
Alvis Language with Time Dependence

Marcin Szpyrka, Piotr Matyasik, Michał Wypych
AGH University of Science and Technology

Department of Applied Computer Science

Al. Mickiewicza 30, 30-059 Krakow, Poland

Email: {mszpyrka,ptm,mwypych}@agh.edu.pl

Abstract—The paper presents the semantics for the time ver-
sion of the Alvis modelling language. Alvis combines possibilities
of formal models verification with flexibility and simplicity of
practical programming languages. The considered time Alvis
language is suitable for formal verification of real-time systems.
The paper contains description of: the Alvis time model, states
and transitions between states and snapshot reachability graphs
that represent models state spaces in the form of directed graphs.

I. INTRODUCTION

C
OSTS of creating and maintaining embedded software

draw attention of producers to formal methods. There

are more and more attempts to provide methods and tools to

improve the concurrent systems development [6], [9]. Alvis

combines a formal approach with engineering-like look and

style. It is hiding most of the formal side from users but not

losing any part of it. Alvis is a modelling language being

developed at AGH-UST in Krakow, Department of Applied

Computer Science (http:// fm.kis.agh.edu.pl).
Previous research on Alvis has been mainly concerned with

the untimed version of the language with α0 system layer

(multiprocessor environments). The syntax of Alvis which is

common for all language versions can be found in [21]. Formal

semantics of the untimed version of Alvis has been presented

in [22]. This version of Alvis has been successfully used for

formal verification of concurrent systems e.g. for BPMN mod-

els [23] which may include rule-based systems [18] designed

with the XTT2 method [11], [15] or as D-nets [24].
The aim of the paper is to present a draft of semantics for

the time version of Alvis with α0 system layer which allows

users to assign to every model statement its duration. Then the

set of reachable states of such a model is represented in the

form of SR-graph and is used for its verification with model

checking techniques [2]. SR-graphs provide the possibility

of formal verification of real-time requirements. In contrast

to other formalisms like time automata [1], Petri nets with

time [10], [17] or multi-agent systems [5], Alvis syntax is very

similar to procedural programming languages and the method

of model states description is similar to information provided

by software debuggers. The idea of SR-graphs has been shortly

introduced in [19]. This paper contains formalised and more

detailed description of it.

II. ALVIS AT A GLANCE

Alvis combines advantages of high level programming

languages with a graphical language for modelling intercon-

nections between subsystems (called agents) of a concurrent

system. Agents are divided into active and passive. Active

agents perform some activities and are similar to tasks in

Ada programming language [4]. By contrast, passive agents

do not perform any individual activities and are similar to

protected objects (shared variables). Passive agents provide

other agents with a set of procedures (services). An Alvis

model is composed of three layers. A communication diagram

(graphical layer) is used to describe a modelled system from

the control and data flow point of view. Examples of such

diagrams are given in Fig. 1 and 6. Active agents are drawn

as rounded boxes while passive ones as rectangles. Ports used

for communication are drawn as circles placed at the edges

of the corresponding figures. Alvis agents communicate with

each other using communication channels drawn as lines. The

code layer is used to define behaviour of agents. It uses a

set of Alvis statements and some elements of the Haskell

functional programming language [16]. Despite of the fact

that Alvis has its origin in the CCS process algebra [14]

and the XCCS language [3], [20], it does not use algebraic

equations to describe the behaviour of agents but a high level

programming language. The system layer is predefined and

defines the hardware environment for a model. In this paper

we consider models with the α0 system layer that denotes

that each active agent has access to its own processor and

if possible agents perform their steps concurrently. For more

details see [21] or the project website.

An Alvis model semantics find expression in a labelled

transition system (LTS graph). Execution of any language

statement is expressed as a transition between formally defined

states of such model. An LTS graph is an ordered graph with

nodes representing states of the considered system and edges

representing transitions among states. Examples of Alvis LTS

graphs are given in Fig. 2, 3, 5 and 7. Alvis LTS graphs can be

verified using the CADP toolbox [8]. We use CADP evaluator

tool to check whether the model satisfies requirements given

as regular alternation-free µ-calculus formulas [7], [13].

III. ALVIS TIME MODEL

The Alvis time model is based on the idea of a global clock

used to measure the duration of model steps. The language

provides carefully selected set of statements sufficient to

describe the behaviour of individual agents. Each of them

can have duration assigned which is provided by a user as

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 1553–1558

978-1-4673-4471-5/$25.00 c© 2013, IEEE 1553

agent X1 { loop { out p; } }

agent X2 { loop { in q; } }

Figure 1. Communication between active agents

(0)
X1: (X,1,[],())
X2: (X,1,[],())

(1)
X1: (X,2,[],())
X2: (X,1,[],())

loop(X1)

(2)
X1: (X,1,[],())
X2: (X,2,[],())

loop(X2)

(3)
X1: (W,2,[out(p)],())

X2: (X,1,[],())

out(X1.p)

(4)
X1: (X,2,[],())
X2: (X,2,[],())

loop(X2) loop(X1)

(5)
X1: (X,1,[],())

X2: (W,2,[in(q)],())

in(X2.q)

(6)
X1: (W,2,[out(p)],())

X2: (X,2,[],())

loop(X2)

in/out(X2.q,X1.p)

(7)
X1: (X,2,[],())

X2: (W,2,[in(q)],())

loop(X1)

in(X2.q) out(X1.p)

Figure 2. LTS graph for model in Fig. 1

a verification parameter. The time units used in a given model

are strictly connected with the model interpretation.

Let us consider the simple model of two communicating

active agents shown in Fig. 1. Each agent performs two steps:

entering a loop and a communication. Agent X1 sequentially

sends signals via port X1.p (X1.p denotes port p of agent

X1), while agent X2 sequentially collects signals via port

X2.q. If an untimed Alvis language is considered, the LTS

graph represents all possible execution paths as shown in

Fig. 2. The LTS graph labels point out steps performed by

agents.

Definition 1: A state of an agent X is a tuple

S(X) = (am(X), pc(X), ci(X), pv(X)) (1)

where am(X), pc(X), ci(X) and pv(X) denote agent mode,

program counter, context information list and parameters

values of the agent X respectively.

The following modes are possible. Finished (F) means that

an agent has finished its work. Init (I) is the default mode for

agents that are inactive in the initial state. Running (X) means

that an agent is performing one of its statements. Taken (T)

means that one of the passive agent procedures has been called

and the agent is executing it. For passive agents waiting (W)

means that the corresponding agent is inactive and is waiting

for another agent to call one of its accessible procedures. For

active agents the mode means that the corresponding agent is

waiting either for a communication with another active agent

or for a currently inaccessible procedure of a passive agent.

The program counter points out the current statement of

an agent. The context information list contains additional

(0)
X1: (X,1,[],())
X2: (X,1,[],())

(4)
X1: (X,2,[],())
X2: (X,2,[],())

{loop(X1),loop(X2)}/1 {in(X2.q)|out(X1.p)}/1

Figure 3. LTS graph for model in Fig. 1 – timed version

information about the current state e.g. if an agent is in the

waiting mode, ci contains information about events the agent

is waiting for. The set of admissible entries used in ci lists

is given in Table II. The parameters values list contains the

current values of the corresponding agent parameters, if such

parameters (variables) have been defined in the agent code.

A state of a model is represented as a sequence of agents

states [22], [12]. We will use letter S with possible index to

denote states. If necessary am, pc, ci, pv will be indicated by

indexes S, S′ etc. to point out the state they refer to.

If durations of steps are taken under consideration, we

cannot consider states of a system in the same way as

previously. For example, state 3 in the untimed LTS graph

shown in Fig. 2 represents the situation when agent X1 has

already finished two of its steps, while agent X2 still remains

in its initial state. Such situation is not possible in time models.

Assume steps durations for all steps in the considered model

are equal to 1. It means that both agents start execution of their

first steps in the same time, so after 1 time-unit the system

changes its state from 0 to 4. Finally, the LTS graph for the

model is reduced to the one shown in Fig. 3. Labels of edges

in the presented graph are of the form steps/t, where t stands

for the duration of the steps performed simultaneously. The

change of the state from 4 to 0 is the result of synchronous

communication between agents which is denoted by symbol

| used instead of a comma.

Alvis uses three statements that use time explicitly:

• delay t – postpones an agent for a given time;

• alt(delay t) {...} – defines a branch of the select

statement that is open after the given time;

• loop (every t) {...} – repeats loop contents every

specified number of time-units.

Let us focus on the step idea. It is necessary to distin-

guish between code statements and steps. Most of the Alvis

statements e.g. exec, exit , etc. are single-step statements.

By contrast, if , loop and select are multi-step statements.

We use recursion to count the number of steps for multi-

step statements. For each of them, the first step enters the

statement interior. Then we count steps of statements put

inside curly brackets. From theoretical point of view steps

are described as transitions. The formal description of Alvis

provides definitions of results of any transition execution. Such

formal semantics for untimed models is presented in [22]. The

time aspect of transitions is considered in Section IV.

Suppose the code layer for the communication diagram in

Fig. 1 is implemented as shown in Fig 4. Agent X1 starts its

1554 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

agent X1 {

loop (every 10) { out p; }} -- 1, 2

agent X2 {

loop { -- 1

select { -- 2

alt (ready [in(q)]) {

in q; delay 1; } -- 3, 4

alt (delay 2) { null; }}}} -- 5

Figure 4. Communication between active agents version 2 – new code layer
for communication diagram in Fig. 1

Table I
STEP DURATION FOR MODEL IN FIG. 4

Agent X1 Step duration Agent X2 Step duration
loop every 1 loop 1
out 3 select 2

in 2
delay 1
null 1

loop every 10 time-units and sends a signal via port p inside

the loop. Behaviour of agent X2 is defined as an infinite loop

with a select statement inside. The statement contains two

branches. First one is open (can be performed) if port q can

be immediately used to collect a signal (i.e. agent X1 has

already sent a signal via port p which is connected with q).

Inside the branch agent X2 collects a signal via port q and is

postponed for 1 time-unit. Second branch is open 2 time-units

after entering the select statement. Inside the branch agent

X2 performs the empty statement.

Assume steps durations for all steps performed by agents

X1 and X2 are defined as given in Table I. Let us focus on

the initial state S0 = ((X, 1, [], ()), (X, 1, [], ()). When the α0

system layer and timed Alvis language are considered it is

assumed that agents execute their steps as soon as possible.

Thus, both agents are running their first steps (loopevery(X1)
and loop(X2)) concurrently and after one time-unit the state

S1 = ((X, 2, [timer(1, 9)], ()), (X, 2, [], ())) is received. The

timer(1, 9) entry used in X1 agent context information list

points out that the next loop course can start after 9 time-

units. There are two steps out(X1.p) and select(X2) enabled

in the state 1. Because step out(X1.p) takes 3 time-units,

while select(X2) takes 2 time-units, we cannot present the

result of these transitions execution as a state similar to state 1.

After 2 time-units the step out(X1.p) is still under execution

and after 3 time-units when step out(X1.p) is finished, agent

X2 could be executing another step – this is not the case in

this model due to the lack of an open branch for the select

statement. The solution for the problem is a snapshot [19] i.e.

a state that presents the considered system with some steps

under execution. We can take a snapshot every 1 time-unit but

we are interested only in such snapshots when at least one

step has finished its execution.

An LTS graph with snapshots will be called snapshot

reachability graph or SR-graph for short. A part of the SR-

(0)
X1: (X,1,[],())
X2: (X,1,[],())

(1)
X1: (X,2,[timer(1,9)],())

X2: (X,2,[],())

{loopevery(X1),loop(X2)}/1

(2)
X1: (X,2,[sft(1),timer(1,7)],())
X2: (W,2,[guard,timer(2,2)],())

{out(X1.p),select(X2)}/2

(3)
X1: (W,2,[out(b),timer(1,6)],())

X2: (X,3,[],())

 out(X1.p)/1

(4)
X1: (W,2,[timer(1,4)],())

X2: (X,4,[],())

 in(X2.q)/2

(5)
X1: (W,2,[timer(1,3)],())
X2: (W,4,[timer(4,1)],())

 delay(X2)/1

(6)
X1: (W,2,[timer(1,2)],())

X2: (X,1,[],())

 time/1

Figure 5. Part of SR-graph for model in Fig. 4

graph for the model in Fig. 4 is shown in Fig. 5. State 2

represents the time point when agent X2 has finished step 2

and is waiting for an open branch of the select statement,

while agent X1 is still performing step out(X1.p). The sft(n)
(step finish time) entry used in X1 context information list

points out the number of time-units necessary to finish the

current step. State 4 represents the time point when agent X1
is waiting for a timer event to restart the loop. The event will

be generated in 4 time-units. State 5 represents the time point

when both agents are waiting for timers’ events. Agent X2 is

waiting for the end of the postpone time. The time label of

the edge from state 5 to 6 denotes the passage of time.

IV. TRANSITIONS

Let P denote the set of all model ports. For this paper we

define Alvis models as follows [22].

Definition 2: A communication diagram is a triple D =
(A, C, σ), where: A = {X1, . . . , Xn} is the set of agents con-

sisting of two disjoint sets, AA, AP such that A = AA∪AP ,

containing active and passive agents respectively; C ⊆ P×P is

the communication relation, such that: (1) a connection cannot

be defined between ports of the same agent; (2) procedure

ports are either input or output ones i.e. ports defined as

procedures are used to transfer signals (values) either to or

from a passive agent; (3) a connection between an active and

a passive agent must be a procedure call; (4) a connection

between two passive agents must be a procedure call from a

non-procedure port. Function σ : AA → {False,True} is the

MARCIN SZPYRKA, PIOTR MATYASIK, MICHAŁ WYPYCH: ALVIS LANGUAGE WITH TIME DEPENDENCE 1555

start function that points out initially activated agents.
Definition 3: An Alvis model is a triple A = (D,B, α0),

where D = (A, C, σ) is a communication diagram, B is

a syntactically correct code layer, and α0 is the α0 system

layer. Moreover, each agent X belonging to the diagram D
must be defined in the code layer and each agent defined in

the code layer must belong to the diagram.
Definition 4: A state of a model A = (D,B, α0), where

D = (A, C, σ) and A = {X1, . . . , Xn} is a tuple S =
(S(X1), . . . , S(Xn)). The initial state is defined as follows:

• am(X) = X, for any active agent X such that σ(X) =
True; am(X) = I, for any active agent X such that

σ(X) = False; am(X) = W, for any passive agent X;

• pc(X) = 1 for any active agent X in the running mode

and pc(X) = 0 for other agents.

• ci(X) = [] for any active agent X; and ci(X) contains

names of accessible procedures for any passive agent X .

• For any agent X , pv(X) contains X parameters with their

initial values.

Table II contains all possible entries that can be included

into a context information list and the relationships between

the entries and an agent mode.
Let B(X) denote an agent X code, card(B(X)) denote

the number of steps in B(X), Bi(X) ∈ {delay , exec, exit ,
if , in, jump, loop, loopevery ,null , out , select , start} denote

the name of the agent X i-th step, and N (t) denote the name

of the transition t (possible values are the same as for steps).

The set of all transitions available for a particular model will

be denoted by T . Moreover, let ∆(X, k) denote the duration

of the k-th step of agent X .
Let us consider the model given in Fig. 6. It contains two

active agents A and B that can communicate directly or using

passive agent C. Agent A inside the infinite loop performs

a select statement and waits at most 3 time-units for a

communication via port p. In case of a timeout, agent A sends

a signal via port q. Agent B inside its periodic loop picks 0

or 1 at random and depending on the result collects a signal

via port q or p. Agent C provides two procedures that are

accessible depending on the value of parameter n. It works

like a buffer for a single signal. The comments included into

the code contain steps numbers and durations.
Definition 5: Assume A = (D,B, α0) is an Alvis model

with the current state S and X ∈ AA. A transition t ∈ T is

enable in the state S with respect to X if and only if X is

in the running mode, the program counter points out step t,
X has not called a procedure and the step t is not already in

progress. The fact that a transition t is enabled in a state S
with respect to an agent X and that a state S′ is the result of

executing t in S will be denoted by S−t(X)→S′.
The paper [22] contains formal description of all possible

transitions for untimed Alvis models. In this section we will

focus on description of the differences between untimed and

time versions of the language.
Let pvS(X)|x=w denote the list of parameters values

pvS(X), but with the parameter x assigned to a new value

w. If X ∈ AA, S−texec(X)→S′, and a parameter x is

agent A {

loop { -- 1/1

select { -- 2/1

alt (ready [out(p)]) { out p; } -- 3/2

alt (delay 3) {out q; } } } } -- 4/2

agent B {

i :: Int = 0;

loop (every 6) { -- 1/1

i = pick [0,1]; -- 2/1

if(i == 1) { in q; } -- 3/1, 4/3

else { in p; } } } -- 5/2

agent C {

n :: Bool = False;

proc q1 (n == False) {

in q1; n = True; } -- 1/2, 2/1

proc q2 (n == True) {

out q2; n = False; } } -- 3/2, 4/1

Figure 6. A time model with a passive agent

assign a value w with the corresponding exec statement,

then for an untimed model the state S′ is defined as

folows: S′(X) = (X,nextpc(S(X)), ciS(X), pvS(X)|x=w),
if nextpc(S(X)) 6= 0, and S′(X) = (F, 0, [], pvS(X)|x=w)
otherwise, where nextpc function determines the next program

counter for an agent [22]. Moreover, S′(Y) = S(Y) for any

other agent Y .

The transition is defined in a similar way for the time Alvis

language. The basic difference concerns ci list with entries

referring to time. Let ∆ denote the duration of the considered

step. Then, in case of nextpc(S(X)) 6= 0, we have S′(X) =
(X,nextpc(S(X)), update(ciS(X),∆), pvS(X)|x=w), where

the function update replaces entries timer(s, n) with timer(s,
n− d) if n > d and with timeout(s) otherwise.

It should be stressed that the update function must be ap-

plied to context information lists of all agents in the considered

model but it is not enough to determine the new state for the

model. If after an ci update the list contains a timeout(s) entry

and the agent is in the waiting mode in the current state, then

the corresponding agent may change its mode (to running) and

program counter. For example, after execution of the delay d

statement, agent switches to the waiting mode. Then after d
time-units (if the statement is not the last one in the main

block or a procedural block) the agent switches back to the

1556 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

Table II
RELATIONSHIPS BETWEEN THE MODE AND THE CONTEXT INFORMATION LIST OF AN AGENT

agent X am(X) ci(X) entry description

active X sft(n) the current step will be finished in n time-units
passive T

active X, W proc(Y.b, a) X has called the Y.b procedure via port a and this procedure is being executed in the X agent context
active X, W timer(n, t) a time event for the step number n will be generated in t time-units
passive T timeout(n) a time event for the step number n has been generated but it has not yet been served
active W in(a), in(a|T) X waits for a communication via port a (a is the input port for the communication); T is the type of the

expected value
passive T out(a), out(a|T) X waits for a communication via port a (a is the output port for this communication)

guard X waits for an open branch of a select statement
passive T proc(Y.b, a) X has called the Y.b procedure via port a and this procedure is being executed in the same context as X

passive W in(a) input procedure a is accessible
out(a) output procedure a is accessible

running mode, its program counter is set to the next value and

the timeout(s) entry associated with the considered statement

is removed from the ci list. When the timeout(s) entry is

consumed immediately then it does not appear at all in the

agent state in the SR-graph.
The process of a new state determination is complex due

to necessity of consideration of all concurrent steps and

optimisation of the number of states in the SR-graph. The

optimisation refers to skipping snapshots that differ from their

predecessors only in parameters of sft and timer entries in the

corresponding context information lists. We can distinguish the

following stages of a new SR-graph node generation:

• determination of the set T1 of all transitions that are in

progress;

• determination of the set T2 of all transitions that start

performing a new step;

• determination of the new state S′ on the assumption that

all steps from T1 ∪ T2 are performed concurrently.

A state S is called dead, iff sets T1 and T2 are empty in

S and does not exist an agent with ci list containing a timer

entry.
Assume all steps have assigned non-zero durations. Firstly,

we determine the new state S′ as the state 1 time-unit later

than S. If state S′ differs from S only in parameters of sft and

timer entries (parameters are decreased by 1) then we skip

that state and calculate the new state 2 time-units later than

S, etc. Otherwise, the state S′ is a new node in the SR-graph.
If we allow zero duration for at least one step then as

additional state separators are used changes of agents program

counters values. In other words, a label in an SR-graph cannot

contain two steps performed by the same agent.
Let us focus on tdelay and tloopevery transitions. Suppose,

X ∈ AA, S−tdelay(X)→S′, d > 0 is the argument of the

delay statement and ∆ is the duration of the considered

step. Then: S′(X) = (W, pcS(X), update(ciS(X),∆) ⊕
timer(pcS (X), d), pvS(X)), where ⊕ adds the timer entry

at the end of the list.
Suppose, X ∈ AA, S−tloopevery(X)→S′ and d > 0

is the loop period. Then: S′(X) = (X,nextpc(S(X)),
update(ciS(X)⊕ timer(pcS (X), d),∆), pvS(X)).

Activity of passive agents is defined similarly as for ac-

tive ones but a passive agent context (i.e. the active agent

(0)
A: (X,1,[],())

B: (X,1,[],(0))
C: (W,0,[in(q1)],(False))

(1)
A: (X,2,[],())

B: (X,2,[timer(1,5)],(0))
C: (W,0,[in(q1)],(False))

{loop(A),loopevery(B)}/1

(2)
A: (W,2,[guard,timer(2,3)],())

B: (X,3,[timer(1,4)],(1))
C: (W,0,[in(q1)],(False))

{select(A),exec(B|1)}/1

(3)
A: (W,2,[guard,timer(2,3)],())

B: (X,3,[timer(1,4)],(0))
C: (W,0,[in(q1)],(False))

{select(A),exec(B|0)}/1

(4)
A: (W,2,[guard,timer(2,2)],())

B: (X,4,[timer(1,3)],(1))
C: (W,0,[in(q1)],(False))

 if(B)/1

(5)
A: (W,2,[guard,timer(2,2)],())

B: (X,5,[timer(1,3)],(0))
C: (W,0,[in(q1)],(False))

 if(B)/1

(6)
A: (X,4,[],())

B: (X,4,[timer(1,1),sft(1)],(1))
C: (W,0,[in(q1)],(False))

 in(B.q)/2

(7)
A: (X,3,[],())

B: (X,5,[timer(1,2),sft(1)],(0))
C: (W,0,[in(q1)],(False))

 in(B.p)/1

(8)
A: (X,4,[stf(1)],())

B: (W,4,[timeout(1),in(q)],(1))
C: (W,0,[in(q1)],(False))

{out(A.q),in(B.q)}/1

{out(A.p)|in(B.p)}/2

(9)
A: (X,4,[proc(C.q1,q)],())

B: (W,4,[timeout(1),in(q)],(1))
C: (T,1,[],(False))

 out(A.q)/1

(10)
A: (X,4,[proc(C.q1,q)],())

B: (W,4,[timeout(1),in(q)],(1))
C: (T,2,[],(False))

 in(C.q1)/2

(11)
A: (X,1,[],())

B: (X,4,[timeout(1),proc(C.q2,q)],(1))
C: (T,3,[],(True))

 exec(C)/1

Figure 7. Time model – part of SR-graph

that called the procedure in progress) must be taken under

consideration [22].

MARCIN SZPYRKA, PIOTR MATYASIK, MICHAŁ WYPYCH: ALVIS LANGUAGE WITH TIME DEPENDENCE 1557

To illustrate presented definitions let us consider a part of

the SR-graph for the considered model that is shown in Fig. 7.

Let us consider sample states and transitions between them.

• Edge 0 → 1: Steps loop(A) and loopevery(B) are

executed simultaneously.

• State 1: The ci list of agent B contains entry timer(1, 5)
referring to the periodic loop.

• States 2 and 3: The states differ in the value of the

parameter of agent B. After execution of select step,

agent A switches to waiting mode, because all branches

are closed; ci list contains guard and timer(2, 3) entries,

because A waits either for guard satisfaction or timeout.

• Edge 4 → 6: The duration of in(B.q) step is 3 time-units,

but state 6 is present in the SR-graph, because of agent A
state change. After lapse of 2 time-units (referring to state

4) entry timer(2, 2) was updated to timeout(2) and the

agent switched mode to running and its program counter

was set to 4. At the same time ci list of agent B contains

sft(1) entry.

• Edge 5 → 7: In the case of time models readiness of a

port for a communication is stated just after commence-

ment (rather than completion) of a communication via

this port. After the lapse of 1 time-unit from starting

executing in(B.p) step, the condition of the first branch

of select statement is satisfied, so agent A switches to

running mode and performs steps from the branch.

• Edge 7 → 0: Steps out(A.p) and in(B.p) are per-

formed at the same time as a synchronous communi-

cation. In time models communication is considered as

synchronous, when intervals of execution of steps in and

out overlap partially at least. Such communication is

completed when both steps are finished.

• State 8: The timer(1, 1) entry in agent B context in-

formation list was updated to timeout(1). The periodic

loop cannot be restarted because agent B still waits for

availability of the called procedure.

• Edge 10 → 11: The execution of agent C exec step

finishes procedure q1. Because procedure q2 has been

already called agent C starts it immediately.

V. SUMMARY

The formal description of time Alvis models and the set of

transition rules for such models have been considered in the

paper. The transition rules provide in fact an algorithm for SR-

graphs generation that represent state spaces for such models.

It should be stressed that an SR-graph is strictly dependent

on the steps duration. For example, if we change the integers

presented in Table I we will receive another SR-graph with

possibly another paths. An SR-graph enables to check whether

a given path (a sequence of steps) is possible to be executed

for a given steps durations. We can also determine the minimal

and maximal times of passing between two given states, i.e.

we can, for example, determine the maximal time of reaction

of our system to an event. Moreover, SR-graphs enable us to

verify all classic properties like live-locks, deadlocks, process

starvation etc. What is more important, the verification of these

properties takes time dependencies under consideration. The

future work will focus on implementation of algorithms for

verification time requirements automatically.

REFERENCES

[1] R. Alur and D. Dill, “A theory of timed automata,” Theoretical Computer

Science, vol. 126, no. 2, pp. 183–235, 1994.
[2] C. Baier and J.-P. Katoen, Principles of Model Checking. The MIT Press,

2008.
[3] K. Balicki and M. Szpyrka, “Formal definition of XCCS modelling

language,” Fundamenta Informaticae, vol. 93, no. 1-3, pp. 1–15, 2009.
[4] J. Barnes, Programming in Ada 2005. Addison Wesley, 2006.
[5] A. Byrski and M. Kisiel-Dorohinicki, “Agent-based model and com-

puting environment facilitating the development of distributed compu-
tational intelligence systems,” in Computational Science – ICCS 2009,
ser. LNCS, Springer-Verlag, 2009, vol. 5545, pp. 865–874.

[6] A. M. K. Cheng, Real-time Systems. Scheduling, Analysis, and Verifica-

tion. Wiley Interscience, 2002.
[7] E. Emerson, “Model checking and the mu-calculus,” in DIMACS Series

in Discrete Mathematics. Amer. Math. Soc., 1997, pp. 185–214.
[8] H. Garavel, F. Lang, R. Mateescu, and W. Serwe, “CADP 2006: A

toolbox for the construction and analysis of distributed processes,” in
Computer Aided Verification, ser. LNCS, vol. 4590. Springer-Verlag,
2007, pp. 158–163.

[9] S. Gnesi and T. Margaria, Eds., Formal Methods for Industrial Critical

Systems. A Survey of Applications. Hoboken, John Wiley & Sons, 2013.
[10] K. Jensen and L. Kristensen, Coloured Petri nets. Modelling and

Validation of Concurrent Systems. Springer-Verlag, 2009.
[11] K. Kluza, T. Maślanka, G. Nalepa, and A. Ligęza, “Proposal of repre-

senting BPMN diagrams with XTT2-based business rules,” in Intelligent

Distributed Computing V – IDC 2011, ser. Studies in Computational
Intelligence, Springer-Verlag, 2011, vol. 382, pp. 243–248.

[12] L. Kotulski, M. Szpyrka, and A. Sędziwy, “Labelled transition system
generation from Alvis language,” in Knowledge-Based and Intelligent

Information and Engineering Systems – KES 2011, ser. LNCS, Springer-
Verlag, 2011, vol. 6881, pp. 180–189.

[13] R. Mateescu and M. Sighireanu, “Efficient on-the-fly model-checking
for regular alternation-free µ-calculus,” INRIA, Tech. Rep. 3899, 2000.

[14] R. Milner, Communication and Concurrency. Prentice-Hall, 1989.
[15] G. Nalepa, A. Ligęza, and K. Kaczor, “Formalization and modeling

of rules using the XTT2 method,” International Journal on Artificial

Intelligence Tools, vol. 20, no. 6, pp. 1107–1125, 2011.
[16] B. O’Sullivan, J. Goerzen, and D. Stewart, Real World Haskell. O’Reilly

Media, 2008.
[17] M. Szpyrka, “Analysis of VME-Bus communication protocol – RTCP-

net approach,” Real-Time Systems, vol. 35, no. 1, pp. 91–108, 2007.
[18] ——, “Exclusion rule-based systems – case study,” in International

Multiconference on Computer Science and Information Technology,
vol. 3, Wisła, Poland, 2008, pp. 237–242.

[19] M. Szpyrka and L. Kotulski, “Snapshot reachability graphs for Alvis
models,” in Knowledge-Based and Intelligent Information and Engineer-

ing Systems – KES 2011, ser. LNAI, Springer-Verlag, 2011, vol. 6881,
pp. 190–199.

[20] M. Szpyrka and P. Matyasik, “Formal modelling and verification of
concurrent systems with XCCS,” in Proc. of the 7th Int. Symposium

on Parallel and Distributed Computing (ISPDC 2008), Krakow, Poland,
2008, pp. 454–458.

[21] M. Szpyrka, P. Matyasik, and R. Mrówka, “Alvis – modelling language
for concurrent systems,” in Intelligent Decision Systems in Large-Scale

Distributed Environments, ser. Studies in Computational Intelligence.
Springer-Verlag, 2011, vol. 362, ch. 15, pp. 315–341.

[22] M. Szpyrka, P. Matyasik, R. Mrówka, and L. Kotulski, “Formal descrip-
tion of Alvis language with α0 system layer,” Fundamenta Informaticae,
2013, (to appear).

[23] M. Szpyrka, J. Nalepa, A. Ligęza, and K. Kluza, “Proposal of formal
verification of selected BPMN models with Alvis modeling language,”
in Intelligent Distributed Computing V – IDC 2011, ser. Studies in
Computational Intelligence, Springer-Verlag, 2011, vol. 382, pp. 249–
255.

[24] M. Szpyrka and T. Szmuc, “Decision tables in Petri net models,” in
Rough Sets and Intelligent Systems Paradigms, ser. LNAI, Springer-
Verlag, 2007, vol. 4585, pp. 648–657.

1558 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

