiently the branch and

bound process. This thought is also supported by the fact that

for model Pc, if the computing time increases up to 10800
seconds, this does not achieve any improvement more than

1% gap. We expect to find a more efficient decomposition

technique in order to lower the gap on big data sets. We
should remark as well that for Pf , gaps vary from 1% to

4%, which is very small.

IV. CONCLUSION

In the present article we have shown that by using a

decomposition and a warm start, we make possible to solve a

MIP model describing a PON access network design problem

with cable constraints, even on very big data sets. We have

shown that for some data sets, the entire model performs a

good optimization once a warm start is given. The solutions

found are admissible in an operational point of view, that

means conform and checkable, fast to compute and easy

deploy; moreover far cheaper than the best solution found by

another mean.Notice that cable constraints (8) to (10) make

the problem hard to solve on our large size of data sets.

Notice that although it is easy to find a deployable, feasible

solution without any computer assistance the price found by

our model is around 50% of the best cost found by hand.

We think that the warm start could be improved by finding

a good heuristic or by studying the link between objective

function (1) and (11). To test wether this could help CPLEX

to find a better solution on the entire problem is an open

question. Some other constraints are post-processed after the

MIP has been solved; we wish to encompass them inside the

main model. Finally, since the gap for some data sets is quite

large and that running CPLEX a long time doesn’t lower it,

we wish as well to better understand the decomposition used

for the warm start in order to improve this step and achieve

a better gap.
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