
Scalable Web Monitoring System

Andrzej Opalinski, Wojciech Turek and Krzysztof Cetnarowicz
AGH University of Science and Technology

Krakow, Poland

Emails: andrzej.opalinski@agh.edu.pl, wojciech.turek@agh.edu.pl, cetnar@agh.edu.pl

Abstract—Publicly available Web search engines suffer from
several limitations, which significantly reduce usability in par-
ticular cases. The most important limitations are out-of-date
information, very simple query language and limited number
of results. In many cases, users of the Internet are interested
in finding new information which appear in the particular Web
portal. In this paper, a system for monitoring of Web sites is
presented. The system can continuously analyze the content of
specified Web pages using advanced text processing algorithms.
It actively notifies the user when required information is found
in newly-added content. It can be deployed on a single PC as
well as on a cluster of computers, providing good scalability. The
paper presents an abstract architecture of the system, details of
the implementation and real-life experiments results.

I. INTRODUCTION AND RELATED WORKS

THE GROWTH of the World Wide Web, which has been

observed over last years, has resulted in the greatest base

of electronic data. It is hard to even estimate real size of the

Web. The WorldWideWebSize.com portal claims that the most

popular search services index more than 50 billion Web pages

[1]. Four years ago Google published an information, that the

indexer found 1 trillion unique addresses [3]. These estimates

definitely do not show the real size of the Web because the

indexers deliberately ignore particular fragments, like content

generators, link farms or pages with illegal content.

The features of the Web pose huge challenges for searching

systems. The size itself creates significant scalability and

performance issues. What is more, it is very hard to acquire

information about what a user is really looking for and detect

pages containing information needed by the user.

Publicly available Web search services offer access to very

simple and fast ways of finding pages. The services use Web

crawlers to visit as many pages as possible and build an

inverted index of all processed content. The indexes make it

possible to find Web pages which contain specified words in

few milliseconds. This method of finding information in the

Web is used every day by each Web user. However, several

significant drawbacks and limitations of the approach do exist:

• If several pages contain all specified words, ordering

of results is imposed by the search engine. Sorting is

typically based on popularity. This feature connected with

the limit in the number of found pages results in inability

of finding some pages.

• The query language is typically very simple.

It is impossible to express advanced patterns

concerning sentences or use synonyms. It is

even impossible to specify rules specifying

letters casing, distance between words or words

ordering.

• Low frequency of crawling causes outdated

results. The searchers often find pages

which contain different content or no longer

exist.

• High popularity of search engines results in an in-

teresting feature of the Web: if a page cannot be

found using search services it is considered nonexis-

tent.

These limitations encourage researchers to continue work on

different ways of finding valuable information in the Web. The

subject of focused crawling has received significant attention

over last few years. The idea of a crawler which can select

pages relevant to a specified topic [7] has been implemented

using various techniques [8], [10]. Most obvious application

of a focused crawler is a topic-specific search service, which

can provide more accurate results.
Use of index-based search engines can successfully direct a

user to potentially interesting Web sites. However when the

content of the Web sites changes fast and the information

must be detected as soon as possible after it is published,

indexing-based methods becomes insufficient. When a user

knows where to look for results, but it is impossible to watch

the Web sites continuously, a different approach to the problem

of searching the Web is needed.
Some complex solutions in this area were also presented.

Liu et al. [4][5] proposed a system that monitors web resources

and reports changes of web content by sending messages

for system’s users. Although, those solution does not focus

on various methods of information pattern detection, as it’s

presented in this article. The another system - WebMon [9]

- is also a tool for web information monitoring, and could

be applied to monitor date, keywords or links. It’s intended

for multiuser access and provides a useful functionalities, but

it also doesn’t support various pattern detection mechanism.

There are also publicly available solutions as Corona tool

[6], which is easily scalable decentralized system available

for multiple subscribers, but it’s detection pattern flexibility is

limited.
In this paper a system for monitoring selected fragments

of the Web is presented. It provides a service, which can

monitor precisely specified fragments of the Web and actively

report when a particular pattern is found in a newly-published

content. The various pattern detection methods were tested

and compared. Also crawl performance and pattern detection is

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 1261–1267

978-1-4673-4471-5/$25.00 c© 2013, IEEE 1261

tested and presented, in comparison to standard Google search

results. Proposed system could be deployed on a PC, server

or cluster - based architecture, to fulfill required performance.

Possible applications of the system include monitoring auc-

tions services or job advertisements. It can also be used by law

enforcement services for detecting illegal content quickly.

II. ARCHITECTURE OF THE WEB MONITORING SYSTEM

The architecture of the system is inspired by a Java-based

general purpose Web crawler with indexer presented in [11],

[12]. The crawler uses a cluster of computers for parallel

processing of different Web sites. It provides a distributed

inverted index of all words found on visited pages. The general

architecture of the Web monitoring system is presented in a

Figure 1.

The Crawler component is a single processing thread. It

contains a queue of URLs to download and analyze. It is

responsible for performing all operations needed to process a

Web Page – details on processing algorithms will be presented

in the next section. The most important result of the processing

is URLs detection – the URLs are returned to the Smith

Component.

The Smith component controls multiple Crawler threads. It

starts specified number of Crawlers, manages URLs queues,

receives found URLs and communicates with the Node Man-

ager.

Each node used by a system has a single Node Manager

is responsible for communication with global System Man-

ager. Each Node Manager provides administration interface

for monitoring and management. It also provides a service

interface, which is used for executing search queries.

The System Manager is responsible for controlling nodes.

It collects and distributes found URLs, performs distributed

search and provides access to management interface of every

node. It also provides a Web Service interface for clients of

the system.

The Client application uses provided Web Service interface.

It is implemented in a different technology and provides

convenient graphical user interface.

The system can be deployed in three different ways:

1) PC-based,

2) server-based,

3) cluster-based.

The smallest configuration can be executed on a single

modern PC. In this configuration all components are running

on the same computer. This configuration uses particular

settings, which significantly limit required system resources.

It does not need expensive hardware however, it can be used

only for monitoring several small Web sites.

In the configuration using a single server, the MySQL

database server and the JBoss application server are executed

on a powerful machine, which is working constantly. User

application can be started from time to time in order to verify

searching progress. In this configuration several users can use

the same server. Tests showed that a single server can process

around 100 000 Web pages every hour.

The most advanced configuration uses a cluster of servers.

The performance of processing in this configuration can be

easily increased by adding new servers to the cluster.

III. RESOURCES PROCESSING ALGORITHM

The most important part of the system is implemented by

the Crawler component. It performs processing of Web pages

content downloaded from the Internet. A diagram of steps

performed by the Crawler is shown in a Figure 2.

The process of crawling is controlled by the Manager,

which stores a queue of URLs to process. All URLs found

by the node are stored in the Urls database. The Manager

continuously executes the processing sequence, which consists

of the following steps:

• Resource downloading, which results in HTML source

stored in a memory buffer. This step includes filtering

unsupported file formats, HTTP servers error handling

and maximum source length verification.

• HTML parsing by the Lexer. This is the most complex

and time-consuming step of the processing which builds

document model.

• Changes detection, which results in selecting fragments

of a Web page content that have never been processed.

• Content processing by various plugins operating on the

document model created by the Lexer. One of the plugins

returns a list of URLs found in the processed content, that

are added to the queue of the Manager.

This sequence is being executed by every single URL which

appears on the list of the Manager. The following sections

provide more details on the processing algorithms.

A. Content Parsing and Resource Model Building

The Lexer converts the HTML source into a resource model.

The model represents a tree structure built of segments. Each

segment represents a selected structural element of the Web

page (tables, paragraphs and lists). Segments can contain other

segments or they can constitute leafs of the tree containing lists

of words, special characters and HTML tags.

Each element of the HTML source is converted to an

element of the tree structure or to a token. There are three

basic types of tokens:

1) words,

2) tags,

3) special characters.

Each token has its unique identifier – an eight byte integer.

Selected ranges of the identifiers are reserved for tags and

special characters. The rest is being dynamically assigned to

new words found in the content. This approach converts the

content of each leaf segment into a list of identifiers, making

following processing very efficient.

The dictionary of words is a very large data structure.

Average Web page contains several thousand words, however

typically very few are new words. Nevertheless the size of

1262 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

Fig. 1. Abstract architecture of the Web Monitoring System

D
ic

ti
o
n
a
ri
e
s

Lexer
module

Plugins

U
rl
s

Manager

Resource
downloading

Url request

Webpage
source

Resource
model

Urls found

Changes
detector

New
or

modified
segments

C
o
n
te

n
t
c
a
c
h
e

Fig. 2. Processing performed by a single Crawler component.

the words dictionary can reach millions of entries after a few

days of crawling. Therefore, the implementation uses large

in-memory caches based on hash maps to make the word-to-

identifier conversion as fast as possible.

B. Changes Detection Algorithm

The changes detection algorithm is based on hash codes

calculated for analyzed content. The hash code for a segment

seg containing n tokens is calculated using tokens’ ids in the

following way:

hash(seg) =

n−1∑

i=0

seg[i] · 31n−1−i (1)

where seg[i] is the identifier of the ith token in the segment.

The algorithm is very similar to the one used by Java String

class implementation.

The hash codes are calculated for every leaf segment. If

the hash code has been found in any previous processing of

the same Web page, the segment is considered unchanged

and is not processed any further. Theoretically, two different

segments could have the same hash code, however, using 64 bit

identifiers and 64 bit hash codes makes it almost impossible.

To determine what values of hash codes have been already

processed, the Content cache database is used. It stores all

hash codes of leaf segments found in a page content. Typical

Web page contains between 10 and 100 leaf segments.

C. Content Processing

Leaf segments that are considered new or modified, are

processed by all enabled plugins. A plugin is a component

which provides a common interface – it accepts resource

model or its parts.

There is one plugin which is mandatory for proper function-

ing of the system. The URL detector plugin must be enabled

to continue crawling process. It finds URLs in the content of

provided segments, searching for anchor HTML tags.

ANDRZEJ OPALIŃSKI, WOJCIECH TUREK, KRZYSZTOF CETNAROWICZ: SCALABLE WEB MONITORING SYSTEM 1263

The Web Monitoring System provides several other plug-

ins that are used for finding Web pages containing patterns

specified by a user. The plugins provide several methods for

defining the patterns.
a) List of words: – a user provides a list of words in

particular form. A segment will match the pattern if all words

are present in the segment.
b) List of stems: – a user provides a list of words in any

form. A segment will match the pattern if any form of each

word is present in the segment. To implement the functionality

a plugin uses a stemmer component which can convert any

word to its basic form and provide all possible forms for

a given word. The stemmer typically requires a language-

specific dictionary of all words and possible forms.
c) List of close words: – a user provides a list of words

and maximum distance (in words) between all the words. A

segment will match the pattern if all words are present in the

segment and the distance between the most distant words is

less than the value provided. The order of words in the list is

ignored. This plugin can also use stems instead of words.
d) List of words in a sentence: – a user provides a list

of words. A segment will match the pattern if all words are

present in a single sentence in analyzed the segment. This

plugin can also use stems instead of words.
e) List of optional words: – a user provides a list of

words and required threshold. A segment will match the

pattern if the number of specified words found in the segment

exceeds the threshold. This plugin can also use stems instead

of words.

The plugins provide several convenient ways of defining

precise patterns which a user is looking for. They provide

much more flexibility than the query languages provided by

the most popular publicly available search services. Particular

examples of the patterns and found content will be provided

in the next section.

IV. TESTS

Special set of tests of the system has been performed after

implementing proposed solutions. For testing purposes, four

most popular news portals, according to Alexa [2] ranking,

were selected :

• interia.pl 1,

• gazeta.pl 2,

• onet.pl 3,

• wp.pl 4.

For the crawl process, five detectors based on the methods

described in previous chapter were configured. All of detectors

searched for patterns in Polish language, due the fact that in the

implementation of the stemmer algorithm and its database was

available only for Polish language. It could be easily adapted

to other languages by implementing the stemmer algorithm

and its database in other languages.

1www.fakty.interia.pl
2www.wiadomosci.gazeta.pl
3www.wiadomosci.onet.pl
4www.wiadomosci.wp.pl

Detectors that were used to search for results, are:

• Simple – based on List of words method, parametrized by

words ”virus” and ”flu”,

• Stem – based on List of stems method, parametrized by

words ”virus” and ”flu” and it’s stems,

• Distance – based on List of close words method,

parametrized by words ”virus” and ”flu” and it’s stems

and distance between first and last word equal 5,

• InPhrase – based on List of words in sentence method,

parametrized by words ”virus” and ”flu” and it’s stems,

• Percentage – based on List of optional words method,

parametrized by four words: ”virus”, ”flu”, ”AH1N1”

(which is special kind of flu widespread in Poland in

December 2012), ”disease” and it’s stems, with minimum

50% percent of threshold.

Detectors search for defined patterns within the processed

web page body and return the results if all searched criteria

are fulfilled. The big advantage of the proposed system is

the results memory mechanism. It allows to return the result

only if it appears on processed web page for the first time,

or if the surrounding content has changed since the previous

processing.

TABLE I
CRAWL PERFORMANCE

Domain NoC/FC GS AFU/APU ACT EFF UM/PM

interia.pl 17/11 3,8mln 3320/3150 1h 45m 0,5 0/0

gazeta.pl 17/12 3,6mln 4375/3951 1h 52m 0,58 24/283

onet.pl 15/10 2,4mln 6112/5950 3h 10m 0,52 119/286

wp.pl 17/8 6,9mln 2602/2520 1h 45m 0,4 258/581

• NoC - number of crawls
• FC - number of full crawl processes
• GS - number of pages returned by Google ”site:” query
• AFU - average number of urls found on domain during single crawl
• APU - average number of urls processed on domain during single crawl
• ACT - average total domain crawl time
• EFF - average crawl efficiency [urls/second]
• UM - number of urls with with any patterns matched
• PM - number of patterns matched within the domain

GS APU UM PM

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

fakty.interia.pl wiadomosci.gazeta.pl wiadomosci.onet.pl wiadomosci.wp.pl

Fig. 3. Crawl performance diagram

The test period last 48 hours – it started on Saturday at

10am and it finished on Monday at 10am. Crawl performance

1264 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

recorded during the test are shown in Table I and Figure 3.

There could be observed some interesting facts:

• Number of urls within the domains returned by the

Google ”site:” search query varied from 2,4 to almost 7

millions. The number is huge, because it includes archive

urls from the Google storage. Performed crawl returned

at most about 6000 urls on single crawled domain. This

is less than 0.3% of urls declared by the Google search

engine, but those urls are all currently available urls,

accessible by links spread from top domain url.

• Time of the single domain crawl process varied from

1h30min to 4 hours per domain. Average domain crawl

efficiency was comparable for all the domains, about 0,5

processed url per second.

• Not every crawl process succeeded with full url list

being processed. Some crawls has been terminated after

crawling just a few percent of urls from domain. This is

probably a result of temporary ban for IP of the crawling

system.

• The number of returned results is neither related to the

estimate (returned by Google ”site:” query), nor real urls

number of the domain. Most results were found on the

smallest of crawled domains. The biggest domain was

on the second position regarding number of unique web

pages with matched pattern.

• One of the domains (fakty.interia.pl) did not contain any

results for whole test crawl period.

• About 95% (average) of urls found during crawl process

are the documents in textual (text or html) format and

they are processed by the detectors.

Crawl and detection effects are presented in Table II. Results

are grouped into two hour time units. First two rows of table

indicate hour of test (”HoT”) and related hour of day (”HoD”)

of crawl process. ”NoU” row represents a number of unique

urls found by all detectors within every domain crawled during

the test. ”NoP” represents a number of patterns found on

web pages by all detectors. Below, there are statistics for all

detectors separately, displayed as ”NoU” and ”NoP” values.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

0

5

10

15

20

25

30

35

40

45

50

simple stem distance inPhrase percentage

hour of test

n
u

m
b

e
r

o
f
u

rl
s

 m
a

tc
h

e
d

Fig. 4. Number of web pages found during crawl

Interesting remarks that could be observed on a base of test

results are:

• The detector with biggest number of urls returned is the

Percentage one – based on List of optional words. It is

also result of its search criteria - 2 of of 4 words were

required to report as pattern matched.

• Detectors based on word’s stems

(Stem/Distance/InPhrase) return very similar number of

results (about 90% of average common results).

• Detector Simple (without word’s stems) returns about

40% of stem-based detector results and matches about

30% of patterns found by stem-based detectors.

• In the figure 4, there is clearly shown, that most of the

results (above 51%) are found during first crawl process

(in first 4 hours of test).

• There could be observed some tendencies and periodicity

of new information appearance. New patterns are found

every morning, between 22 and 26 hour of test (8-12am),

and also between 42 and 46 hour of test (4-8am). It differs

slightly but it is probably caused by crawl density process.

Also Saturday afternoon is the time, when the information

peak could be observed. Both of this remarks could be

result of:

– new articles published (morning news),

– increased activities of users commenting articles

(evenings).

• an average number of detected pattens observed in the

Figure 5 correspond to the trend of the number of unique

urls containing pattern. Although there can be observed

some deviations. On the 6 and the 16th hour of crawl,

there are conspicuous peek of number of detected pat-

terns, which is not related to an adequate incrementation

of number of unique pages containing results (8 pages

with 79 results and 14 pages with 210 results). Such

result was caused by crawling the portal’s search engine

webpages, containing set of queries and query results

related to search topic.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

0

10

20

30

40

50

60

70

hour of test

a
ve

ra
g

e
 n

u
m

b
e

r
o

f
p

a
tt
e

rn
 m

a
tc

h
e

s

Fig. 5. Number of patterns matched on web pages during crawl

Table III presents statistics about number of patterns found

on single web page. The remarks based on those results are:

ANDRZEJ OPALIŃSKI, WOJCIECH TUREK, KRZYSZTOF CETNAROWICZ: SCALABLE WEB MONITORING SYSTEM 1265

TABLE II
DETECTOR RESULTS

HoT 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

HoD 10 12 14 16 18 20 22 00 02 04 06 08 10 12 14 16 18 20 22 00 02 04 06 08

NoU-Simple 16 3 4 2 0 1 1 1 1 0 0 2 1 0 0 0 0 0 0 0 0 2 1 0

NoP-Simple 24 3 11 11 0 4 4 4 3 0 0 7 4 0 0 0 0 0 0 0 0 5 4 0

NoU-Stem 32 11 7 3 4 9 5 1 2 0 0 2 2 0 0 0 1 0 0 1 0 3 2 0

NoP-Stem 67 15 25 59 8 16 13 7 31 0 0 10 8 0 0 0 1 0 0 1 0 10 8 0

NoU-Dist 31 11 6 2 4 8 5 1 1 0 0 2 2 0 0 0 0 0 0 0 0 3 1 0

NoP-Dist 63 15 19 36 8 11 10 4 3 0 0 8 7 0 0 0 0 0 0 0 0 7 4 0

NoU-InPhr 29 10 6 3 4 8 5 1 1 0 0 2 2 0 0 0 1 0 0 1 0 3 2 0

NoP-InPhr 52 13 19 36 8 11 10 4 3 0 0 8 7 0 0 0 1 0 0 1 0 7 5 0

NoU-Perc 47 14 9 4 5 12 6 4 3 0 1 3 3 1 0 0 1 1 0 3 2 3 4 0

NoP-Perc 116 20 37 68 10 24 18 12 39 0 2 17 10 2 0 0 1 2 0 4 3 11 11 0

NoU 155 49 32 14 17 38 22 8 8 0 1 11 10 1 0 0 3 1 0 5 2 14 10 0

NoP 322 66 111 210 34 66 55 31 79 0 2 50 36 2 0 0 3 2 0 6 3 40 32 0

• HoT - hour of a test (0 - 47)
• HoD - hour of a day (0 - 23)
• NoU - number of unique urls with results (for all detectors)
• NoP - number of pattern occurrences (for all detectors)
• NoU-X, NoP-X - NoU or NoP for particular detector

TABLE III
NUMBER OF PATTERNS FOUND ON WEB PAGE

Number of patterns on page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 28 34 35 57 65
Number of occurrences 203 93 28 30 8 6 10 10 2 1 1 1 1 1 1 2 1 1 1

• above 50% contained only one pattern within its body,

• almost 25% contained 2 pattern matches within its body,

• about 15% of web pages contained 3 or 4 pattern matches,

• 9% of results contained 5 to 8 results within its body,

• less than 3% of results contained more than 8 pattern

occurrences.

The tests showed clearly, that the solutions used in the

presented system works correctly. The performance was satis-

factory during whole two-day long experiment. The changes

detection algorithm was able to find fragments of Web pages,

which have actually changed between visits. The detectors

using the stemmer algorithm have demonstrated advantages

over a simple, word-based query language.

V. CONCLUSIONS AND FURTHER WORK

The system presented in this paper is a promising base for

further works and development, in the area of information

retrieval from WEB resources. After certains improvements

it could provide useful functionalities, that can definitely

find applications in real-life scenarios. Created method for

detecting modifications in the webpages’ content provides an

efficient way of finding only newly-added information.

The proposed solution may also have a variety of appli-

cations in open source intelligence analysis. The crawler can

be used to build a knowledge base that contains information

about objects, events and relations between them (e.g. com-

panies and involved people). This can be further integrated

with other analytical tools, such as LINK platform, which

supports mainly criminal analysis [13]. This way the crawler

can be used as valuable data source for performing various

analyses (for example searching relations between people and

companies involved in fraud).

Further research on the approach will include performance

improvements and development of more advanced methods

for defining content patterns. Moreover, tags-avoiding methods

are planned, in order to optimize results quality. A possibility

of defining semantic meaning of a content or of a similarity

to a given text would be more useful than specifying a list of

words. This could be achieved by methods of machine learning

[14] for building classifiers for particular types of content

ACKNOWLEDGMENT

The research leading to these results has received funding

from the research project No. O ROB 0008 01 “Advanced IT

techniques supporting data processing in criminal analysis”,

funded by the Polish National Centre for Research and Devel-

opment.

REFERENCES

[1] M. Kunder, WorldWideWebSize.com, 12.2012
[2] Alexa – provider of global web metrics, http://www.alexa.com/, 01.2013.
[3] J. Alpert, N. Hajaj, We knew the web was big...,

http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html,
25.07.2008

[4] L. Liu, W. Tang, D. Buttler, C. Pu. Information Monitoring on the Web: A

Scalable Solution World Wide Web, 2002, Volume 5, Issue 4, pp 263-304
[5] Liu, L., Pu, C., Tang, W.; WebCQ-detecting and delivering information

changes on the web. In Proceedings of the ninth international conference
on Information and knowledge management (pp. 512-519). ACM, 2000

[6] V. Ramasubramanian, R. Peterson, E.G. Sirer, Corona: A high perfor-

mance publish-subscribe system for the world wide web. Proceedings of
Networked System Design and Implementation (NSDI). 2006

[7] F. Menczer, R.K. Belew. Adaptive Information Agents in Distributed

Textual Environments, Proceedings of the 2nd International Conference
on Autonomous Agents, ACM Press, 1998, p. 157-164.

1266 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

[8] H. Dong, F.K. Hussain, E. Chang. State of the Art in Semantic Focused

Crawlers. Computational Science and Its Applications ICCSA 2009,
International Conference, Seoul, Korea, 2009, p. 910–924.

[9] B. Tan, S. Foo, S. C. Hui; Web information monitoring for competitive

intelligence Cybernetics and Systems, Vol. 33, Iss. 3, 2002
[10] K. Dorosz, M. Korzycki. Latent Semantic Analysis Evaluation of Con-

ceptual Dependency Driven Focused Crawling. Multimedia Communica-
tions, Services and Security, 5th International Conference, MCSS 2012,
Krakow, Poland, 2012, p. 77–84.

[11] W. Turek, A. Opaliński, M. Kisiel-Dorohinicki Extensible Web Crawler

– Towards Multimedia Material Analysis, Multimedia Communications,
Services and Security, 5th International Conference, MCSS 2011, Krakow,

Poland, 2011, p. 183–190.
[12] K. Wilaszek, T. Wjcik, A. Opaliński, W. Turek. Internet Identity Analysis

and Similarities Detection, Multimedia Communications, Services and
Security, 5th International Conference, MCSS 2012, Krakow, Poland, 2012,
p. 369–379.

[13] R. Debski, M. Kisiel-Dorohinicki, T. Milos, K. Pietak, LINK: a decision-

support system for criminal analysis, MCSS 2010: Multimedia Commu-
nications, Services and Security: IEEE International Conference, Springer,
2010, p.110-115

[14] B. Śnieżyński, Resource Management in a Multi-agent System by

Means of Reinforcement Learning and Supervised Rule Learning, Springer
Lecture Notes in Computer Science vol.4488, 2007, p. 864–871.

ANDRZEJ OPALIŃSKI, WOJCIECH TUREK, KRZYSZTOF CETNAROWICZ: SCALABLE WEB MONITORING SYSTEM 1267

