
Abstract—This paper describes the architectural redesign of
a distributed execution framework called State Machine Based
Distributed System which uses a state machine-based represen-
tation of processes in order to reduce the applications develop-
ment time while providing safety  and reliability. Initially  the
system has been built on top of the .Net Framework employing
static programming techniques and made use of a custom data
storage. The new architecture is intended to take advantage of
the  fast  growing  technologies  like  dynamic  languages  and
graph databases for speeding up even more the applications de-
velopment and improve the dynamism of the execution model.

I. INTRODUCTION

OWADAYS, complex systems have become more and

more demanding for online visualization and computa-

tional steering. Analyzing the outcome of a complex simula-

tion  as  a  post-processing  phase  is  almost  unacceptable,

while interactivity is a must-have feature. Distributed com-

puting as well as super fast networks, have come to rescue,

offering  a  proper  environment  for  achieving  high  perfor-

mance simulation, online visualization and steering. Build-

ing complex systems is more a matter of integrating state of

the art tools into execution platforms.

N

Online  visualization  and  computational  steering  tech-

niques play a very important role in speeding up simulations

by allowing on-the-fly analysis and guidance of the ongoing

process. Computational steering is nothing else than manual

intervention against the ongoing process with the purpose of

guiding  it  towards  the  space  of  interest.  Computational

steering occurs  at three different levels: the program level

(program steering,) which implies changes on the program’s

state (shared variables), data level (data steering), which al-

lows  interventions  against  the  data  space,  and  execution

level  (dynamic steering),  which  implies  direct  changes  to

the program’s flow by injecting code or invoking routines.

Developing distributed simulation platforms able to pro-

vide the means for interactivity has not been easy. Many sur-

veys have documented the task [1], [2], however only few of

them get close to fulfilling production needs. It’s worth men-

tioning few of them. 

Collaborative  Online  Visualization  and  Steering  frame-

work,  COVS [3]  integrates  tools  for  visualization  (VTK),

communication  libraries  (VISIT,  PV3),  steering  tools

(VISIT, ICENI, gViz).

RealityGrid [4]. [5] is a library which serves as an API

which  uses  check-pointing  techniques  for  steering  com-

mands.

CUMULVS (Collaborative User Migration, User Library

for  Visualization  and  Steering)  [6],  [7]  developed  at  Oak

Ridge National  Laboratory, besides  steering,  it  benefits  of

powerful recovery techniques and tasks migration.

CSE [8], [9] (Computational Steering Environment) car-

ries  out  steering  through  a  data  manager  which  works

closely with simulation processes (called satellites).

After  examining  all  these  platforms  it  became obvious

that choosing the right tools for a distributed simulation and

steering system is not an easy task. While ensuring scalabil-

ity,  portability,  flexibility,  extensibility,  could  be  achieved

with the proper tools, ensuring safety seems more like a de-

sign task. Writing safe code does not guarantee that the out-

put of the application will be safe. Just imagine the effects of

a malfunction of a medical software which assists a surgery.

It is essential that at each moment in time, the application is

in a consistent and expected state. When designing the appli-

cation one must make sure that the application reacts accord-

ingly no matter what. This led us to the idea of representing

the  tasks  (processing  units)  as  finite  state  machines.  This

way, we force the application developer to consider all states

that  the  application  may step  into,  prior  to  implementing

them properly.  Besides  an  execution  model  (transitioning

states until a final state has been reached) finite state ma-

chines serve as packages which can be spread across a dis-

tributed environment leading our way towards load balanc-

ing and recovery algorithms. 

A similar  approach  has  been  introduced  in [10],  and  it

made use of Statecharts as a conceptual model for a visual

tool called Statemate. Statemate is a very powerful simula-

tion environment  for  statecharts-based  models.  Statecharts

imply a hierarchical and compositional structure increasing

the complexity of the model which could lead to an increase

of the risk of design errors. 

Our previous researches have resulted in the implementa-

tion  of  a  state  machines-based  distributed  framework

(SMBDS) [11] consisting of an execution engine as well as

a  class  library.  The class  library reduces  the development

time considerably by including a set of interfaces and base

classes.  Developing new applications on top of the frame-
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work only requires  the implementation of  these interfaces

and classes (parameters and state machines). The execution

engine loads them and runs them on the distributed environ-

ment.  SMBDS  has  been  implemented  on  top  of  the  .Net

Framework using C# language.  In  order  to be able to dy-

namically  load  custom  parameter/state  machines  classes,

the  .Net  Reflection  package  has  been  used.  However,  C#

still remains a static language and for this reason all nodes in

the distributed system needed to have access to all code files

which makes the distributed environment harder to maintain

(whenever a new type of state machine is needed, all nodes

need  to be  updated  with  the corresponding  code  file).  To

overcome this drawback we started considering the power of

dynamic  languages.  There  were  arguments  in  favor  and

against dynamic languages, which will be discussed later in

this paper. However we considered the advantages of using

dynamic languages worth assuming the drawbacks. This led

us to a redesign process which changed the framework al-

most entirely. At first, we considered only including the dy-

namic code as a string and simply run it. But then, as we dig

into the load balancing and scheduling algorithms, we real-

ized that the execution model is similar to a graph, so why

not changing the execution engine so we can take advantage

of the NoSQL graph databases. We will discuss the execu-

tion model later in this paper.

The rest of the paper is organized as follows. Section II

shortly  presents  the  technologies  used  for  implementation

pointing  out  the  main  benefits  of  using  them.  Section  III

shortly  describes  the  architecture  of  the  state  ma-

chines-based distributed system (SMBDS) as it used to be

prior to the redesign process and explains the reasons behind

redesign. Section III presents a new execution model for the

state machines-based distributed framework. Section V con-

cludes the paper and presents our future development inten-

tions.

II. TOOLS AND TECHNOLOGIES

In this section we will argument our decisions regarding

the infrastructure. 

The first choice that we have had to make after deciding

to use a dynamic language, was which language we should

use. The most popular dynamic languages that we have con-

sidered  were  Python  and  Ruby. A ‘versus’ discussion  be-

tween Ruby and Python is beyond the scope of this paper.

After all they can both reach the scope of our framework.

However we decided to go for JRuby, as it stands on top of

the  Java  Virtual  Machine  which  makes  it  possible  to  call

java code from JRuby offering the possibility of including

dynamically invoked java code in our state machines.

The second choice that we have had to make was related

to the graph representation of our execution model. We have

examined the most popular  graph database infrastructures,

namely Neo4j,  Titan  Server  with  three  storage  back  ends

(Apache Cassandra, Apache HBase, Oracle Berkley DB) to-

gether with the Tinkerpop stack [12].

Neo4j  proved  to  be  the  most  mature  graph  database.

However it falls fast in distributed environments as it’s stor-

age is limited to only one machine.

 Titan claims to bring a lot of performance boost. Even

though it is a relatively new product and it has some limita-

tions (for example, the most important: indexes need to be

declared before first use of the key),  Titan Server seems a

good choice since it uses very powerful storages behind it.

Considering the CAP theorem (any practical database sys-

tem can only provide two of the following three: scalability,

availability  and  consistency),  Titan  can  use  three  storage

backends:  Apache HBase,  which provides consistency and

scalability, Oracle Berkley DB which provides consistency

and availability and Apache Cassandra which provides scal-

ability and availability.

In  our  case  HBase  and  Cassandra  seem to be  the  best

choices  depending  on  the  applications  needs  (distributed

systems require scalability). There is a tradeoff between high

availability (Cassandra)  and  consistency (HBase).  Both of

them are scalable therefore they are suitable for our frame-

work’s needs.  Their performance and reliability have been

successfully proven in production environments at Facebook

or Twitter.

As HBase and Cassandra are open-source, distributed and

column-oriented storages, and not really graph databases, it

might feel strange to use them as graphs, however the Tin-

kerpop stack models successfully the graphs on top of these

storages  and they claim for  very high performance results

[13], [14], outperforming regular SQL relational databases.

The Tinkerpop stack includes a very powerful graph tra-

versal language, Gremlin, built on top of a widely used java

interface for graph databases, Blueprints. This makes Grem-

lin  compatible  with  multiple  existing  graph  engines  and

eventually with future engines that will implement the Blue-

prints interface. Being implemented on top of JVM, Gremlin

can run java  code,  so one  can actually traverse the graph

with custom java code.

Putting all these pieces together we get a very powerful

distributed platform for our framework.

Fig.  1  illustrates  the software  stack  for  our  framework.

JVM is where all tools met. On top of it runs JRuby together

with all libraries that implement Blueprints. As a bridge be-

tween SMBDS and the graph database storages we are using

the  Tinkerpop’s  Gremlin  language  which  complies  to  the

Blueprints interface.  
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Fig.  1 Software stack

III. FRAMEWORK’S ARCHITECTURE

This section is intended to reveal the motivation behind

the redesign process. Let’s examine the static architecture of

the system before we proceed with the redesign process. 

The challenge behind SMBDS was to offer safety and re-

liability while taking advantage  of  a  distributed  execution

environment. SMBDS aims of ensuring safety at design time

rather than code safety only, and it does that by representing

all computational tasks as finite state machines. This repre-

sentation  forces  the  application  developer  to  consider  all

states that the application may step into and react  accord-

ingly to each of them. This eliminates the erroneous states

while offering a robust and traceable execution model. 

The architecture of SMBDS is illustrated in Fig. 2.

SMBDS consists of five modules: Simulation Module (or

Processing  Module),  Visualization  Module,  Control  and

Communication Module, Shared Memory and Client Appli-

cation.

All the magic of SMBDS happens on the simulation level

as this is where the simulation tasks, represented as state ma-

chines, are being executed. 

Each node of the system owns a state machines manager

which is the bridge between all modules, mainly because it

is responsible for acquiring the state machines from the dis-

tributed environment,  migrating them to other  hosts  when

necessary, running the state machines and at the same time

interacting with the client application for handling steering

commands and providing visualization information.

Fig.  2 State Machines-Based Distributed System’s architecture.
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The control and communication module is able to acquire

data, forward output data towards the visualization pipeline

while  monitoring  the  available  resources  and  executing

steering commands. 

As we are dealing with a decentralized architecture,  the

shared memory took the form of a distributed storage space

and it holds the system’s parameters (steerable variables).

The user analysis the output data filtered by the visualiza-

tion  pipeline,  monitors  the  state  of  the  computational  re-

sources as well as the execution distribution across nodes,

and interacts with the system by launching new tasks (state

machines), changing the execution parameters (stored in the

shared memory),  guiding the simulation towards the space

of interest.

Concerning  the  applications  development,  SMBDS  ex-

poses a class library which facilitates the implementation of

custom finite  state  machines  which  once  created,  will  be

passed to the state machines managers and executed. 

Implementing new custom state machines requires the im-

plementation of an interface (IParameter),  representing the

state machine’s parameters, if not already implemented, and

the extension of a state machine class (StateMachine). Based

on these two, the framework’s engine is able to manage the

execution of state machines. Figure 3 illustrates the class di-

agram of the framework’s execution engine.

The engine’s main class is the StateMachineManager. Each

host will launch a state machines manager which will run

continuously until final states are reached. The main role of

this class is to manage the execution of state machines but

also migrate the state machines to (pack and send) and from

(receive and unpack) other hosts (state machine managers).

Packing a state machine consists of pausing the execution

and  extracting  data  from  the  state  machine  (extracting

StateMachineData object), while unpacking restores the ma-

chine’s execution by creating an instance of the correspond-

ing state machine class, initializing the state machine with

the StateMachineData object and lastly resuming the execu-

tion from the state where it has previously been paused. Any

computations performed for the interrupted state, carried out

before packing, will be discarded.

It becomes obvious that migrating a state machine consists

of simply sending the StateMachineData object towards the

destination host. The StateMachineData class holds execu-

tion data of a state machine: a list of parameters, a transition

table, the current state, a unique identifier (needed for track-

ing  the  machine  especially  when  dealing  with migration),

the type of the state machine (used to pick the correct state

machine  class  when  packing/unpacking  the  machine

using .Net Reflection) and a list of final states.

Fig.  3 SMBDS class diagram.
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The  StateMachine  class  exposed  by the  framework’s li-

brary is an abstract class exposing an abstract method called

performComputation  which  executes  the  code  associated

with the current state. This method is being invoked by the

state machines manager after each transition. The computa-

tions are carried out taking as input the values of the ma-

chine’s parameters.  The parameters  are  usually altered  by

the computations of the current state. After the execution of

the  current  state  the  machines  manager  invokes  the  get-

NextState() method of the machine’s transition table which

based on the current values of the parameters and the current

state determines which is the next state to be transitioned.

The manager loops again and invokes the performComputa-

tion method for the newly transitioned state unless the state

is not final. 

To make it more clear, we will include a sample template

of how the performComputation method could look like:

void performComputation(List<IParameter>

params,int currentState){

    switch(currentState){

case: 1

{//code for state 1}

break;

case: 2

{//code for state 1}

break;

…..
  case: N

{//code for state N}

break;

default:

throw new Excetion

(“Invalid state. Design time error”)

 }

}

It becomes obvious that the business logic of an applica-

tion will reside in the performComputation method, in the

parameter classes as well as in the transition table. This is

why the application developer will be needed to derive from

the StateMachine class and implement the performComputa-

tion method for every type of state machine.

The TranzitionTable class is nothing more than a mapping

between <parameter values, current state> tuples and future

states. The business logic in case of the TransitionTable class

resides in the values it contains rather than in its implemen-

tation. 

The parameter classes will implement the IParameter inter-

face which exposes the equals method which is required to

match the values of two parameters and return  true if they

are  considered to be equal  or  false otherwise.  The  equals

method’s  implementation  might  range  from  very  simple

equalities to very complex checkings against custom objects,

depending on the business logic requirements.

That  being  said,  we  can  resume the  applications  imple-

mentation requirements to three steps:

1. Implement the parameters classes

2. Implement a state machine class for each type of state

machines needed by the application, by extending the

StateMachine class

3. Define transition tables.

Here is where the main drawback of the system appears.

Since the framework has been developed using a static lan-

guage (C#) the newly developed state machine class needs

to be available on all nodes in order for that node to be able

to run state machines of that type. So we can easily identify

three important drawbacks at this stage: 

- Updating a running application may not be an easy

task due to security restrictions. 

- All  state  machines  need  to  comply  to  one  of  the

classes, which avoids building and executing custom

state machines on-the-fly

- The development time increases by the fact that any

change in code needs to be spread across the distrib-

uted environment in order to be well tested. Also if

one  needs  to  run  a  certain  state machine  only few

times, the development time might exceed the usage

time for that state machine.

IV. DYNAMIC EXECUTION MODEL

To overcome the drawbacks identified in the previous sec-

tion we have considered the use of dynamic languages. In-

stead of implementing classes every time we needed a new

type  of  state  machines,  we  can  now  include  the  code  as

string on the state machine object  itself and invoke it dy-

namically  when  needed.  This  raises  an  important  contro-

versy specific to dynamic languages, namely code safety. As

the code is not compiled prior to running it, it might contain

erroneous code (typos, references to undefined variables or

methods, etc) which can damage the execution Besides try-

ing to overcome unsafe code at design time by considering

all states that a machine can step into prior to writing the

code, we could make use of an adequate development strat-

egy like test driven development and we can increase code

safety.  However it  is  well known that dynamic program-

ming requires a lot more attention when writing code than

static programming. Assuming that we need to pay attention

when writing code, and tediously test it before running it in

production, this tradeoff gives us a lot of flexibility. 

We can now run as many custom state machines as we

want without having to implement classes and move code

files across the running system, while reducing the develop-

ment effort. 

Extending the StateMachine class for each type of state

machines is no longer needed. We simply make use of the

StateMachine class and add a new attribute called codeMap-

ping which will map states to their corresponding code rep-

resented as strings. 

For  example,  in  Ruby Language,  the  codeMapping  at-

tribute  could  be  of  type  Hash  and  have  as  keys  the  state

numbers, and as values string containing the code that needs

to be run for the associated state:
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codeMapping = {

    1 => “puts ‘code for state 1’”,

  2 => “puts ‘code for state 2’”,

  # …..

  N => “puts ‘code for state N’”,

   }

In this context, the state machines manager, would simply

invoke the code defined for the current state.

So, instead of calling:
performComputation(params, state)

it will simply invoke the code dynamically:
eval(machine.codeMapping[state])

At this  stage,  our  state machines  have  become abstract

collections of states which are nothing but objects that com-

bine code and data, and define some kind of ordering be-

tween them resulted from the transition table. 

Each state is very similar to a function which takes input

parameters  and  input  data,  executes  some  custom  code

against  them  and  outputs  transition  parameters  and  data

needed by other states, and so on. If we were to represent

the structure of states machines based on their states, data

and transition table, it would look like a graph. The nodes of

the graph would be the states or data objects, and the arrows

would  be  the dependencies  between states  constrained  by

the value of the transition parameters (according to the tran-

sition table). Taking it further, we can represent all state ma-

chines  running  at  a  certain  moment and  we can conclude

that we’re dealing with a graph of states and data objects

with dependencies between them and we no longer care to

which state machine they belong to. Such a graph is illus-

trated in Fig. 4.

The figure includes the states of two finite state machines

(S1i for the former and S2i for the latter) and their input/out-

put data objects (di). The transitions between states are being

conditioned by the machine’s parameters (P) values. For ex-

ample, machine 1 will move from state S10 to state S12 only if

the value of P1 matches the value on the arrow (relationship)

between S10 and S12, which is V12. Each state can be launched

only if all data dependencies are satisfied, and the state is

considered to be executed completely only after all output

data has been delivered. In case a state needs as input data,

another state’s output, the former state can’t be launched un-

less the latter has been completed. The execution relies on

the  execution  pointers.  These  are  nodes  in  the  graph  and

they point out the last executed state of each state machine.

As  the  machine  traverses  throughout  it’s states  the  corre-

sponding pointer will move to the new state.

Fig.  4 Execution graph.

608 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013



It  becomes  obvious  that  the  execution  graph  has  to  be

shared  by  all  nodes  (execution  managers).  Normally  this

would be an important loss for our architecture since the old

architecture was not centralized. Keeping the graph in the

shared memory area would not be very efficient since it has

a  distributed  architecture  and  it  would  require  important

amount  of  synchronization  communication  which  would

slow down the system considerably. 

Fortunately, graph databases and their spectacular evolu-

tion have allowed us to benefit from a very powerful infra-

structure for distributed environments which has been dis-

cussed in section II. 

Considering the new execution model we can easily ob-

serve that the simulation module of the old architecture no

longer  handles  state  machines  entirely  but  states  of  ma-

chines.

For this reason the execution manager available on each

host will be responsible for acquiring states that can be im-

mediately executed, run them, save the output and then han-

dle another state.

The algorithm can be resumed by presenting the approxi-

mate  structure  of  the  class  that  handles  the  database

(GraphDB), and the main loop that keeps the engine running

until the execution is finished.

class GraphDB

def exist_final_states

 execution_pointers.out.each do |state|

return false if not state.is_final? 

 end

 return true

end 

def pick

 execution_pointers.out.out.filter

{P = V && in(data).available}

end

def save_output(state)

 database.save(state.output_data)

 exec_pointer= state.in.in(exec_pointer)

 exec_pointer.save_params 

(state.output_params)

 exec_pointer.out = state

end

end

The  exist_final_states  method  checks  if  all  final  states

have been reached, in which moment the execution should

stop,  by  traversing  the  graph  starting  from the  execution

pointer nodes, following the outgoing relationships and re-

turning true if all states pointed by the execution pointers are

final states, otherwise it returns false.

The pick method starts from all the execution_pointers,

traverses  down the tree  through the last  completed states,

down to the next state by checking the current parameters’

values and returns the first state found. The method can be

easily adjusted to return more than one state depending on

the load balancing policy.

The save_output method, saves the output data objects re-

sulted after processing the current state into the graph, iden-

tifies the corresponding execution pointer and moves its po-

sition to the currently completed state.

The main loop run on every process (simulation process),

is similar to the following piece of code:

while graphDB.exist_final_states

current_state = graph_db.pick()

//dynamically run the Ruby code

eval(current_state.code)

graph_db.save_output(current_state)

end

V. CONCLUSIONS AND FUTURE WORK

The proposed architecture brings more flexibility to our

distributed  framework  by allowing the  developer  to  write

dynamic code and at the same time reduces the development

effort by not requiring the implementation of static code for

each type of custom state machine. As a consequence the up-

date  process  of  a  running  application  no  longer  requires

sending code files  across  the distributed  environment,  but

simply running finite state machines with embedded custom

dynamic code.

The  new graph  execution  model  breaks  the  finite  state

machines into independent states and handles  them all  to-

gether.  As  new  state  machines  arrive,  their  states  get  ap-

pended to the graph and dynamically allocated to computa-

tional resources (through each host’s execution manager). 

The new approach ensure fair load balancing by having

the nodes acquire the processing tasks (machines’ states) as

their resources become available as opposed to static alloca-

tion (prior  to launching the application) or centralized dy-

namic allocation algorithms. 

Reducing the amount of work required by a task at the

minimum of only one state also improves the load balanc-

ing.

Our near future research thoughts refer, to evaluating the

performance of the new architecture and identify the perfor-

mance gain as well as the weaknesses of the new platform

architecture. 

Dynamic load balancing algorithms have always been an

important lead for us and they will be given special concern

in the near future.

Data  distribution  plays  a  very  important  role  when  we

deal with load balancing algorithms in distributed environ-

ments, as it is more efficient to move the processing towards

data  than  the  other  way around,  therefore  special  interest

will be shown on this issue. 

Creating tools for  better  monitoring and steering of  the

distributed environment, of both resources and execution is

also on our to-do list.
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