
Java Interface for Relaxed Object Storage

Michal Danihelka, Michal Kopecký, Petr Švec and Michal Žemlička
Faculty of Mathematics and Physics, Charles University in Prague

Malostranské nám. 25, 118 00 Praha 1, Czech Republic

Email: Michal.Danihelka@seznam.cz, kopecky@ksi.mff.cuni.cz, petsvec@tiscali.cz, zemlicka@sisal.mff.cuni.cz

Abstract—Most development tools manipulate objects by
changing values of their attributes. If the object should change
more radically, problems arise. The amount of available infor-
mation can vary from instance to instance and can be collected
incrementally. It can happen that there exists no class suitable
for all known attributes and so even movement of the instance
to another class can be complicated. We can create exhaustive
number of classes to cover all predicted variants, but still some
other combinations of data can occur. To solve this situation,
appearing often during processing of heterogeneous and mutable
data, the model of relaxed objects was invented. It is based on
the idea that object classes should be defined loosely in form
of conditions – presumptions on data content or availability –
and that instances should belong implicitly to all classes that are
currently met. Methods associated with such classes assure that
each instance is provided by all currently executable methods and
its behavior change dynamically with changes of its content. The
paper describes the Java-based object interface for this model,
its effectivity, and the domain index suitable for efficient data
searching.

I. INTRODUCTION

MOST of the object models are designed for situations

when we work with groups of objects described by

a known set of attributes – with classes. This approach can

handle changes of attribute values but can get in troubles when

new attributes should be stored and handled. The practice

shows that it is sufficient for many cases. The real life is

however more complicated and thus the real-life objects can

fit to various classes during the time. Sometimes there could

be collected some additional data, while other data could be

missing. Handling such situations in most class-based object

models is very complicated.

Some of the situations could be expected and supported by

the application (it could be expected that person can become

both parent and driver at once), some could stay hidden

(person being a child under 15 and pensioner at once) and

could appear during the applications service. An example of

an additional attribute could be an e-mail or ICQ for an

application being designed sooner than these media got known

enough.

The original motivation was the need to implement a

historical map that should present given area as it looked like

at given time in the past. All data had to be stored temporally

together with the period of their validity. The obtaining of

historical information from various sources was extremely

complicated. A lot of information is lost and thus amount of

available/known data differed from object to object and from

period to period.

Therefore we wanted an application able storing and pro-

cessing such data including the originally unexpected ones.

Current models and tools were not matching our needs suffi-

ciently. We therefore developed a corresponding object model

together with corresponding store ourselves [1].

The Relaxed object model was introduced in [2], [3]. It

has been developed for handling data of such extensible

applications. We have tested it also for prototyping of ap-

plications handling complex data and compared it with the

currently dominating approach (the use of relational or object-

relational database supported by an object-oriented language).

We have focused on the development speed, variability of

the solution and its resulting efficiency (throughput; it could

be interesting in the case when we create single-purpose

applications processing large amount of non-trivial data).

II. BACKGROUND

The relaxed object model presents inner content of objects

as an arbitrary set of values assigned to a subset of predefined

set of attributes A = {a1, a2, . . . , an}. While the class-based

object models define strict set of classes C and assigns each

object instance to one of them, the relaxed object model define

classes using arbitrary Boolean condition on attribute values.

We can thus imagine class Person as any object defining

values for attributes Name, Surname and BirthDate. Similarly

as a Driver can be considered any object defining values for

attributes Name, Surname, BirthDate and DriversLicenseNr,

i.e. any Person with assigned driver’s license. On the other

hand, class Child can be defined as a Person having BirthDate

greater than current date minus eighteen years. We can see that

both Driver and Child classes are subclasses of Person class.

An important difference is the very loose coupling between

object instances and classes. The class or classes are assigned

to object instances not explicitly by its declaration, but im-

plicitly according to their inner content. If the object gain

value of another attribute or current values of the object are

changed, the object can be immediately considered belonging

to different set of classes.

Methods could be formally expressed as a finite set F =
{f1, f2, . . . , fm} of data manipulation functions.

Each method fi ∈ F defines a condition req(fi) of

its executability on a given object instance. So the method

RevokeDriversLicense can require objects having attribute

DriversLicenseNr set. As the condition on class Driver im-

plicates the condition required by a RevokeDriversLicense

method, this method belongs to the Driver class interface.

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 1447–1454

978-1-4673-4471-5/$25.00 c© 2013, IEEE 1447

Thanks to the concept of Relaxed Object, where the interface

iface(o) of given object instance o contains all methods fi ∈ F
for whose its content fulfills the requirement req(fi), it is easy

to access and use all methods available for a given object

at a given moment. The availability can depend not only on

physical availability of data, but also on their accessibility

with respect to users’ rights to individual attributes. Again,

the client application can still provide users with the maximum

available functionality.

The concept of Relaxed Object promises solving of some

problems arising during transformation of real world entities

to their abstract object model.

This paper describes basics of first implementation of these

concepts that provides programmers writing in Java language

with an extension allowing easy access and manipulation

with relaxed object stored in the Oracle relational database.

The environment selection has been made with respect to its

potential enterprise deployment.

Following section discusses related work. Section 3 con-

cerns on main issues of implementing relaxed objects in Java

language and presents its results from performance point of

view. Section 4 discusses enhancements currently available for

the database layer that allows further performance enhance-

ments. The last chapter gives the final conclusion.

III. RELATED WORK

The model presumes data storage by individual columns.

The C-Store database system [4] deals with this idea. It shows

that this approach can be under some conditions quite efficient

for data retrieval. To optimize reading operations, C-Store

keeps data copies organized with respect to particular queries

and so slows-down data manipulation. The Datapile system [5]

targets to be a backup system for heterogeneous operational

databases. It stores attribute values including their time validity

into a single table. Data can be only imported from or

exported to the classical operational databases. The approach

does not allow direct data manipulation. A Java interface for

relaxed objects [6] was designed to allow direct manipulation

with stored relaxed objects, using classical relational database

storage and still provide acceptable response time.

Software development method named Design by contract

[7] tries to decrease complexity of implemented applications.

It is based on the concept of a contract between two modules.

Each module guarantees that if all requirements for input pa-

rameters are met, the output fulfills declared output conditions.

This approach is not much used in the practice today. The

problem is that definitions of requirements are not mandatory.

Relaxed objects will require definitions of input conditions, as

this test checks if the object belongs to supposed class or not

and if the method is available. Still the condition check should

be optional on production systems for performance reasons. It

should be possible to switch the checking off in the code if it

is obvious, that the condition is already met. The conditions

could be, for example, already checked and the object was not

changed afterwards.

As the implementation had to use relational database store,

it was necessary to implement object-relational mapping be-

tween Java representation of relaxed objects and the database.

Most of the known frameworks (for example Hibernate1

for Java), provides more mapping methods or their combi-

nations, as well chosen mapping can substantially increase

the application performance and decrease the lag caused by

SQL communication. The relaxed objects use quite different

approach to data storage, none of common mappings – neither

vertical, horizontal nor filtered [8] is applicable. It appeared

more efficient to implement a special mapping, optimized for

its specific object manipulation. One of the advantages is the

possibility to add new attributes at the runtime. As the mapping

performance was one of major risks, it was tested in detail.

IV. RELAXED OBJECT IMPLEMENTATION IN JAVA

This chapter describes basic ideas of relaxed object interface

in Java. Among others, the solution handles:

• Optimal description of conditions for methods and their

parameters.

• Optimal way of checking conditions at runtime.

• Possibility to find a correct implementation of a given

method.

• Finding relaxed objects having required characteristics,

i.e. fulfilling of a given condition.

A. Relaxed Object Representation

The representation of relaxed objects in the memory has to

be chosen first. The focus was held on the speed of in-memory

operations and the size of the data representation as we wanted

to add as little overhead as possible.

We distinguish primitive data types and object data types in

the further text. Primitive data types as int contain data value

directly and do not need any space overhead. On the other

hand, object data types store data wrapped into objects and

reference to them using four byte references.

From the test results shown in the table I is obvious that

the creation time depends on the object representation memory

size. The object representation sizes are everytime rounded up

to 8 Bytes. Class Object itself requires 8 Bytes of memory.

Integer value represented as an Integer instance requires 16

Bytes of memory plus 4 Bytes for each reference. Fortunately,

the memory overhead for objects with more attributes is

relatively smaller. The results for String types have shown

to be comparable with int objects (not counting memory for

string characters), and so we tested mainly int parameters.

The results show average values from five runs, where

each run executes the operation one hundred thousand times.

The first two rows correspond to the cases where attributes

were declared as public and so the manipulation can be done

directly, not through getters and setters. A final modifier denies

further changing of a value once it is already set.

The last three columns compare object creation time with-

out attribute initialization, with attributes set by constructor

1http://www.hibernate.org

1448 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

Table I
IN-MEMORY MANIPULATION WITH JAVA OBJECTS ([6])

Get Set

Class Size Time Time Creation Time (ns)
Content (B) (ns) (ns) +Constr. +Setters

public final int 16 10 n/a — 25 n/a
public int 16 11 13 — 25 26
Int 16 11 17 18 25 42
2 x int 16 12 16 19 26 44
8 x int 40 20 29 46 51 98
32 x int 136 25 52 — 196 402
32 x int + sync. 136 89 91 — 189 417
crit. section
32 x int + sync. 136 92 95 — 194 428
method

parameters and with attribute initialization using setters after

the object is created. The required initialization time increased

with the growing number of parameters.

The last two rows show the time consumption in the case

when the attribute access is exclusive and when it forbids

parallel processing. The recommended variant that uses syn-

chronized access only for critical section is better than the

variant that requires synchronization for the whole method. In

both cases the throughput of the initialization phase decreases

significantly.

The relaxed objects allow any combination of set attributes

what leads to at least 2|A| theoretically possible classes. To

avoid this, the relaxed object instance representation should

allow arbitrary number of attributes and adapt its behavior

according to actual inner content. We supposed that from the

speed point of view the HashMap representation of attribute

name – value pairs will be optimal while representation

in array will provide more efficient storage. The HashMap

representation was – surprisingly – 2–5 times slower than array

representation for tens of attributes. Moreover the HashMap

representation takes 80B plus additional 24B for each pair,

while arrays require 24B plus 8B for each new pair.

Table II
MANIPULATION WITH RELAXED OBJECT INSTANCES ([6])

Set Set

Class Get Time Time Creation Creation

Content Time New Known +constr. +setters
nr. of int (ns) (ns) (ns) Time (ns) Time (ns)

1 30/30 106/106 57/57 30/58 156
2 36/37 107/152 56/60 29/71 296
4 41/54 107/181 59/61 31/89 623
8 53/65 106/322 68/75 30/133 1416
16 80/95 109/650 92/107 32/230 4527
32 104/188 109/650 120/208 30/502 11818
32*Integer 147/190 115/641 162/201 32/677 13060

Table II shows time required by the operations for an array

representation. The values were of primitive type int. The

last row shows a comparison with the values stored as an

object type Integer. Most of the results is shown in the format

best/worst case. Setting values distinguishes between changing

an already existing value and a (slower) setting value for an

unknown attribute. Again, the creation of an object instance

distinguishes between the creation of the initialized instance

and the creation of an empty object instance and the additional

setting attributes one by one. The first case corresponds to the

situation where attribute values are known in advance while

the other models are more probable in the situation when the

attributes are set after the instance creation one by one. This

approach is up to 30 times slower than the manipulation with

classical Java objects.
The overall memory consumption is approximately 2 times

larger than in the case of classical object models.
It is possible to suppose that the users will spend signifi-

cantly more time by reading and processing information than

by its modification. Under such condition it was reasonable

to implement two different interfaces of the relaxed object

instance – RFObject2 and its extension RMObject3. The first

of them represents immutable object instance and provide

methods find, get, isSet and setCallMode. The second one

inherits it and adds additional methods set, setValue, unset,

amend, store, and delete.
RFObject instance has all its values set during initializa-

tion, which makes checking conditions easier, as they can

be checked only once. Methods of this class are thread-

safe. The RMObject implementation is thread-unsafe and so

it was implemented a wrapper that overrides all methods as

synchronized. The programmer then can easily choose whether

he/she prefers more efficient or safer object manipulation.
Attributes are defined as members of an enumerated type.

Their data type is determined by the interface it implements.

This way the compiler can check the type consistency. The

description of the type is done using annotation. The definition

then can look like:

// Example 1 - Attribute definition

public enum String implements RString {

@Info ("State description")

StateDescription

}

Getters and setters take attribute identification as their

first parameter. So getters are declared as get(RBytes):

byte[], get(RBoolean): boolean, set(RLong,long): void,

set(RString,String): void, etc. This allows compiler to check

type consistency. Getters return primitive types to decrease

memory and time overhead. The amend(String): void method

loads attributes of object from the database. The store():

void method stores object including referenced objects to

the database. The unset(. . .): void method marks an instance

attribute as deprecated and the subsequent store invocation

removes its value from the database.
The most important is the method find(class<Type>): Type

that allows finding proper implementation of the object accord-

ing to its inner state and required type. Return value is stored

in the object cache. Method setCallMode allows programmer

to choose if the next method invocation should:

• evaluate the conditions and execute the method, (the

default behavior), or

2Relaxed Final Object
3Relaxed Mutable Object

MICHAL DANIHELKA ET AL.: JAVA INTERFACE FOR RELAXED OBJECT STORAGE 1449

• execute the method without checking, or

• only checks the executability condition.

B. Sets and Object Lists

As proposed in [2], the sets and lists are represented as

collections of references to relaxed objects. Again, the imple-

mentation was split to the final RFSet and RFList interfaces,

and their mutable RMSet and RMList extensions. The unset

method marks the reference to the object as unused. To remove

the referenced object as well, the implementation extends the

interface by the method remove. The method filter unsets all

objects that do not fulfill given condition.

C. Object persistency

Attribute declaration can add other requirements as unique-

ness constraint or index enforcement for the attribute. An

application can contain a method that goes through all the

available classes, creates missing tables for the attributes in

the database and registers all the attributes in the catalog. The

implementation supports also transient attributes of instances

that can hold temporary data during object stay in the memory

and that are not stored in the database. To define a transient

attribute, Info annotation from the example above should be

changed to Transient annotation.

Transaction support allows setting of isolation level of the

transaction or set the transaction as read only. Attributes and/or

instances can be explicitly locked in either shared or exclusive

mode. An application can request locking objects in the order

of the increasing object ID’s, which decreases probability of

deadlock occurrence.

D. Methods and Class Definitions using Conditions

One of the main goals was to implement suitable way for

declaration of conditions for method executability and for

their parameters. As a solution the annotations were chosen

similarly to attribute declaration. The next interesting problem

was the enforcing of a transparent condition checking. The

instrumentation of bytecode was chosen as the most feasible

implementation. This special Java feature allows us to modify

the bytecode of the class in the time of loading it to the

memory. The last main problem was the way allowing relaxed

object instances calling any method available according to

their inner state. The solution through proxies was chosen

here. Each method defines its interface. The Java then allows

generation of an implementation for a given set of interfaces.

// Example 2 - Method definition

public interface Foo {

Object bar (Object obj) throws BazException;

}

public class FooImpl implements Foo {

Object bar (Object obj) throws BazException {

// ...

}

}

// Example 3 - Proxy Object Implementation

public class DebugProxy implements

java.lang.reflect.InvocationHandler {

private Object obj;

public static object newInstance(Object obj) {

return java.lang.reflect.Proxy.newProxyInstance (

obj.getClass().getClassLoader(),

obj.getclass().getInterfaces(),

new DebugProxy(obj));

}

private DebugProxy(Object obj) { this.obj = obj; }

public Object

invoke(Object proxy, Method m, Object[] args)

throws Throwable

{

Object result;

try {

system.out.println("before method " +

m.getName());

result = m.invoke(obj, args);

} catch (InvocationTargetException e) {

throw e.getTargetException();

} catch (Exception e) {

throw new RuntimeException(

"unexpected invocatÝon exception: "

+ e.getMessage());

} finally {system.out.println("after method "

+ m.getName());

}

return result;

}

}

// Example 4 - Proxy Object Usage

Foo foo =

(Foo) DebugProxy.newInstance (new FooImpl());

foo.bar(null);

E. Queries

The relaxed object interface in Java tries to hide the database

and provides to the developer an object oriented interface.

Queries are thus provided through methods taking the condi-

tions and returning either RFList or RMList implementations

according to the necessity to modify results programmatically.

F. System Catalogue

The library keeps information about defined attributes in a

class defined as one of relaxed object classes. The RSetAt-

tributes attribute represents set of attributes having a defined

value in a given instance. Due to the reflexivity of the system

catalogue definition, the application can query the catalogue

using the same way as other stored data.

//Example 5 - System Catalogue Class Definition

public class systemCatalogue {

public enum String implements RString {

@Info(value="Name of attribute", unique=true)

RAttribute,

@Info("Type of attribute")

RType,

@Info("Unit of attribute (e.g. ms,s,CZK,USD)")

RUnit,

@Info(

value="Description of attribute",

uniqu=true

)

RDescription

}

public enum Integer implements RInteger {

@Info(

value="Index of attribute

for RSetAttributes",

unique=true)

RSetIndex

}

1450 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

public enum Boolean implements RBoolean {

@Info(

"Information if values of attribute

have to be unique"

)

RUnigue

@Info(

"Information if index is created

for attribute"

)

RIndex

}

public enum Bytes implements RBytes {

@Info(

"Bit array of set attributes of relaxed object"

)

RSetAttributes

}

}

The main weakness of the provided implementation is the

performance of a persistent layer due to splitting of objects to

more tables for individual attributes. Searching for k attributes

of a given relaxed object requires joining of at least k tables

according to equal ID. The search effectiveness in relaxed

object storage without support of any specially designed index

is shown on figures 1 and 2.

Results show that the time needed for searching grows

significantly with the number of stored objects. The querying

is complicated also due to the fact, that search can be done

according to at most one indexed column and other conditions

have to be checked against data stored in other tables and

joined by object ID.

To allow effective searching, special type of index had to

be designed and implemented. We needed index embedded to

some widespread enterprise database management system to

support large number of applications and application environ-

ments. We choose an Oracle database for its support of extensi-

ble indexing through data cartridges4. Its first implementation

was described in [9]. The index has been significantly evolved

and further optimized later.

Figure 1. Object search in Relaxed Object Database - 3 attributes

4http://download.oracle.com/docs/cd/B19306 01/appdev.102/b14289/toc.
htm

Figure 2. Object search in Relaxed Object Database - 5 Attributes

V. TEMPORAL RELAXED OBJECT INDEX

Due the restriction, given by predefined domain index

interface in Oracle our indexes are created in two phases.

First, they are created as abstract ones. In this phase the

index holds only the metadata, not the data from the indexed

attribute set (table set). In this state it is possible to attach new

attributes to it, or detach unnecessary ones. At this moment

the index is switched to real index, it becomes available for

query optimization. Real indexes store data in R-tree structure

[10] with parameters M and N . The parameters can be set

at the creation time. Otherwise the optimal values are set

automatically using built-in heuristics. The heuristics tries to

find such a largest N that one node can be read by one I/O

operation.

Let us begin with an example over Relaxed Object model

storing information about people in attributes Name, Surname,

Degree, DrivingLicense, NrOfChildren, and Income. The sta-

tistical office would like regularly check relation between edu-

cation degree and the income, while some company would like

to find potential customers. For these purposes two different

multi-table indexes could be created:

-- Abstract index COMPANY creation

EXECUTE INX.CONSTRUCT(’COMPANY’);

-- Adding attributes

EXECUTE INX.ADD_ATTRIBUTE(

’COMPANY’,’DrivingLicense’);

EXECUTE INX.ADD_ATTRIBUTE(

’COMPANY’,’NrOfChildren’);

EXECUTE INX.ADD_ATTRIBUTE(

’COMPANY’,’Income’);

-- Switch index to real state and index data

EXECUTE INX.MAKE_REAL(’COMPANY’);

-- Create and populate index for statistics

EXECUTE INX.CONSTRUCT(’STATISTICS’);

EXECUTE INX.ADD_ATTRIBUTE(

’STATISTICS’, ’Degree’);

EXECUTE INX.MAKE_REAL(’STATISTICS’, 20, 50);

-- Switch index back to abstract one,

-- add new attribute

-- and switch back to real index

EXECUTE INX.MAKE_ABSTRACT(’STATISTICS’);

EXECUTE INX.ADD_ATTRIBUTE(

’STATISTICS’, ’Income’);

MICHAL DANIHELKA ET AL.: JAVA INTERFACE FOR RELAXED OBJECT STORAGE 1451

Figure 3. Query language grammar

EXECUTE INX.MAKE_REAL(’STATISTICS’);

All R-trees over all sets of columns are held within one do-

main index instance built on column ID of table OBJECTS .

The select statements then looks like

SELECT * FROM OBJECTS

WHERE MATCH(ID,

’conjunction of conditions on attribute values’

) = 1.

The query language used within the string parameter of this

operator was defined to be as similar to SQL language as

possible. With the exception for standard Boolean operators

and comparison operators it allows easy definition of interval

queries.
Index search then choose the best R-tree available to search

object instances according to known attribute values. This is

advantageous as the user need neither know all sets of indexed

columns nor decide the specific one to be used.
Queries can either let the datastore choose optimal index,

hint appropriate indexes, or force it to explicitly use given R-

tree index. The SELECT statement then could look as follows:

SELECT *
FROM OBJECTS

WHERE MATCH(ID,

’Income >= 8000 AND NrOfChildren IN[1, 99)

AND DrivingLicense IS NOT NULL’) = 1;

-- Hinting index quality

-- by adding one point to COMPANY

-- and decreasing two points to STATISTIC

SELECT *
FROM OBJECTS

WHERE MATCH(ID,

’/* +COMPANY, --STATISTICS */ Income >= 8000

AND NrOfChildren IN[1, 999)

AND DrivingLicense LIKE "%B%"

AND DEGREE = "MGR."’) = 1;

-- Forcing search by index STATISTICS

SELECT *
FROM OBJECTS

WHERE MATCH(ID,

’/* STATISTICS */ Income >= 8000

AND NrOfChildren IN[1, 999)

AND DrivingLicense = "B" AND DEGREE = "MGR."’) = 1

A. Search Language Grammar

The Figure 3 shows the grammar schema. The n-

dimensional query is represented by a conjunction of condi-

tions over more attributes – dimensions. Each atomic conjunc-

tion consists of the name of attribute or keyword TIME, of the

comparison operator and of the value (1a). Each dimension can

set at most one lower and at most one upper limit (1b). If the

boundary for given attribute is not set, the value MIN VAL,

respectively MAX VAL, defined internally inside the library

for each database type and representing +∞ and −∞ is used.

The equality operator sets both upper and lower limit for

given attribute (1c). To simplify interval queries, the IN oper-

ator was introduced. It defines both limits for the dimension

delimited by a comma. Square brackets are used for closed

interval boundaries, while the rounded brackets define open

boundaries (1d). The value of VALUE1 has to be less or

equal to the value of VALUE2. The operator IS NULL is

used to test equality with NULL value as it is usual in the

SQL language. The IS NOT NULL operator is equivalent to

search over closed interval [MIN VAL, MAX VAL] (1e). The

IS DEFINED operator is used to find all objects with the value

set to any value including the NULL value. It is equivalent to

”IS NULL or IS NOT NULL”. The LIKE operator is allowed

only for textual attributes and works accordingly to its SQL

equivalent. The following examples show different forms of

queries.

-- (1a)

’NrOfChildren >= 1 AND NrOfChildren < 999

AND DrivingLicence = "B"’

-- (1b) - error: lower limit set twice

’NrOfChildren >= 1 AND NrOfChildren > 1’

-- (1c) - equiv. to ’DrivingLicence = "B" ’

’DrivingLicence >= "B" AND DrivingLicence <= "B" ’

-- (1d) - equiv. to ’NrOfChildren IN[1,999)’

’NrOfChildren >= 1 AND NrOfChildren < 999’

-- (1e) - equiv. to ’Degree IN[MIN_VALUE,MAX_VALUE]’

’Degree IS NOT NULL’

Syntax of values depends on their data type family – integer,

float, text or datetime. Details for different database types are

shown in Table III.

Strings have to be enclosed in double quotas ”. The ordering

and comparison is defined by Oracle function NLSSORT

and is case insensitive. The date and timestamp values are

enclosed in double quotas as well. If the length of the literal

is shorter than expected, it is completed automatically with

respect to the required format. So e.g. the value ”2013-05”

is by default completed to the timestamp value ”2013-05-01

00:00:00.000000000”.

B. Heuristics Language Grammar

All hints affecting the heuristics are optional and if present,

they must be enclosed in comment brackets /* and */ at the

beginning of the query string. The hint grammar is declared on

Figure 4. Hint NONE explicitly forbids the use of any existing

R-tree and data are searched programmatically. If the user

wants to use one particular R-tree index, he or she can force

its usage by writing its name to the comment. It is possible

to write down the list of more R-tree indexes separated by

commas. Each index name can be prefixed by a sequence of

plus or minus signs. The heuristics then favors, respectively

suppresses their usage accordingly to the prefix lengths.

1452 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

Table III
SUPPORTED DATA TYPES

DB Type Oracle format Max Min Val Max Val

NUMBER(9) FM999999999 10 -999999999 999999999
NUMBER(12,3) FM999999999.000 14 -99999999.999 +99999999.999
TIMESTAMP(6) FXYYYY-MM-DD HH24:MI:SS.FFF 21 0000-01-01 00:00:00.000 9999-12-30 23:59:59.999
VARCHAR2(16) 16 CHR(0) 16xCHR(255)
VARCHAR2(32) 32 CHR(0) 32xCHR(255)
VARCHAR2(64) 64 CHR(0) 64xCHR(255)
VARCHAR2(128) 128 CHR(0) 128xCHR(255)

Figure 4. Hint comment grammar

C. The Embedded Heuristics

The optimal R-tree that allows optimal evaluation of given

query is chosen by the embedded heuristics. It takes into

account two basic factors. First it tries to avoid filter search

phase. Second it tries to minimize the number of I/O op-

erations between the R-tree stored in the BLOB and the

operational memory. More formally, the heuristics tries to

use such a suitable R-tree that provides maximal value of

expression (1). Weights H1 to H4 are still subject of further

research and change.

H1

NInd

NAttr

+H2

PInd

PTot

+H3

N

SCh

+H4UPref (1)

The first expression H1(NInd/NAttr) tries to identify the

biggest subset of indexed attributes. NInd represents the num-

ber of indexed attributes in the query. NAttr stands for the

number of attributes in the query. Optimally the number of

indexed attributes corresponds with the number of attributes

in the query and so NInd/NAttr = 1. The H1 value is currently

set to 3.

The second expression H2(PInd/PTot) searches for the

index with as much pages read into the cache as possible.

PInd denominates the number of pages already read into the

index cache. PTot then holds the number of all pages that

forms the index. Current value of H2 is set to 2.

The expression H3(N/SCh) prefers indexes with smaller

sizes of attributes, as they can store more rows of indexed

data into one index node. N is a parameter of the R-tree,

while SCh stands for system chunk-size. H3 is set to 1.

The last expression H4UPref takes into account the user

preferences. H4 is currently set to 1. UPref is defined by the

length of plus/minus prefix in the hint. For example, in the

case of the hint /* ++COMPANY, -STATISTICS */ the UPref

value is equal to +2 for R-tree COMPANY and to -1 for R-tree

STATISTICS.

Following examples show the influence of hints and further

aspects to the R-tree selection:

-- index COMPANY will be used (by heuristics)

SELECT * FROM OBJECTS

WHERE MATCH(ID,

’Income >= 8000 AND NrOfChildren IN[1, 9)

AND DrivingLicense IS NOT NULL’) = 1;

-- with LIKE, the STATISTICS will be used;

-- without it, the COMPANY one

SELECT * FROM OBJECTS

WHERE MATCH(ID,

’/* ++COMPANY, -STATISTICS */ Income >= 8000

AND NrOfChildren IN[1, 9)

AND DrivingLicense LIKE "%B%"

AND DEGREE = "MGR."’) = 1;

D. Combined Search of Data

All searches supported by domain index are primarily done

through R-tree indexes. As R-tree indexes are not and cannot

be built on all possible subsets of attributes, it is necessary to

combine index search with additional comparisons of found

object instances with the query.

In this case the search runs in two phases. The first index

search phase – index search – uses the best available real R-

tree index to find out object instance candidates. In the second

phase – filter search – compares remaining attributes if they

match to the user query or not. The obtained result set is then

propagated to the application. The filter search evaluation is

more time-consuming, but fortunately it is necessary to use it

usually for relatively small amount of objects candidates only.

If the sufficient R-tree index exists, it is not used at all.

E. Performance Tests

We tested the search speed using real domain indexes with

optimal value of N parameter against searches, written in

standard SQL both without any index support as well as using

a join over ID columns supported by standard B-tree indexes

on them. Tests run on Oracle 11gR2 XE on the PC with

the dual-core processor Intel R© Pentium R© at 2.4 GHz and

4GB RAM DDR3. Third we tried to measure the search with

NONE hint, so all instances were searched by filter search.

Search times achieved over the database are shown in Table

IV. Times in seconds spent by domain index search are listed

in the column REAL. Search times needed by standard SQL

search are in column ORACLE. The last variant is shown in

column NONE.

-- REAL index STATISTICS

SELECT * FROM OBJECTS

MICHAL DANIHELKA ET AL.: JAVA INTERFACE FOR RELAXED OBJECT STORAGE 1453

WHERE MATCH(ID,

’/* STATISTICS */ Income >= 8000 AND DEGREE = "MGR."

AND TIME < "2100"’) = 1;

-- ORACLE search

SELECT COUNT(DISTINCT Income.ID)

FROM Income I INNER JOIN DEGREE D

ON (I.ID = D.ID

AND ((I.VALID_TO > D.VALID_FROM

AND I.VALID_FROM < D.VALID_TO)

OR

(D.VALID_TO > I.VALID_FROM

AND D.VALID_FROM < I.VALID_TO)

))

WHERE I.VALUE >= TO_NUMBER(’8000’,

TYPES.GET_FORMAT(’INT’))

AND D.VALUE = "MGR."

AND I.VALID_FROM < TYPES.TO_DATETIME(2100)

AND D.VALID_FROM < TYPES.TO_DATETIME(2100);

-- NONE R-tree index

SELECT * FROM OBJECTS

WHERE MATCH(ID,

’/* NONE */ Income >= 8000 AND DEGREE = "MGR."

AND TIME < "2100"’) = 1;

The database was populated with 10, 20, respectively 30

thousands of object instances with two attributes each. The

attributes have had 8 to 15 unique values. Queries returned

approximately 25% of the database content.

The table shows that the time spent by index creation is

relatively large due to tree balancing. Optimal balancing has

then positive influence to further index search times.

Table IV
SEARCH TIMES COMPARISON

Objects Items
Create
time (s)

REAL
(s)

ORACLE
(s)

NONE
(s)

10 000 118.582 174.9 0.510 13.730 25.625
20 000 237.695 370.5 1.160 28.020 51.640
30 000 356.974 574.2 1.410 41.950 80.640

The same results are shown graphically on 5. It can be

easily seen the major differences in times. Note that the results

for Oracle SQL search were obtained in database without

additional B-tree indexes on attribute values. Introducing them

speeds up the Oracle SQL queries 3 to 4 times in the case

of low dimensional queries. The queries on more attributes

where the SQL join takes most of the time the speed-up was

not so evident. The graph shows also an apparent increase

of time between 10 and 20 thousands of object instances. It

is caused by returning results in batches what implied more

time-consuming calls from the PL/SQL to the C++ code. The

tests were run with the batch size of 2000 objects.

VI. CONCLUSION

Using technologies as Annotations, Annotation Processing

and Java Instrumentation API, available in Java 6.0 language,

the concept of relaxed objects was successfully implemented

including polymorphism that was originally not considered.

Future planned extensions of Java that suppose storing method

names together with parameter names and types in the byte-

code in the retrievable way would make condition definitions

Figure 5. Search Times Comparison in Graphical Form

even simpler. The suitability of the above described imple-

mentation was proved by the pilot application – storage for

software test management.

Advantage of the model is its ability of maintain hetero-

geneous data. The checking of method availability on given

instance made the application more fault-tolerant. It appears

that relaxed objects seem to be a good choice for prototyping

applications having complex or heterogeneous data. Current

state of implementation of specialized domain index promises

even better performance and greater usability of this concept

in the near future.

ACKNOWLEDGMENT

This research was partially supported by Charles University

research funds PRVOUK as program P46.

REFERENCES

[1] M. Žemlička, J. Anděl, M. Bělocký, A. Buble, R. Doulı́k, P. Daněček,
and D. Veselý, “gmap,” FreeGIS CD v1.1 by Intevation GmbH, 2001.

[2] M. Kopecký and M. Žemlička, “Rozvolněné objekty (in Czech: Relaxed
objects),” in DATAKON 2004, K. Ježek, Ed. Brno, Czech Republic:
Masaryk University, 2004, pp. 243–252.

[3] ——, “Relaxed Objects - Object Model for Context-Aware Appli-
cations,” in 2009 IEEE 33RD International Computer Software and

Applications Conference, Vols 1 and 2, ser. Proceedings - International
Computer Software & Applications Conference, IEEE. 345 E 47th st,
New York, NY 10017 USA: IEEE Computer Society, 2009, Proceedings
Paper, pp. 898–903, IEEE 33rd International Computer Software and
Applications Conference, Seattle, WA, JUL 20-24, 2009.

[4] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack,
M. Ferreira, E. Lau, A. Lin, S. R. Madden, E. J. O’Neil, P. E. O’Neil,
A. Rasin, N. Tran, and S. B. Zdonik, “C-Store: A Column-Oriented
DBMS,” in VLDB, Trondheim, Norway, 2005, pp. 553–564.

[5] D. Bednárek, D. Obdržálek, J. Yaghob, and F. Zavoral, “Data integration
using datapile structure,” in Proceedings of the 9 th East-European

Conference on Advances in Databases and Information Systems, ADBIS

2005, Tallinn, Estonia, 2005, pp. 178–188.
[6] M. Danihelka, “Úložiště pro rozvolněné objekty (in Czech: Data Store

for Relaxed Objects),” Master’s thesis, Charles University, Prague, 2009.
[7] J. Rieken, “Design by contract for java - revised,” Master’s thesis,

Department für Informatik, Universität Oldenburg, Apr. 2007.
[8] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen,

Object-Oriented Modeling and Design. Englewood Cliffs, New Jersey
07632: Prentice-Hall, 1991.

[9] P. Švec, “Datové úložiště pro temporálnı́ rozvolněné objekty (in Czech:
Data Store for Temporal Relaxed Objects),” Master’s thesis, Charles
University, Prague, 2010.

[10] A. Guttman, “R-trees: a dynamic index structure for spatial
searching,” in Proceedings of the 1984 ACM SIGMOD international

conference on Management of data, ser. SIGMOD ’84. New
York, NY, USA: ACM, 1984, pp. 47–57. [Online]. Available:
http://doi.acm.org/10.1145/602259.602266

1454 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

