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Abstract—This article deals with universal sequential audio
pattern search and sound recognition method. Inspired by
classical phoneme-based speech recognition and word spotting
systems, where longer speech patterns are formed by sequences
of basic speech units, we propose a methodology for creating a
finite database of elementary sound models. These models can
be arbitrary concatenated into sequences, thus forming a model
of the required acoustical pattern or sound event.

I. INTRODUCTION

A
UTOMATIC speech recognition and word spotting sys-

tems are nowadays getting to the forefront in daily use.

Intelligent human-computer communication interfaces allow

us to take up the control over electronic equipment using

our voice, making their usage more native and comfortable.

All this is possible thanks to rigorous research in the field

of human speech production and recognition. However, voice

operated devices can only work with human speech and

react only to specific spoken keywords or phrases in certain

language, mostly English.

Universal intelligent system should be versatile, easily ex-

pandable for new commands in different languages, have

ability to learn and operate also with non-speech sounds and

acoustical events, e.g. for better evaluation of content and

context of a situation. Such system can be adopted in different

application areas. Audio is useful especially in situations when

other sensors fails to reliably detect an event. For example

in the context of surveillance systems, in weakly illuminated

places, public transport areas, public halls or streets where it

is not possible to evaluate video, or visual information alone is

unreliable, the audio events spotting system can be very useful

as burglar or violence alarm by detecting sound events, like

glass brake, shout, footsteps, or any other significant sound

defined by user [1], [2].

Another topic in the field of audio processing is information

retrieval over multimedia content. Currently, huge amount of

multimedia data such as music recordings, broadcast news,

dialogs and conversations, etc., are available in large audio

databases. However, most of these data are unstructured and

have limited or no tag information about the content, hence,

it is not easy for user to locate desired audio samples or

segments.

Most of the existing applications perform the content-based

analysis by segmentation of the audio data and subsequently

classification of audio sequences into one of the specified

sound classes, represented mostly by a statistical model [3]–

[5]. Disadvantage of this approach is, that a sufficient amount

of representative data is needed for each sound class to be

created and user has only limited possibility to adding new

queries into search. Moreover, with growing number of sound

classes or queries in search also the computation and memory

demands grow.

”Query-By-Example” (QBE) paradigm is an alternative

approach to multimedia information retrieval. In the context

of audio information, the user provides a short sound clip as a

query and the system returns audio samples that are similar to

the query. For example, the user provides a short utterance

spoken by a particular person and expects that the system

returns all the samples from the audio (video) database that

contain the voice of the same person. Or the user gives a

sample of an applause sound and the system should return all

clips from the audio/video content that contain applause.QBE

approach is also very popular in music information retrieval

[6], [7]. The challenge of the QBE approach is that only

very limited amount of training/reference data are available

in advance and sound classes are apriori not known, thus

conventional statistical model-based approaches and learning

algorithms cannot be straightforward adopted.

Among various approaches to example-based audio event

detection and retrieval, the most popular ones are based on

similarity measure in audio feature vector space [8], [9] or

hidden Markov models (HMM) [10], [11]. The approach in

[11] was based on feature-based segmentation of audio using

a dynamic Bayesian network. The inherent similarity or dif-

ference between sounds was determined by the corresponding

similarity or difference between the audio features trajectory

represented by HMM that approximates a general trend in

query time behaviour.

In this paper we adopt different strategy to HMM modeling

of an audio pattern. We propose the HMM approach that is

inspired by methods very well explored in automatic speech

recognition (ASR) and ASR-based spoken term retrieval.

Every spoken word or sentence of speech of given language

can be formed as a combination of basic acoustical-linguistic

units, which are called phonemes. In every languages, there

is a finite number of phonemes, e.g. there are approximately

44 phonemes in English language (may differ with particular

dialect). In ASR-based keyword spotting systems, the search

space is created only by statistical models of phonemes and
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keywords or speech patterns are added into search as logical

sequences of these models.

Our effort was to adopt the concept of elementary units for

general sound and language independent speech recognition

task. This approach requires to define a basic unit of sound

(hereinafter called the elementary sound) and create a finite,

but sufficiently large database of these units. For this purpose,

we have adopted methods of unsupervised cluster analysis

applied over huge amount of various audio data to create

a database of elementary sound models. Major contribution

of our proposal is that the elementary sound models can

be treated as analogy to phoneme-based models in speech

processing. Thus, statistical methods for speech recognition

can be applied for general audio. As it is known to the authors,

no similar method has been proposed in literature.

II. CONCEPT OF ELEMENTARY SOUND UNITS

A. Elementary sounds

The idea of elementary sound units is based on the assump-

tion that, in general, any acoustical pattern can be synthesized

as a concatenation of short-time sound elements, stored in

finite (but sufficiently large) sound inventory. This idea is

derived from speech recognition and keyword spotting systems

based on concatenation of sub-word phoneme units from finite

database, to represent the sentences of speech. These units

are predominantly represented by their parametric statistical

models, created and estimated according to corresponding

acoustical training examples.

Of course there are many challenges to successfully im-

plement such approach. The biggest problem is the fact

that unlike speech, which can be easily modeled since its

physical production is known, general sounds are produced by

unlimited number of ways and thus can be of infinite variance

in temporal-spectral behavior. Unlike the phonemes, we can

not practically create a database of the acoustical examples

for general sound basic units. Instead, we have performed a

cluster analysis over statistical models and created a database

of the elementary sound models. The process of the creation

is described below.

B. Parametric modeling

First step to create the database of the elementary sound

models is to select a suitable method for statistical modeling

and model parameters. For this purpose, we choose model-

ing via hidden Markov models (HMM), which is suitable

for statistical description of time series of observations and

therefore is commonly used in speech and general sound

recognition tasks. A continuous-density HMM with N states

consists of a set of parameters that generally comprises the

matrix of transition probabilities, the initial state distribution,

and the parameters of the state output density function, which

is mainly approximated by a mixture of Gaussian components

that can be expressed as follows:

P (x|S) =
∑

k

wkNk(x,µk,Σk) (1)

where Nk is the Gaussian component with mean vector µk

and covariance matrix Σk, and wk is the weighting coefficient

of this component in the state of the model. However, as

the number of states in the search space grows, the system

becomes more computationally and memory demanding. For

this reason, we adopt a semi-continuous-density models, where

all states share the same Gaussian components. Output density

function of particular state is then determined only by the

weighting vector w.

Furthermore, assuming that only one of the components has

major contribution to the resulting likelihood of the state, the

summation operation in (1) can be replaced by the selection of

maximal value. This modification reduce the processing time

with minimal impact on resulting likelihood (mean difference

less than 5%).

Similar to phoneme models, we choose a 3-state left-to-right

model structure with equal transition probabilities, which can

therefore be omitted.

C. Unsupervised clustering

One of the problems of statistical modeling is the deter-

mination of optimal number of Gaussian mixture components

for output density function, which is usually determined by

experiments [3], [4]. More sophisticated approach is based on

Bayesian or Akaike Information Criterion [12], [13], Kullback-

Leibler divergence [13], and unsupervised clustering methods

[14], [15]. In [15], unsupervised K-Variable K-means cluster-

ing algorithm was proposed. This algorithm was adopted in our

work to determine the optimal number of mixture components

and also for derivation of the elementary sound models. The

clustering algorithm is described below.

Algorithm 1 K-Variable K-means

1: Compute m and s as the mean and standard deviation of

the distances between any pair of frames.

2: Set threshold distances: T1 = m− C.s; T2 = m+ C.s
where C ∈< 0.5; 1.5 >

3: Create 1st centroid as c1 = argmaxi(‖xi‖)
4: for ∀xi do

5: di = minj(dij(xi, cj)); Find the distance to the closest

centroid.

6: if di < T1, Make xi member of cluster j;

7: if di > T2, Make xi the center of a new cluster;

8: end for

9: Make all the remaining unclassified vectors members of

their closest cluster.

D. Database of the Elementary Sound Models

The most important part of our system for general audio

pattern searching is the database of the elementary sound

models. Due to the gargantuan number of different sounds that

may generally occur, it is impossible to create a finite database

of acoustical training examples for elementary sound models.

Therefore we have adopted the cluster analysis do derive and

group sounds with similar statistical characteristics.
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Fig. 1. Distribution of acoustical observations among clusters.

First, a sound database was collected, that consist of more

than 30 hours of various short audio clips. This database

involve different types of environmental and machinery sounds

and noises, animal sound, human produced sounds and speech

of different languages, music of different genres, etc.

The database was processed and the audio features de-

scribed in section III were extracted. To obtain the Gaussian

mixture components, all feature vectors were divided into clus-

ters. Before the actual clustering, confusing data vectors were

eliminated. The centroid of the whole data set was computed

and the mean m and standard deviation s of distances of

data vectors from this centroid were computed. Vectors with

distance d > m+ 3.s were discarded.

Remaining data vectors were clustered using the unsuper-

vised clustering and the means µk and diagonal covariance

matrices Σk occurred in (1) were computed for each cluster

respectively. Clusters with less than 30 observations were

discarded. As the result of clustering, state output density

function consist of 426 Gaussian mixture components. Fig.

1 shows the distribution of acoustical observations among

clusters.

Next, audio stream from all sound clips was formed and

divided into 1 second long segments with 0.5 second overlap.

From each segment a 3-state model was estimated. Because

the models are defined by their weighting coefficient vector in

each state, estimated models were clustered by unsupervised

clustering. A histogram of distribution of the models within

the clusters was computed. The clusters were assorted from the

biggest to the smallest according to the number of members

within the cluster. The elementary sound models were then

derived as the means of the clusters. The clustering results in

more than 104 clusters, although most of them comprise only

one member. Therefore, only first 500 models were adopted

for experiments.

Each of these models describe the audio segment in that

the acoustical observations are statistically very similar. Con-

versely, acoustical observations of different elementary sounds

differ in their characteristics.

III. AUDIO FEATURES SELECTION

In order to achieve the best performance for classification,

we have selected features that can capture the temporal and

spectral characteristics of audio. Following work in [16], in

which the features were selected by optimization algorithm,

we have selected the following features:

1) Line spectral frequencies/pairs (LSF/LSP) - used as an

alternative to linear prediction coefficients. The LSF are

obtained by decomposing the LP filter transfer function

A(z) into pair of auxiliary polynomials:

P (z) = A(z) + z−p+1A(z−1)
Q(z) = A(z)− z−p+1A(z−1)

(2)

where P (z) is symmetrical and Q(z) asymmetrical p+1-

order polynomial, where the zeros of A(z) are mapped

onto the unit circle in the z–plane.

2) Spectral flux (SFX) - measures changes in the shape

of magnitude spectrum by calculating the difference

between magnitude spectra of successive frames. The

spectral flux is computed for frame at discrete time t as

follows:

SFX(t) =

∑

k[ak(t)− ak(t− 1)]2
√

∑

k ak(t)
2
√
∑

k ak(t− 1)2
(3)

where ak is the k-th element of magnitude spectrum

of given frame. Spectral flux describes the temporal

changes of magnitude spectrum, thus represents the

dynamic coefficients of spectrum.

3) Zero crossing rate (ZCR) - the number of time-domain

zero-crossings within a frame, computed as a number of

sample sign changes.

These features were extracted using the Yaafe [17] extrac-

tion tool. The resulting feature vector consists of 10 LSF’s,

one SFX, and one ZCR coefficient.

IV. AUDIO PATTERN SEARCHING

The theoretical background for sequential audio pattern

searching was taken from [18] where a decoder for keyword

spotting was proposed. Its function is based on Viterbi al-

gorithm with propagation of accumulated score through the

Fig. 2. Looped network of units and fillers.
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Fig. 3. Query-by-Example search.

looped network of units that represents searched keywords,

and fillers.

In our implementation, the basic unit of the decoder is

the elementary sound. In process of creating the model of

demanded audio pattern, a representative audio sample is

passed into decoder and transcribed into sequence of the

elementary sound models. This transcription is found as the

path through the elementary sound models with the highest

score achieved for the training example. This logical sequence

of elementary sounds is then added into search space as a unit,

representing the searched audio pattern. Example of model

network with units and fillers is shown in Fig.2.

In the process of decoding, each acoustical observation

must be assigned to one of the states in model network. The

acoustical observations between segments that correspond with

searched patterns are assigned to the filler models, that repre-

sents any sound that may occur in background. This definition

of filler offers us the possibility of using the proposed database

of elementary sound models itself.

Another benefit of using the elementary sounds as fillers

is that we can compute the confidence of particular unit as

proposed in [18]. The confidence C(u, t) of unit u at discrete

time t is defined as normalized acoustic score as follows:

C(u, t) = S(u, t)/S(fc, t) (4)

where S(u, t) it the acoustic score achieved for segment of

audio by unit u, and S(fc, t) is the acoustic score achieved

by the best concatenation of fillers (in our case the elementary

sound models) for the same segment. It follows that the con-

fidence reaches the maximum value of 1 only when the score

of the unit and the score of fillers concatenation are equal.

In this case, the audio segment precisely correspond with the

unit training example. In other cases when C(u, t) < 1 the

probability of correct detection decreases and proper threshold

must be set for experimental data. Fig. 3 shows the principal

functions of the complex system for query-by-example general

audio pattern recognition.

V. EXPERIMENTAL RESULTS

A. Experiment setup

The experiments on the proposed database of the elemen-

tary sound models were performed in task of audio pattern

search in recordings, which include acoustical patterns of five

different sound types: applause, crying, laughing, gunshot

and speech (10 Slovak keywords). Ten artificial audio tracks

were created by random concatenation of 20 audio examples

from each sound class and various types of environmental

background noises respectively. For each audio track, the

examples were chosen randomly from the sound database.

Accuracy of the search was evaluated on the level of acous-

tical observations against the human annotation of records

with common precision (P ), recall (R), and F1-measure (F1)

metrics defined as follows:

P =
ncorrect

ntotal

;R =
ncorrect

ntarget

;F1 =
2.P.R

P +R
; (5)

where ncorrect stands for correct positive detections, ntotal

for total positive detections and ntarget for target positive

detections.

B. Audio event detection

For each searched sound example, the unit was created, as

described in Section IV. Each of these units was used as query

for searching. Units were able to find corresponding training

examples with practically 100 % accuracy and confidence

close to 1. Although using simple correlation will be much

more efficient in this case, this experiment proved our prior

assumption that specific audio pattern can be modeled as a

sequence of the elementary sound models.

In the next experiment, only one representative example

for each class was used as query for search. By changing

the confidence threshold, the balance between precision and

recall was set, to obtain highest possible F-measure score. The

decoder was able to find also other audio segments similar

to the queries. Overall average precision and recall reaches

62.5 % and 58.5 % respectively.
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TABLE I
EXPERIMENTAL RESULTS ON VARIOUS ACOUSTIC PATTERNS

Pattern (Class) *
Number of examples in query

1 2 3

P 73.40 % 81.55 % 89.33 %

Applause R 76.78 % 97.81 % 96.75 %

F1 75.60 % 88.95 % 92.89 %

P 55.69 % 85.98 % 81.52 %

Crying R 55.50 % 52.49 % 57.71 %

F1 55.60 % 65.18 % 67.58 %

P 52.88 % 98.73 % 83.76 %

Laughing R 41.21 % 52.07 % 80.08 %

F1 46.32 % 68.18 % 81.88 %

P 87.18 % 84.35 % 91.00 %

Gunshot R 80.68 % 79.25 % 88.62 %

F1 78.07 % 81.72 % 89.80 %

P 43.17 % 75.41 % 80.78 %

Keywords R 48.38 % 63.17 % 70.22 %

F1 45.63 % 68.75% 75.13 %

In the next search run, one additional representative example

of each class was added into the search space, so that two ex-

amples were in the query. By setting the confidence threshold

for each example of representative pair, the overall average

precision and recall increased to 85.2 % and 69.0 % respec-

tively. Lastly, three representative examples were selected as

queries and put into search. The confidence threshold was set

for each examples of three. The average precision and recall

again increased to 85.3 % and 78.7 % respectively.

The advantage of our system is that if a user has only one

example of demanded audio pattern (query-by-example), new

examples can be added into search as selected audio segments

found in previous run. Thus, the system has ability to ”learn”

from users feedback after the search. Table I shows the average

results achieved using 1, 2, and 3 examples in query for each

sound class.

VI. CONCLUSION

The system for universal sequential audio pattern search

has been proposed. Statistical model specifications were in-

troduced and the database of elementary sound models was

created, using the unsupervised clustering method. Experi-

mental results show that it is possible to adopt the concept

of elementary sound units for general audio pattern modeling

and recognition. However, a proper confidence threshold must

be set experimentally for each unit to obtain the best possible

result. Experiments also show that adding more examples of

particular audio pattern can significantly improve searching

results. If these examples are selected by a user from previous

search run results, the system is also able to learn according

to user feedback.

In our future work, we aim to include expecta-

tion–maximization algorithm in the clustering and adopt

Viterbi alignment and discriminative training for better dis-

crimination of elementary sound models. We also plan to

compare the performance of the system on larger set of audio

features extracted from audio data.
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