
Development of a Cyber-Physical System
for Mobile Robot Control using Erlang

Szymon Szomiński, Konrad Gądek, Michał Konarski, Bogna Błaszczyk, Piotr Anielski, Wojciech Turek
AGH University of Science and Technology

Krakow, Poland

Email: szsz@agh.edu.pl

Abstract—Design of mobile robot control systems is a huge
challenge, which require solving issues related to concurrent
hardware access and providing high availability. Existing solu-
tions in the domain are based on technologies using low level
languages and shared memory concurrency model, which seems
unsuitable for the task. In this paper a different approach to
the problem of building a cyber-physical system for mobile
robots control is presented. It is based on Erlang language and
technology, which support lightweight processes, fault tolerance
mechanisms and uses message passing concurrency model with
built-in inter-process communication. Created system used a
new, open-source robotic platform, which had been designed for
scientific and educational purposes. Integrated system has been
tested in several scenarios, proving flexibility, durability and high
performance.

I. INTRODUCTION

R
ECENT decades brought impressive growth in capa-

bilities of autonomous mobile robots. Each year new

wheeled, walking, swimming and flying devices are being

created overcoming another limitations of mechanical devices.

However, despite theoretical opportunities, mobile robots are

still not widespread in industry or other commercial applica-

tions.

Each robotics system consists of two main layers: the

hardware platform, which provides certain capabilities and has

certain limitations, and the software controlling the hardware

in order to fulfill particular tasks. It has been shown many

times that even relatively low quality hardware can be used for

solving sophisticated tasks if the software controls it correctly.

This fact encourages further research on methods for building

software systems for managing mobile robots.

Building a cyber-physical system responsible for controlling

a robot is a huge challenge. Advanced robotic hardware plat-

form is typically equipped with various sensors and effectors

for determining the state of the environment and being able to

modify it. The system has to interconnect all hardware devices

and manage its functioning concurrently. The requirement of

reliable, concurrent hardware access with real-time constraints

makes the design and implementation of such systems an

extremely hard task. It seems that further popularization of mo-

bile robots in real-life applications depends on finding proper

technologies and defining methods for rapid development of

high quality cyber-physical systems for robotics applications.

Research in the domain of mobile robotics, which have been

evaluated using real robots, has always been considered more

valuable than the results obtained in simulation. Even solutions

to relatively simple problems, like cooperative box pushing [1]

or formation control [2], required a huge amount of work to

verify using hardware. It seems that development of a control

system dedicated for a particular robot and a particular task is

definitely an inefficient approach.

Reusability of high level control software components can

be achieved by using the software agents paradigm. Defining

several layers of abstraction in a solution of a complex problem

makes it possible to implement high level algorithms without

depending on the specific hardware [3], [4].

Recent years brought some attempts to build an abstraction

layer over hardware components, which should accelerate

robot control software development. The Player/Stage [5]

platform succeeded by the Robot Operating System [6] share

the same idea: to provide a set of drivers for particular devices

and a uniform method for accessing the hardware. Using a

typical hardware with the ROS is definitely far simpler than

creating hardware drivers from scratch.

There is no doubt, that the C++ language used by the

ROS for implementing hardware drivers is the appropriate

choice. However using the same language and technology for

providing reliable and concurrent access to the hardware layer

and for writing control applications may raise doubts. Shared

memory concurrency model, used in C++, is based on pthreads

library [7], which does not provide any high level constructs

or high availability mechanisms. Error in any fragment of such

application causes whole system failure which is an extremely

undesirable feature in real-time mobile robot control programs.

In this paper a different approach to the problem of building

cyber-physical system for mobile robots control is proposed.

It is based on a message passing concurrency model adopted

from the software agent paradigm. The model is applied in

the hardware management layer in order to make the system

more resistant to hardware failures. The implementation of the

presented system has been created using Erlang language and

technology [8], which provides built-in inter-process commu-

nication and failure recovery mechanisms.

The system has been tested on a new wheeled robotic

platform developed in the Department of Computer Science,

AGH University of Science and Technology. The platform will

hopefully become very popular in educational and scientific

applications. It is fully open-source, built of relatively cheap

and common components, powerful and extendible. Documen-

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 1429–1436

978-1-4673-4471-5/$25.00 c© 2013, IEEE 1429

tation is available at address http://capo.iisg.agh.edu.pl/.

In the following section the details on the hardware plat-

form are presented. In the following section the complete

Erlang-based cyber-physical system for controlling the robot

is described. Finally results of preliminary experiments are

provided.

II. MOBILE PLATFORM HARDWARE DESIGN

The wheeled robotic platform required for testing the

Erlang-based cyber-physical system for mobile robot control

has to meet several requirements. It has to be equipped with

relatively powerful on-board computer, capable of running

Erlang virtual machine and Linux operating system. It has to

provide precise velocity control and long lasting power source.

One of the key features was extensibility – hopefully the

system can be used in many different scientific applications,

which may require different sensors and effectors. More over

it should be relatively inexpensive.

Significant development and miniaturization of electronic

components over last decades resulted in creation of several

advanced commercial and open-source mobile robotic plat-

forms. The platforms are designed with different applications

in mind, like transportation, exploration of unknown or unsafe

area, inspection of inaccessible places such as water pipes or

in the buildings security.

Most of these solutions are designed to solve a particular

problem. The most widespread group, which can be found

in our homes, are cleaning robots, like Roomba, Scooba and

Myrrh [11]. Although these robots are quite advanced, they are

hardly extendible and it is hardly possible to use the platforms

to other purposes.

Avatar III is an advanced platform, which belongs to a group

of robots whose main task is to detect potential intruder[12].

This type of robots is characterized by very good parameters

in comparison to experimental projects, but it still does not

support flexibility in adding extensions.

There are several more flexible mobile platforms available,

like Komodo [13] or much bigger Husky [14], which provide

large spectrum of available extensions. However, it is hard to

determine what kind of on-board computer do they use. More-

over, these solutions definitely do not meet the inexpensiveness

requirement.

Designing a robotic hardware platform is a very complex

task. Many unexpected problems have to be solved, making the

process surprisingly slow. Final solution has to include design-

ing a robot body, its components, power management, physical

and electrical interfaces, integration with remote devices etc.

Building individual components, like motor drivers or power

distribution systems, requires a lot of time and expenses along

with further design problems and delays.

In the presented platform simplicity was the key factor. For

this reason the robot was built from off-the-shelf components

integrated within suitable chassis. Beside of time saving, the

most important advantage of this approach is the simplicity of

building new units – off-the-shelf components are relatively

easy to assemble. Another advantage of this solution is the

possibility of independent testing of individual parts of the

system which greatly simplifies failure diagnosis. On the other

hand, ready-made parts often cause problems during integra-

tion because they were designed for other purposes. Selecting,

testing and integrating proper components is probably the most

important outcome of the presented work.
Designed mobile platform is composed of the following

components:

• chassis,

• power supply

• control unit,

• motor drivers,

• sensors and other peripherals.

Selected chassis is a Lynxmotion A4WD1 four-wheel body,

30 cm long and width. The platform is shown in figure 1.

Fig. 1. Designed robotic platform based on A4WD1 chassis.

Power is supplied by two LiPo batteries connected in

parallel with the nominal voltage level 14.8 V and single

battery capacity 5000mAh, which is sufficient for several hours

of continuous operation. Once the robot runs out of energy,

batteries can be replaced without restarting the control unit.
The main robot control unit is Pandaboard [9]. Pandboard

is a low-power low-cost single board computer based on the

OMAP4430 dual core processor. Platform gives access to

many of the powerful features of the multimedia processor

while maintaining low cost. This will allow the user to develop

software and use available peripherals in many configurations.

The major components available on the PandaBoard, which

can be used in the robot, are as follows:

• Power Management Companion Device,

• Audio Companion Device,

• Mobile LPDDR2 SDRAM Memory,

• HDMI Connector,

• SD/SDIO/MMC Media Card Cage,

• UART via RS-232 interface via 9-pin D-Sub Connector,

• LS Research Module 802.11b/g/n, Bluetooth, FM,

• Camera Connector,

• LCD Expansion Connectors,

• Generic Expansion Connectors,

• Composite Video Header.

The device runs Linux kernel with either popular distribu-

tion. The most basic task of the Pandaboard is to control the

motor drivers – the RoboClaws [10].

1430 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

The RoboClaw 2X15 Amp is an extremely efficient, versa-

tile, dual channel synchronous regenerative motor controller.

It supports dual quadrature encoders and can supply two

brushed DC motors with 15 amps per channel continuous and

30 amp peak. With support for dual quadrature decoding it

get greater control over speed and velocity is automatically

maintains speed even if load increases. RoboClaw uses PID

calculations with feed forward in combination with external

quadrature encoders to make an accurate control solution.

RoboClaw is easy to control with several built in modes.

It can be controlled from a standard RC receiver/transmitter,

serial device, microcontroller or an analog source, such as a

potentiometer based joystick.

To control the speed of motor RoboClaw uses pulse width

modulation (PWM). Pulse width modulation is a method

of adjusting the current or voltage signals, which consists

of changing the pulse width of constant amplitude, used in

amplifiers, switching power supplies and systems control the

operation of electric motors. PWM powers the system directly

or through a low pass filter which smoothes the voltage

waveform or current.

Because the Pandaboard and the RoboClaw works with

different logic levels, a converter is required. For this purpose

KAmodLVC [15] logic level converter has been used. KAmod-

LVC module is an 8-bit bi-directional converted voltage levels.

The converter can be used to connect two digital systems

operating with different voltages (like 1.8V and 5.0V in this

case).

The basic orientation sensors embedded in the robot in-

cludes a gyroscope, accelerometer and magnetometer. The

sensor can be used to determine the position of the robot in two

planes. The diagram of components connections and relations

is presented in Fig 2. The alignment of the components in the

chassis is shown in Fig 3.

Pandaboard

L
o

g
ic

 C
o
n

v
e
rt

e
r

R
o

b
o
C

la
w

s

Motor

Battery

G
y
ro

s
c
o

p
e

Battery

Motor

Motor

Motor

Data link

Data link

Power

Power

Fig. 2. The block diagram of the robot components.

The central point of control and communication is the

Pandaboard. This board has several communication inter-

faces which are to control the robot effectors and to collect

information from the sensors. Communication bus between

Pandaboard and motor controller was realized using RS232

interface. For the purpose of control only lines RxD and

Fig. 3. Internal design of the robot components.

TxD are used. There is no hardware flow control, because

communication with the Pandaboard and RoboClaw is realized

in inquiry respond method and it is always initiated by the

Pandaboard. Therefore, if the control program waits for data

from the controller it is not necessary to control rate. The data

rate of this link is set to 38400bps.

The orientation sensor uses serial I2C bus. To communicate

with this bus the system uses duplex line Serial Data Line

(SDA) and one-way line Serial Clock Line (SCL). Both lines

are pull-up to power line so it is easy to detect transmissions

collision using hardware. In robotic system this bus combines

simplicity and functionality in one at a low investment of

hardware and software to give the desired effect.

Robot communication with the surrounding environment is

based on the built-in wireless card: Pandaboard WiFi. Each

robot has its own unique MAC address so it is possible to

communicate with the selected robot even if a group of robots

is working in the same network.

Robot design provides an easy way for extending the range

of sensors or effectors. It has been tested with ultrasonic sen-

sors, laser rangefinders, cameras and Microsoft Kinect sensor.

Further extensions are possible using various interfaces: USB,

COM, I2C or SPI.

To determine the exact position of the robot can use the

Global Positioning System (GPS) receiver or the more ac-

curate indoor marker-based Hagisonic Stargazer [16] system.

Stargazer uses markers placed on the ceiling and on the basis

of their positions it can determine the location of the robot

with high accuracy.

Ten units have been built so far for testing and further

development purposes. The cost of all parts for a single unit

does not exceed 900 USD, which is a very low price for the

capabilities. The robot can develop speed of 3 m/s, it can put

itself into vertical position by climbing a wall. It includes an

on-board computer with 2-core CPU, running ordinary Linux

OS and providing large variety of extension ports. It meets

all defined requirements for testing the Erlang-based cyber-

physical system for mobile robot control.

SZYMON SZOMIŃSKI ET AL.: DEVELOPMENT OF A CYBER-PHYSICAL SYSTEM FOR MOBILE ROBOT CONTROL 1431

III. CONTROL SYSTEM ARCHITECTURE

On the top of robot’s hardware there is a need for a control

software layer that allows users to interfere with it. Due to the

fact that the robot was designed from scratch, control system

was also chosen to be created from the ground up instead of

using existing solution in order to fit the needs perfectly. Main

aims of the software layer were to:

• provide high level, easy to use and consistent program-

ming interface to low-level robot’s peripherals,

• allow multiple client applications to run simultaneously

on one robot, taking into account concurrency, timing,

performance and other possible issues,

• allow users to write their client application in different

programming languages,

• give an ability to put client application either on robot’s

on-board computer or on a separate network-reachable

machine,

• ensure flexibility by allowing to add other external de-

vices in the future.

mediator

hardware driver

hardware driver

hardware driver programming interface

programming interface

programming interface

Fig. 4. Control system architecture schema

Control system has been divided into three parts (as shown

on Fig 4):

• hardware drivers,

• mediator,

• programming interfaces.

Hardware drivers are standalone programs that interfere

directly with robot’s hardware. Being written in C++, they

provide full compatibility with low-level Linux communica-

tion mechanisms.

Mediator connects hardware drivers and programming inter-

faces, handling communication between those two parts and

controlling the whole system. It was developed in Erlang/OTP

[8] due to the fact that Erlang was designed to be a solution

for message passing and orchestrator applications.

Programming interfaces are libraries that end users include

in their programs. They provide a consistent API to robot’s

hardware and can be implemented in virtually any language.

There have been developed exemplary interfaces in Erlang and

Java. This part of the system with be described in the next

section.

System’s internal communication has been based on Pro-

tocol Buffer [21] library, because it offers easy and reliable

way of specifying and using custom binary protocols and has

support for many popular programming languages.

A. Erlang in Embedded Systems

Erlang is a programming language created in 1986 at

Ericsson Telecom AB to ‘provide a better way of program-

ming telephony applications’ and “was designed for writing

concurrent programs that ‘run forever’ ” [17]. At that time

telephony applications tackled atypical problems and so had

unusual requirements. That applications were highly concur-

rent, had “soft real-time” constrains, had to be changed “on the

fly” and—most importantly—had to be highly fault–tolerant,

because “when the software that controls telephones fails,

newspapers write about it”.

Modern web servers have very similar requirements: high

availability, ability to serve multiple concurrent clients, low

latency and low downtime. As recent study shows [18], Erlang

is well suited for such servers. It allowed writing Data Mobility

server in 1

3
of code and to obtain twice the throughput of C++

implementation. It’s worth to note that the C++ server crashed

when overloaded while Erlang just slowed down.

Since its birth, Erlang was designed as a practical tool. It is a

dynamically typed, functional language with garbage collector

to facilitate prototyping and ease programming. To greatly

improve robustness, it implements language–level lightweight

processes in shared–nothing architecture[23]. Communication

is done exclusively with messages. Moreover, Erlang easily

integrates with programs and libraries written in other lan-

guages. Finally it has a low memory footprint and people

“successfully run the Ericsson implementation of Erlang on

systems with as little as 16MByte of RAM. It is reasonably

straightforward to fit Erlang itself into 2MByte of persistent

storage”[24]. With all that in mind and with soft real-time

characteristics of its scheduler, Erlang appears to be a perfect

fit for modern embedded systems.

Embedded systems have to deal with hardware, but currently

more and more sophisticated logic has to be implemented as

well. Functional aspect of the language allows it to create great

abstractions over hardware, algorithms and data structures.

That is why it is considered that “Erlang programmers are

not happy with design patterns as a convention, they want a

solid abstraction”[20]. One positive effect of that is code reuse

increases and the programmer can concentrate on the problem

itself.

Interoperability is also very important in embedded world.

Erlang has few methods for that. One of them is to write

so–called “NIF”s – Native Implemented Functions. Another

method is to use port drivers – communication method based

on stdin/stdout streams. The latter has some advantages, most

important of them is the separation of processes: even if the

external program crashes for whatever reason (hardware failure

or system bug), Erlang run–time is not harmed and can make

attempt to recover.

In 2008 Erlang gained a SMP scheduler that allows it to

scale on multiple cores/CPUs. This is a great feature, as it

allows to fully use modern hardware like 64–core Parallella

platform. In conjunction with multiple independent processes

and message passing, this is a great advantage over most

1432 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

programming languages. To compare briefly:

• Standard system processes are heavy – in practice it’s

not feasible to create more than few hundred of them.

Erlang processes on the other hand are lightweight: each

one occupies only 309 words of memory. Some tests

showed that it’s possible to run 136.000 Erlang processes

on Raspberry Pi[19].

• Concurrency is very hard – while using low–level tools

like locks, monitors and semaphores, programmer must

deal with hard problems like deadlocks, process star-

vation, priority inversion. Using higher–level tools, ex-

ploiting scheduler that Erlang provides and using generic

structures from standard libraries allows to avoid those

problems most of the time and to facilitate reasoning

about process’ safety and liveness.

B. Mediator

Mediator is a central part of a system. It’s a thin middleware

that gives much flexibility:

• Abstracts messaging between components.

• Communicates with components using standard methods,

so endpoints can be written independently in most mod-

ern languages.

• Supervises each component and takes actions in case of

failures.

• It is a central part of a system – only one place where

configuration needs to be done.

. During start, mediator reads configuration, creates supervi-

sion tree and spawns hardware drivers (Fig. 5). Next it runs a

server for communication with, possibly remote, logic system.

Fig. 5. Mediator is divided into: D – component mediating with software
driver; R – central component, routing messages between components; S –
server component, communicates with logic.

Communication with hardware drivers is done with Unix

pipes. If a software or hardware has an error, mediator tries

a simple yet effective tactic: restart and try again. After a

number of failures in a row, it is assumed that such system is

not recoverable. What is important, other subsystems are not

affected and can continue to work, while defective system is

turned off.

To communicate with logic, UDP protocol was chosen:

• Usually, if some part of transmission is lost, there is no

need for retransmission as newer data will be available.

• UDP allows for communication locally and between

computers in exactly the same way.

• When performed on localhost, packets could be lost only

in case of UDP buffer overflow.

• UDP is fast and easier to use for programmers than TCP.

• Most modern programming languages have capability to

communicate via UDP.

C. Hardware Drivers

As mentioned above hardware drivers are the part of the

system that lays right next to robot’s peripherals. There are

different driver implementations for each type of supported

device. They handle all low-level communication with external

devices using hardware-specific protocols. This is also the only

place were device logic is implemented.

Drivers are relatively simple programs spawned by the me-

diator and communicating with it using Unix pipes. Because

software that interferes with hardware is always exposed to

different kinds of failures, it is crucial to make the system as

easy to recover from such issues as possible. Therefore drivers

are designed as lightweight programs that can be quickly

killed and restarted in case of any problems. This approach

is, of course, not a perfect solutions for all types of possible

exceptional situations (e.g. hardware malfunction), but makes

system much more error-tolerant.

Due to the fact the drivers are separate and independent

programs it is easy to add support for other devices, protocols

and interfaces in the future.

All original requirements have been met in described robot’s

control system. The software is robust, error-tolerant, fast,

flexible, perfectly suited to given hardware and ready to be

used in future applications.

IV. ROBOT PROGRAMMING INTERFACES

Programming interfaces are the part of the system that end

user uses directly. They communicate with the mediator using

UDP sockets. Therefore client application can be run on any

machine that has a network connection with robot, especially

on the robot itself. UDP protocol has been chosen because it

introduces small delays and low transmission overhead.

Programming interfaces can be implemented in any lan-

guage that supports UDP sockets and has Protocol Buffer

bindings. Thus it is possible to provide API in popular, easy to

learn languages like Java or Python and allow less experienced

users to work with the robot.

First implementation of programming interface was writ-

ten in Java, which is a high-level, widely spread and well

documented programming language that can be run on many

different types of computers and other devices including

SZYMON SZOMIŃSKI ET AL.: DEVELOPMENT OF A CYBER-PHYSICAL SYSTEM FOR MOBILE ROBOT CONTROL 1433

mobile phones and tablets. This fact extends the number of

possible applications in which robot can be used.

Second implementation was written in Erlang. It’s con-

ceptually similar to Java’s implementation, but it’s written

idiomatically to allow programmer fully benefit features of

Erlang/OTP platform. Moreover, if mediator and logic are to

be both running on the same unit, they can be run on one

virtual machine, thus reducing memory usage. Finally, this

allows fast prototyping and experimenting using REPL (Read–

Eval–Print Loop, interactive environment with command line

shell).

Apart from running programs on the robot there is a

possibility of testing them in a simulation. The platform

was integrated with ROBOSS simulation framework [22]. A

model of a physical robot is described in XML and its visual

representation in ROBOSS is shown on Fig 6.

Fig. 6. Visualization of a robot model in ROBOSS simulation framework.

The use of custom Erlang module behaviour allowed to

expose a simple interface which is implemented by specific

Erlang modules (one for the simulation and one for the robot).

As a result, the program containing logic can be run both in

simulation and on the physical robot without any changes. The

decision what target driver module should be used is made

with regard to the configuration files.

V. EXAMPLES AND TESTS

In order to test the concept of building the Erlang-based

cyber-physical platform and to prove that it can be used in

solving real world problems, the system has been tested in a

number of different applications. There were two basic groups

of examples:

• on-board - when controlling program is running on

robot’s on-board computer,

• remote - when robot is controlled from other machine.

A. Basic Tests

In the first example robot was remotely controlled by user

moving a joystick plugged into a standalone laptop computer

connected to local wireless network. Moreover, real-time data

read from 9DOF sensor was constantly transmitted back to

the laptop and visualised on the screen as charts (see Fig 7).

Therefore the user is able to see the immediate change of data

charts while robot is moving.

This test showed that control software itself generates very

small delays and provides enough performance to control

robot manually. Actual latency is mostly dependent on WiFi

Fig. 7. Accelerometer, gyroscope and magnetometer sensors reading received
from the robot during motion tests.

connection quality – some noticeable delays were observed

on wireless router. This suggests that all time-critical deci-

sions should be made on the on-board computer, while robot

management or monitoring can be performed remotly.

To verify autonomous control algorithms using localization

and motors controllers an advanced Trajectory Follower al-

gorithm has been designed and implemented in Erlang. The

algorithm was supposed to control robot’s movements in order

to reach specified locations in particular moments in time. A

marker-based localization system (Hagisonic Stargazer) was

used for finding current localization.

The algorithm is fully reactive. In an infinite loop it cal-

culates most suitable control using localization and specified

trajectory. The movements of the robot are smoothed accord-

ing to specified algorithm parameters.

The Trajectory Follower is designed to be used both with

physical robots and in a simulation. It is also desired to run on

both remote and onboard nodes. Used simulation framework

[22] is .NET based and this is why testing and running the

trajectory follower in a simulation requires it working correctly

on Windows operating system. Nonetheless, Windows OS is

not required to run this component on the physical robot.

B. Trajectory Follower Algorithm

The entry point to the algorithm is a desired path to follow,

expressed as a list of line segments and time constraints.

On this basis, for each cycle of a control loop invoked

by localisation update, desired robot speed is calculated. To

preserve abstraction over the physical layer of robot, output

of the algorithm is expressed as a pair of desired angular and

1434 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

linear velocity. Those values are later converted to velocities

on respective motors by a dedicated Erlang module, called

driver.

In general, it is transparent to the driver whether it com-

municates with physical device or simulated robot, but it is

responsible for translating control and localization. It must

adapt abstract values to actual robot configuration: number

of independent wheels or tracks, wheels distance and radius.

Velocity calculation algorithm is based on PD controller.

Considered parameters – robot’s angular distance dα from the

desired robot orientation and linear distance dtrack from the

followed trajectory, with respectful weights wα, wtrack, are

used to obtain turn radius R:

1

R
= wαdα + wtrackdtrack (1)

The value of dtrack can be treated as the P term while dα

can be treated as the D term in PD controller.

The input trajectory consists of successive path segments.

The final R value is a weighted average of radiuses for

corresponding segments. The number of segments taken into

account and weight depend on the distance to them. Maximal

cut-off distance is specified by lookahead parameter in the

configuration file.

Behaviour of the algorithm depends on two sets of settings:

description of a robot and algorithm parameters. First one

defines the name of the dedicated driver, robot’s physical

dimensions, localization update interval (in case of polling

type of driver) and path to the simulation agent, if one is used.

The latter one allows to modify weights of respective factors

of PD controller, lookahead parameter, maximal centripetal

acceleration and maximal linear velocity.

The input can be also defined as a list of control points

of Bézier splines which will result in much smoother path

with no rapid turns. In this case the number of segments

sampled from smoothed Bézier curve has to be defined. If the

lookahead parameter is too small, the robot can sometimes

perform tougher turns. To ensure robot stability, centripetal

acceleration of the robot must stay below certain limit.

C. Results

Example run performed in a simulation is shown in Fig 8.

Fig. 8. Visualization of a run performed by a simulated robot. The input
trajectory was smoothed with Bézier splines. Units in meters.

There was no difference or time overhead observed in

communication while running the application from the remote

and onboard node.
During the tests on a real robot, an issue with marker-based

localization systems occurred. There were several strong light

sources in the testing room. As a result, the robot tended to

perform better runs with lights turned off. Exemplary run is

presented in Fig 9. The robot managed to successfully read

the destination within specified time, however, there is place

for improvements. It is possible to reduce the noise and make

measurements of localizer more precise by introducing a dead

reckoning technique, i.e., applying Kalman filter.

Fig. 9. Visualization of a run performed by a real robot. The input trajectory
was smoothed with Bézier splines. Units in meters.

The system has demonstrated stability and performed well

during the tests. It generated very small (unnoticeable) and

constant delays even when several applications were using

hardware components simultaneously. Erlang’s functional na-

ture seems to match high level abstraction what could be

experienced during the design and implementation of the

applications.

VI. CONCLUSIONS AND FURTHER WORK

The implementation and performed test suggest that the

Erlang language and technology is a suitable basis for building

cyber-physical systems for mobile robots control. The devel-

oped system has been intensively tested in several applications.

The results are promising and further work on this approach

is definitely justified.
Mobile platform, which has been used for testing the

approach, met all specified requirements. Designed robot is

relatively inexpensive to build, offers good performance and

is very easy to extend. Optional sensors and effectors will be

introduced to the systems in order to increase its abilities and

the range of applications. Hopefully the platform will become

popular among robotics researchers.

ACKNOWLEDGEMENTS

The research leading to this results has received founding

from the Polish National Science Centre under the grant no.

2011/01/D/ST6/06146.

SZYMON SZOMIŃSKI ET AL.: DEVELOPMENT OF A CYBER-PHYSICAL SYSTEM FOR MOBILE ROBOT CONTROL 1435

REFERENCES

[1] C. R. Kube, H. Zhang, Collective robotic intelligence. Proceedings of:
Simulation of Adaptive Behavior, Honolulu, Hawai USA, 1992, pp. 460–
468.

[2] T. Balch, R. Arkin, Behavior-based Formation Control for Multi-robot

Teams. IEEE Transactions on Robotics and Automation, 14, 1999, pp.
926–939.

[3] W. Turek. Extensible Multi-Robot System. In: Computational Science -
ICCS 2008, Lecture Notes in Computer Science, Springer-Verlag, Berlin,
Heidelberg, 2008, pp. 574–583.

[4] W. Turek, K. Cetnarowicz, and W. Zaborowski. Software Agent Systems

for Improving Performance of Multi-Robot Groups. Fundamenta Informat-
icae, 112(1), 2011, pp. 103–117.

[5] B. Gerkey, R. T. Vaughan, A. Howard, The player/stage project: Tools

for multi-robot and distributed sensor systems. In Proceedings of the 11th
International Conference on Advanced Robotics, 2003, pp. 317–323.

[6] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, A. Ng, ROS: an open-source Robot Operating System. ICRA
Workshop on Open Source Software, vol. 3 (2), 2009.

[7] B. Nichols, D. Buttlar, J. Farrell, Pthreads programming: A POSIX

standard for better multiprocessing. O’Reilly Media, Inc. 1996.
[8] F. Cesarini, S. Thompson. Erlang Programming. A Concurrent Approach

to Software Development. O’Reilly Media, 2009.
[9] PandaBoard Documentation, http://pandaboard.org/, 05.2013.
[10] RoboClaw Documentation, http://www.basicmicro.com/, 05.2013.
[11] iRobot Products, http://store.irobot.com/, 05.2013.
[12] Avatar III Security Robot, http://robotex.com/, 05.2013.

[13] Komodo Robot Specification, http://www.robotican.net/#!komodo/c9sa,
05.2013.

[14] Husky Robot Technical Specification,
http://www.clearpathrobotics.com/husky/tech-specs/, 05.2013.

[15] KAmodLVC module technical documentation,
http://www.kamami.pl/dl/kamodlvc.pdf, 05.2013.

[16] J. Lopez Fernandez, C. Watkins, D. Perez Losada, M. Diaz-Cacho
Medina, Evaluating different landmark positioning systems within the

RIDE architecture, Journal of Physical Agents, 7(1), 2013, pp. 3–11.
[17] J. Armstrong. A history of Erlang, Proceedings of the third ACM

SIGPLAN conference on History of programming languages, San Diego,
California, 2007, pp. 6–26.

[18] J. H. Nyström, P. W. Trinder, D. J. King, High-level distribution for

the rapid production of robust telecoms software: comparing C++ and

ERLANG, Concurr. Comput. : Pract. Exper. 20(8), 2008, pp. 941–968.
[19] O. Kilic, 136.000 Processes on a Pi., http://www.erlang-embedded.com/

2012/05/episode-3-\%E2\%80\%93-136-000-processes-on-a-pi/, 05.2013.
[20] F. Hébert, Learn You Some Erlang for Great Good!: A Beginner’s Guide,

No Starch Press, Incorporated, 2013.
[21] Protocol Buffer library homepage, https://code.google.com/p/protobuf/,

05.2013.
[22] W. Turek, R. Marcjan, K. Cetnarowicz. A Universal Tool for Multirobot

System Simulation, Knowledge-Driven Computing, Springer, 2008, pp.
289-303.

[23] J. Armstrong Proceedings of the third ACM SIGPLAN conference on

History of programming languages, ACM, 2007,pp. 6-26.
[24] Erlang FAQ, Implementation and ports of Erlang,

urlhttp://www.erlang.org/faq/implementations.html, 05.2013.

1436 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

