
Anticipation in the Dial-a-Ride Problem: an
introduction to the robustness

Samuel Deleplanque
Blaise Pascal University

LIMOS CNRS Laboratory

LABEX IMOBS3

Clermont-Ferrand 63000, France

Email: deleplan@isima.fr

Jean-Pierre Derutin
Blaise Pascal University

Institut Pascal CNRS Laboratory

LABEX IMOBS3

Clermont-Ferrand 63000, France

Email: derutin@univ-bpclermont.fr

Alain Quilliot
Blaise Pascal University

LIMOS CNRS Laboratory

LABEX IMOBS3

Clermont-Ferrand 63000, France

Email: quilliot@isima.fr

Abstract—The Dial-a-Ride Problem (DARP) models an opera-
tion research problem related to the on demand transport. This
paper introduces one of the fundamental features of this type
of transport: the robustness. This paper solves the Dial-a-Ride
Problem by integrating a measure of insertion capacity called
Insertability. The technique used is a greedy insertion algorithm
based on time constraint propagation (time windows, maximum
ride time and maximum route time). In the present work, we
integrate a new way to measure the impact of each insertion
on the other not inserted demands. We propose its calculation,
study its behavior, discuss the transition to dynamic context and
present a way to make the system more robust.

I. INTRODUCTION

TODAY, the Dial-a-Ride Problems are used in transporta-

tion services for elderly or disabled people. Also, the

recent evolution in the transport field such as connected cars,

autonomous transportation, and the emergence of the shared

service might need to use this type of problem at much

larger scales. But this type of transport is expensive and the

management of the vehicles requires as much efficiency as

possible, however the number of requests included in the

vehicles planning can vary depending on the resolution used.

In [1] we solve the DARP by using constraint propagation

in a greedy insertion heuristic. This technique obtains good

results, especially in a reactive context, and is easily adaptable

to a dynamic context. But, each demand is inserted one after

another and the process doesn’t take into account the impact

of each insertion on the other not inserted demands, and so,

in a dynamic context, the future demands. In this work, we

present a measure of an insertion capacity named Insertability.

We introduce its calculation by integrating the impact of an

insertion on the time constraints (time windows, maximum

route time and maximum ride time).

This measure may be used in different ways: selection of

the demand to insert, selection of the insertion parameters,

and exclusion of a demand. These three uses may be related

to static as well as dynamic contexts by anticipating the future

demands. The goal is to insert the current demand in order to

build flexible routes for the future ones.

This paper is organized in the following manner: after

a literature review, the next section will propose a model

of the classic DARP. Then, we will review how to handle

Fig. 1. Times windows’ contraction

the temporal constraints with a heuristic solution based on

insertion techniques using propagation constraints. We will

continue by explaining the way to measure the Insertability,

a calculation based on the evolution of the time windows

after an insertion. Then, we will give some uses of this

measure including making an appointment which minimize

the time windows (cf. Figure 1). In the last part of the

paper, the computational results will show the efficiency of

our Insertability’s measure and we will report the evolution

of the number of demands inserted in a resolution of some

instances’ sets.

II. LITERATURE REVIEW

The first works of the transportation optimization problem

are related to the Traveling Salesman Problem ([2]). Since

that time, other transportation problems have emerged as the

vehicle routing and scheduling problems, and the Pick-up and

Delivery Problem (PDP). The PDP is the ancestor of the

problem of the Dial-a-ride problem which has been studied

since the 1970’s. DARP can be modeled in different ways.

There are a number of integer linear programmings [3], but the

problem complexity is too high to use it in a real context, most

of which are NP-Hard because it also generalizes the Traveling

Salesman Problem with Time Windows (TSPTW). Therefore,

the problem must be handled through heuristic techniques.

[4] is an important work on the subject and uses the Tabu

search to solve it. Other techniques work well like dynamic

programming (e.g. [5] and [6]) or variable neighborhood

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 299–305

978-1-4673-4471-5/$25.00 c© 2013, IEEE 299

searches (VNS) (e.g. [7] and [8]). Moreover, a basic feature of

DARP is that it usually derives from a dynamic context. So,

algorithms for static DARP should be designed in order to

take into account the fact that they will have to be adapted to

dynamic and reactive contexts, which means synchronization

mechanisms, interactions between the users and the vehicles,

and uncertainty about for-coming demands. [9], and [10] later,

developed the most used technique in dynamic context or in a

real exploitation is heuristics based on insertion techniques.

These techniques are a good solution when the people’s

requests have to be taken into account in a short period of

time.

III. THE DIAL-A-RIDE PROBLEM: MODEL AND INSERTION

GREEDY ALGORITHM

A. The general notations

This section lets to set notations used throughout this

document. For any sequence (or list) Γk we set:

• for any z in Γk :

– Succ(Γk, z) = Successor of z in Γk ;

– Pred(Γk, z) = Predecessor of z in Γk ;

• for any z, z’ in Γk :

– z ≪k z′ if z is located before z’ in Γk ;

– z ≪=
k z′ if z ≪k z′ or z = z’.

B. The model

A Dial a Ride Problem instance is defined by a Demand

set D = (Di, i ∈ I), a fleet of K vehicles with a common

capacity CAP , and a transit network G = (V,E). V contains

some specific node Depot and demands’ nodes (DepotD for

the departure and DepotA for the arrival). Each arc e ∈ E
is endowed with riding times give by a distance function

DIST (e). Each demand includes oi an origin node, di a

destination node, F (oi) and F (di) two time windows, ∆i

a maximum ride time and Qi a description of the load such

that Qi = qoi = −qdi
with q the load related to a node.

Finally, the total time of the K vehicles planning are limited

by ∆k, k ∈ K.

Solving a DARP with such an instance means creating a

scheduling for each vehicle handling demands of D. The routes

are constructed while optimizing a performance, which could

be a mix of costs (e.g. total distance) and QoS criteria (e.g.

ride time).

C. A greedy insertion algorithm: the insertion mechanism

In [1], we present an insertion greedy algorithm based

on constraint propagation in order to contract time windows

according to the time constraints. An insertion which does not

imply constraint violation is said valid if Γ = ∪k∈KΓk, the

resultant collection of routes, if load-valid and time-valid. A

route is load-valid if the capacity is not exceed, so, the load-

validity is obtained if ChT k(x) ≤ CAP with ChT k(x) =∑
y≪=

k
x qy , x and y nodes in the route k. The time-validity is

obtained if there is no violation of the time constraints model-

ing by, for each demand i, i ∈ D, ∆i the maximum ride time,

∆k, k ∈ K the maximum route time and the constraints mod-

eled by each time window F (oi) = [F .min(oi),F .max (oi)]
and F (di) = [F .min(di),F .max (di)]. Checking the load-

validity on Γ = ∪k∈KΓk is easy, and we show the efficiency

of the constraint propagation in order to prove to time-validity

after each planned insertion once the load-validity is proved.

According to a current time window set FP = {FP(x) =

[FP.min(x), FP.max(x)], x ∈ Γk, k = 1..K} the time-validity

may be performed through propagation of the five following

inference rules Ri, i = 1..5 in a given route Γk:

for each (x,y) pair of nodes such that y is the successor of x:

• R1 : FP .min(x) +DIST (x, y) > FP .min(y) |=
(FP .min(y)← FP .min(x) +DIST (x, y)),

• R2 : FP .max (y)−DIST (x, y) < FP .max (x) |=
(FP .max (x)← FP .max (y)−DIST (x, y)) ;

for each (x,y) pair of nodes such that both are related to the

same demand, one is the origin so the other the destination :

• R3 : FP .min(x) < FP .min(y)−∆(x) |=
(FP .min(x)← FP .min(y)−∆(x)),

• R4 : FP .max (y) > FP .max (x) + ∆(x) |=
(FP .max (y)← FP .max (x) + ∆(x)) ;

and for each x, x ∈ Γk, k = 1..K :

• R5 : FP .min(x) > FP .max (x) |= REJET ← true.

These 5 rules are propagated in a loop while there no time

windows exists FP modified at the last iteration. The tour Γk,

k = 1..K, is time-valid according to the input time window

set FP if and only if the REJET Boolean value is equal to

false as initialized at the beginning of the process. In such a

case, any valid- time value set t related to Γk and FP is such

that: for any x in Γk, t(x) is the appointment’s date in FP(x).

The greedy insertion algorithm includes this propagation

constraint technique in order to evaluate each possible in-

sertion. Each iteration of the algorithm selects one demand

according to the number of vehicle able to integrate it. Once

a demand is selected, the process chooses the insertion’s

parameters that are the vehicle and the location of the origin

and destination nodes.

IV. Insertability OPTIMIZATION

A. State of the system

In the above algorithm, each iteration selects a demand,

and then, it finds the way to insert while optimizing the

performance. This greedy algorithm doesn’t take in account

the impact of this actual insertion on the future demands

integration, but only the effect on the demands already in-

serted. In this section, we introduce a Insertability calculation

300 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

by integrating this impact of an insertion related to the time

constraints (time windows, maximum ride time and maximum

route time).

During the insertion process, the state of the system is given

by:

• a set of demands D−D1 already integrated in the routes,

and D1 is the set of demands not inserted,

• a collection Γ = ∪k∈KΓk of routes including a list of

nodes related to the Depot, origin and destination nodes,

• a exhaustive list of insertion’s parameters sets. Each set

gathers 5 elements : k the vehicle, i the demand, (x, y) the

pair of insertion nodes (locating respectively oi between

x and the successor of x, and di between y and the

successor of y), and v the evolution of the collection

Γ = ∪k∈KΓk ’s cost.

B. Insertion’s parameters

Given that the difficulty of the instances’ problem is linked

to the time constraints, we introduce an Insertability calcu-

lation related to the times windows contractions. During an

insertion’s assessment, these reductions appear once the infer-

ence rules are propagated. Here, we try to find a good triple

(k, x, y), the vehicle and the location of the origin/destination

nodes, in order to give enough space to the future demands

(which have to be integrated in Γ = ∪k∈KΓk).

We set INSER(i, Γ) the Insertability measure of the demand

I. The quantity Uk
n(z) denotes the vehicle k time windows’

amplitude of the node n once it has been inserted to the right

of node z. INSER is calculated as follows:

• INSER(i,Γ) =
∑

k∈K INSER1 (i,Γk) ;

• INSER1 (i, γ) = Max (x,y)INSER2 (i, γ, x, y), γ a tour

of Γ ;

• INSER2 (i, γ, x, y) = Uγ
oi
(x).Uγ

di
(y).

INSER1 gives us the maximum of the product of the time’s

windows amplitude at the origin i and destination i over the

possible insertion positions x and y in the route γ. When

INSER1 is equal to 0, the new route γ resulting to the new

insertion isn’t time-valid.

We set Inserted(Γ, i0, k, x, y) the updated collection of

tours Γ with the insertion of the selected demand i0 at the

locations x and y in the vehicle k. The INSER(i, Γ) measure

allows us to write the Optimization Insertability Problem

which consists to find the best insertion parameters in order

to keep the vehicles’ scheduling more flexible:

Optimization Insertability Problem. Find the optimal pa-

rameters (k,x,y) inserting i0 and maximizing the value

Mini∈D1−i0INSER(i, Inserted(Γ, i0, k, x, y)) .

For instance, the value

Mini∈D1−i0INSER(i, Inserted(Γ, i0, k, x, y)) may be

used if all the demands have to be inserted. Another

optimization may be process as the maximization of the sum∑
i∈D1−i0

INSER(i, Inserted(Γ, i0, k, x, y)). The choice is

made according to the homogeneity of the demands and if

the problem requires to insert all the set D.

This problem only optimizes the variation of the Inserta-

bility values and doesn’t include other performance criteria

like the minimization of the ride times, waiting times or

distances. The Insertability criterion can be integrated in a

mix of economical cost (point of view of the fleet manager)

and of QoS criteria (point of view of the users). Then, the pro-

cess maximizes the function Perf = µ.
∑

i∈D1−i0
INSER(i,

Inserted(Γ, i0,k, x, y)) − v(Inserted(Γ, i0,k, x, y)) with µ a

criterion coefficient and v the performance value function

mixing the costs related to the both points of view.

C. Other uses of the Insertability measure

So far, we select the demand i0 according to the number

of vehicles available (taking in account all the time and load

constraints). The Insertability measure INSER(i0, Γ) may be

also used in order to select the next request i1 to insert. This

application could be used in a context where all the demands

of D have to be integrated. The selection is based on the

smallest Insertability measure. Once a demand is selected, the

problem may solve the Optimization Insertability Problem.

Here, the two steps may be written in a non-deterministic

way. The demand may be selected randomly through a set

of N1 elements with the smallest INSER value. The same

scheme may be applied on a set of a insertion parameters

of N2 elements with a best (k, x, y) elements maximizing the

quantity Mini∈D1−i0INSER(i, Inserted(Γ, i0, k, x, y)).

Also, INSER(i0, Γ) may be useful for a larger set D. If the

instance doesn’t have any solution integrating all the set D, it

is preferable to identify requests to exclude as soon as possible.

The exclusion of a demand i0 may be set up if its insertion

results in Γ not enough flexible to include the other elements

of D1 . In other words, the demands excluded will be those that

will have the most impact of future insertions. The difference∑
i∈D1−i0

(INSER(i,Γ)−INSER(i, Inserted(Γ, i0, k, x, y)))
of the inequality (1) takes in account the Inserabilty measure

of D1 − i0 before and after the insertion of i0 in the routes of

Γ. If this difference is larger than the threshold ξ, the demand

is excluded. In the experimentation’ section, we will discuss

the fact this threshold should be dynamic and decreases over

the execution.

∑

i∈D1−i0

(INSER(i,Γ) (1)

−INSER(i, Inserted(Γ, i0, k, x, y))) > ξ

SAMUEL DELEPLANQUE ET AL.: ANTICIPATION IN THE DIAL-A-RIDE PROBLEM 301

D. The Insertability optimization suited to the greedy insertion

algorithm

The calculation of INSER(i, Γ), i ∈ D, begins to be time

consuming starting from a medium size of D once the INSER2

value is based on the time windows’ amplitude obtained after

the propagation of the time constraints. So, this is important

to spot each step of the process where the Insertability

measure doesn’t have to be updated. When i0 is selected,

INSER2 (i,Γk, x, y), INSER1 (i,Γk) and INSER(i,Γ) are

known for all demand in D1 − i0 and all k = 1..K.

Once i0 is about to be inserted, the process computed the

value H(i), i ∈ D1 − i0 (cf. formulation (2)). Then, the

algorithm tries the insertion of each i from D1 − i0 in

Inserted(Γ, i0, k, x, y) and deduce the value K(i) given in

formula (3) for all i ∈ D1 − i0 and ultimately the quantity

Val(k, x, y) = Mini∈D1−i0(K(i) +H(i)).

H(i) = INSER(i,Γ)− INSER1 (i,Γk) (2)

K(i) = INSER(i, Inserted(Γ, i0, k, x, y))

= H(i) + INSER1 (i, Inserted(Γ, i0,k, x, y)k) (3)

Other calculations may be avoided. We set W1 such

that W1 = Mini∈D1 i0INSER (i,Γ). If the quantity

INSER(i,Γ) − INSER1 (i,Γk) is larger than W1, there is

no need to test the impact of the insertion of i0 on i.

Finally, we’re able to use INSER(i, Γ) once we integrate

the future demands presented in the next section. In a dy-

namic context, the Insertability measure helps the routes to

be enough flexible for the next insertion process. Moreover,

the appointments have to be set with the same purpose and

INSER(i, Γ) is able to help to do it.

V. INTRODUCTION TO THE ROBUSTNESS IN THE DARP:

ANTICIPATION OF THE FUTURE DEMANDS AND Insertability

MEASURE INTEGRATION

The problem may have to be handled according to a

dynamic context and the greedy insertion algorithm is easily

adaptable to this context. Once the Insertability measure is

included in the performance criteria, the system may increase

its robustness. In order to accomplish this, we need to exploit

knowledge about future demands. In our case, this knowledge

is related to the type of on demand transportation service. In

this paper, we will use a simple extrapolation of this probable

demand based on the demand already broadcasted.

We won’t take into account the way the system supervises

its various communication components with the users. In

reality, there are eventual divergences between the data which

were used during the planning phases and the situation of the

system.

We set D−V the virtual demands, D−R the real demands,

and D−Rejet the set of the ones excluded from the insertion

algorithm such that D−Rejet = DV −Rejet ∪DR−Rejet .

The D−V formulation is given in (4). pi gives us the number

of times the demand Di, i ∈ D, will appear for each period

of each discrete planning horizon.

D − V =
∑

i∈D

Di.pi (4)

Then, we’re able to update the formula (5) giving the perfor-

mance function Perf.

Perf = α.
∑

i

piINSER(i, Inserted(Γ, i0,k, x, y))

+µ.
∑

i∈D1−i0

INSER(i, Inserted(Γ, i0, k, x, y))

−v(Inserted(Γ, i0, k, x, y)) (5)

As in the previous sections, the process may exclude some

demands taking in account the future requests. We updated

the inequality (1) by the (6). α is a coefficient based on the

importance of the future demands.

α.
∑

i

pi.(INSER(i,Γ)

−INSER(i, Inserted(Γ, i0,k, x, y)))

+
∑

i∈D1−i0

(INSER(i,Γ)

−INSER(i, Inserted(Γ, i0, k, x, y))) > ξ (6)

VI. DISCUSSION ABOUT THE APPOINTMENTS AND THE

DYNAMIC CONTEXT

Most works on vehicle scheduling problems including time

window studies how to integrate a set of demands in the

vehicle planning. Making an appointment anticipating the

future is especially rare. Previous sections explained how to

select and integrate user’s request while keeping enough space

for the next set of demands.

Once routes are built and integrated a first set D, the users

expect the date when the vehicle selected will pick them up. In

the lists forming the K routes, each node has a time window.

After the appointment’s date is set, each time window becomes

tight with zero amplitude or equals a very small delay. How

the appointments’ dates are made is very important for the

next insertion’s process. For instance, we consider a fleet of

2 vehicles with two plannings including 5 demands while the

distances are minimized (cf. Figure VI). The time windows are

relatively wide so, while the distance traveled is minimized,

the difference of each appointment’s time between two nodes

is the exact time to join them. The vehicle k=2 from the Figure

VI may integrated the node o7 between its depot node and o5
even if its time windows have a zero amplitude (the vehicle

will only have to leave the depot earlier). On the other hand,

if the difference on the appointment’ times given to the users

related to the nodes d5 and o3 equals to DIST (d5,o3), the

insertion of d7 will be forbidden. In the same way, there will

be a violation of some constraint once nodes o6 and d6 will

be inserted in the vehicle k = 1.

302 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

Fig. 2. New insertions after the first set of appointments

One more time, the INSER(i, Γ) values may be used in

order to set the appointment dates without to have the problem

above. The appointment’s dates may be calculated once the

process have inserted the virtual demands D−V and the real

demands D −R.

The previous section shows the way to anticipate the future

demands D−V . These demands are related to a dynamic con-

text. Note again that our greedy algorithm is easily adaptable

to this context. More specifically, the technique doesn’t change

unlike the state of each route. The first node isn’t a depot node

anymore but a dynamic node related to the vehicle’s location.

The entire constraint propagation process is applied on these

new routes. A simulation will be necessary to evaluate the

anticipation of the future demands including in the dynamic

context.

VII. COMPUTATIONAL EXPERIMENTS

In this section, we study the behavior of our Insertability

measure used in the resolution of Dial-a-Ride instances. The

algorithms were implemented in C++ and compiled with GCC

4.2. In [1], we solve the [4]’s instances by our greedy insertion

algorithm based on constraint propagation. We obtained good

results in the majority of instances, but, only 1% of the

replications gave us a feasible solution on the tenth instance

(R10a). The CPU time was smallest or equal to the best

times in the literature; we don’t work on this feature for this

experiment.

A. First experimentation: the optimization of the selection of

the demand to insert

1) INSER used in the selection of a demand: We note by

RDARP the rate of 100 replications which give us a feasible

solution obtained by using the solution of [1]. Here, the

selection of the demand is based on the lowest number of

cars which are able to accept it. RDARP

Rob
is the rate obtained

with the same process except that each demand is selected at

each iteration by the lowest Insertability value INSER.

The Insertability measure is already efficient once it’s used

in the selection of the demands to insert. The rate obtained for

Fig. 3. INSER values on the not inserted demands

the pr08, pr09, pr10 and pr19 are clearly more interesting as

shown in table I (e.g. for the instance pr08, the rate increases

by 56% to 91% of success).

Inst. RDARP RDARP

Rob

pr01 99 100
pr02 100 100
pr03 97 100
pr04 100 100
pr05 100 100
pr06 100 100
pr07 90 96
pr08 56 91

pr09 18 21
pr10 1 7

pr11 100 100
pr12 100 100
pr13 99 100
pr14 100 100
pr15 100 100
pr16 100 100
pr17 98 100
pr18 99 100
pr19 64 99

pr20 43 56
Av. 83,2 88.5

TABLE I
RDARP VS RDARPRob

2) INSER behaviour: Each time a replication can’t integrate

all the request, the INSER value of the demands not inserted

has to be null. In Figure VII-A2, while the resolution process

applied to the R10a instance, we note the evolution of more

than 4500 INSER’s demands not inserted. The technique used

is the second approach selecting the demand by the smallest

Insertability. The values noted are from a failed replication.

One can observe big gaps between the different INSER

until the 4000 first values. After that, for the remaining

requests, the Insertability values decrease strongly because the

routes begin to be not flexible. Between the 2500th and the

3500th , for some demands, the values are very low at the

beginning just before increasing strongly. This is explained

by the fact the process inserts the demand with the lowest

SAMUEL DELEPLANQUE ET AL.: ANTICIPATION IN THE DIAL-A-RIDE PROBLEM 303

INSER but their insertion don’t make a big impact on the

other demands not inserted. This impact is related to the

Optimization Insertability Problem studied below.

B. Second experimentation: the optimization of the insertion

parameters

In a second experimentation, we compare the [1]’s

approach and another algorithm based on the optimiza-

tion of the parameters (x,y,k). The selection of the re-

quest to insert is the same for both solutions. For the

second one, once a demand i0 is selected, we maxi-

mize the sum
∑

i∈D1−i0
INSER(i, Inserted(Γ, i0, k, x, y))

in order the find the best parameter (x,y,k) which

will integrate i0 in the route k. We don’t optimize

Mini∈D1−i0INSER(i, Inserted(Γ, i0, k, x, y)) because we

create instances especially with a set D too large for inserting

all the requests. So, the demand with the smallest value INSER

for a given parameters (x,y,k) could never be integrated into

the routes.

The two algorithms were applied to five sets of 5 randomly

generated instances. All the instances have their time con-

straints related to the interval [0;400] and all the load was

unit. We set by eF (o) and eF (d) the amplitude of the time

windows at the origin and the destination given by the users,

respectively. The other parameters are given in table II.

K eF (o) eF (d) ∆ CAP

10 35 10 ∞ 10
TABLE II

PARAMETERS’ INSTANCES

We generate 5 different sets of 5 instances with a variation

of the number of demands |D|. We set by TInsert and by

TInsertRob
the demand inserted’s rate the first resolution and

the second technique, respectively. Finally, GapInsert is the

gap in percentage between each rate. Its calculation is given by

GapInsert = 100.(TInsertRob
− TInsert)/TInsert . We launched

100 replications of each technique on the 5 sets. The results

are provided by the table III.

|D| 50 75 100 150 200
TInsert 100 93.2 78.9 64.2 52.6
TInsertRob

100 96.8 85.3 66.4 54.1
GapInsert 0 3.86 8.11 3.43 2.81

TABLE III
GAP BETWEEN THE INSERT RATES

In future experiments, we need to optimize the value

Perf = µ.
∑

i∈D1−i0
INSER (i, Inserted(Γ, i0,k, x, y)) −

v(Inserted(Γ, i0,k, x, y)) to calculate each best insertion pa-

rameters. Here, we’re just taken into account the INSER values

in order to integrate the most requests possible. The results

show us that the larger of |D| defines if the system needs

to optimize the Insertability measure. For |D| = 50, all the

Fig. 4. Variation of the Insertability values between each insertion

requests are able to be inserted easily, so, the INSER values

doesn’t have any interest. When the set is composed of 100

demands, we obtained a GapInsert of 8,11% meaning there are

more than 8% more requests inserted by the second approach.

For this set of instance, we also tried to integrate a new

feature in our algorithm: we’ve added the ability to exclude a

request if the impact of one insertion involving a significant

drop of the general Insertability’s demands from D1 − i0.

Before that, we study the threshold which limits the variation

of Insertability.

We exclude a demand selected i0 if∑
i∈D1−i0

(INSER(i,Γ) − INSER(i, Inserted
(Γ, i0, k, x, y))) > ξ is true with ξ a threshold. The

calculation of the threshold is a difficult problem. In the figure

VII-B, we report the
∑

i∈D1−i0
(INSER(i,Γ) − INSER(i,

Inserted(Γ, i0, k, x, y))) Variation with INSERav

and INSERap the values
∑

i∈D1−i0
INSER(i,Γ) and∑

i∈D1−i0
INSER(i, Inserted(Γ, i0, k, x, y)), respectively.

This figure shows us that the threshold ξ have to be calculated

dynamically according to the average of INSER.

We used this type of dynamic threshold for the third set

of instances with 100 demands. We exclude an request if the

current ξ is exceeded, and only this feature is added in the

second approach. We obtained a gain of 1,3% in average (from

85,3% to 86,6%) meaning approximately one more demand is

able to be inserted.

VIII. CONCLUSION

The Dial-a-Ride Problem is one of the transport problems

with the highest number of hard constraints like time windows.

The insertion techniques are able to obtain a good solution in

a reasonable time. Their adaptability to a dynamic context is

easy but a lack of robustness could appear once the goal is to

integrate requests as much as possible.

We have introduced a way to measure the impact of each

insertion on the other demands not inserted. This Insertability

304 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

measure could be used in order to exclude a demand, to select

a demand to insert and also to calculate the best insertion

parameters. This value, named INSER, leads to a large amount

of work opportunities. We have introduced a simple way to

make the model of the future demands, and how to adapt our

greedy insertion algorithm based on the constraint propagation

to the dynamic context. In future work, we will develop a

simulation which is necessary to show the efficiency of the

demands anticipation. The final goal will be to develop the

most robust algorithm possible in order to adapt it to a real

context.

ACKNOWLEDGMENT

This work was founded by the French National Research

Agency, the European Commission (Feder funds) and the

Region Auvergne in the Framework of the LabEx IMobS3.

REFERENCES

[1] S. Deleplanque, A. Quilliot, Constraint Propagation for the Dial-a-Ride
Problem with Split Loads, 2013, Recent Advances in Computational
Optimization. Studies in Computational Intelligence, Vol. 470. ISBN
978-3-319-00409-9, Volume 470, 2013, Springer, 31-50.

[2] K. Menger, Das botenproblem, 1932, Ergebnisse eines mathematis-
chenkolloquiums 2, 11-12.

[3] J.F. Cordeau, G. Laporte, The dial-a-ride problem: models and algo-
rithms, 2007, Annals of Operations Research,153(1):29-46.

[4] J.-F. Cordeau, G. Laporte, A tabu search heuristic algorithm for the static
multi-vehicle dial-a-ride problem, 2003, Transportation Research B 37,
579-594.

[5] H. Psaraftis, An exact algorithm for the single vehicle many-to-many
dial-a-ride problem with time windows, 1983, Transportation Science
17, 351-357.

[6] R. Chevrier, P. Canalda, P. Chatonnay, D. Josselin, Comparison of three
algorithms for solving the convergent demand responsive transportation
problem, 2006, Intelligent Transportation Systems, Toronto, Canada,
1096-1101.

[7] S.N. Parragh, K.F. Doerner, R.F. Hartl, Variable neighborhood search
for the dial-a-ride problem, 2010, Computers & Operations Research,
37, 1129-1138.

[8] P. Healy, R. Moll, A new extension of local search applied to the dial-
a-ride problem, 1995, European Journal of Operational Research 83,
83-104.

[9] H. Psaraftis, N. Wilson, J. Jaw, A. Odoni, A heuristic algorithm for the
multi-vehicle many-to-many advance request dial-a-ride problem, 1986,
Transportation Research B 20B, 243-257.

[10] O. Madsen, H. Ravn, J. Rygaard, A heuristic algorithm for the a dial-
a-ride problem with time windows, multiple capacities, and multiple
objectives, 1995, Annals of Operations Research 60, 193-208.

SAMUEL DELEPLANQUE ET AL.: ANTICIPATION IN THE DIAL-A-RIDE PROBLEM 305

