
Abstract—This paper describes the architectural redesign of
a distributed execution framework called State Machine Based
Distributed System which uses a state machine-based represen-
tation of processes in order to reduce the applications develop-
ment time while providing safety and reliability. Initially the
system has been built on top of the .Net Framework employing
static programming techniques and made use of a custom data
storage. The new architecture is intended to take advantage of
the fast growing technologies like dynamic languages and
graph databases for speeding up even more the applications de-
velopment and improve the dynamism of the execution model.

I. INTRODUCTION

OWADAYS, complex systems have become more and

more demanding for online visualization and computa-

tional steering. Analyzing the outcome of a complex simula-

tion as a post-processing phase is almost unacceptable,

while interactivity is a must-have feature. Distributed com-

puting as well as super fast networks, have come to rescue,

offering a proper environment for achieving high perfor-

mance simulation, online visualization and steering. Build-

ing complex systems is more a matter of integrating state of

the art tools into execution platforms.

N

Online visualization and computational steering tech-

niques play a very important role in speeding up simulations

by allowing on-the-fly analysis and guidance of the ongoing

process. Computational steering is nothing else than manual

intervention against the ongoing process with the purpose of

guiding it towards the space of interest. Computational

steering occurs at three different levels: the program level

(program steering,) which implies changes on the program’s

state (shared variables), data level (data steering), which al-

lows interventions against the data space, and execution

level (dynamic steering), which implies direct changes to

the program’s flow by injecting code or invoking routines.

Developing distributed simulation platforms able to pro-

vide the means for interactivity has not been easy. Many sur-

veys have documented the task [1], [2], however only few of

them get close to fulfilling production needs. It’s worth men-

tioning few of them.

Collaborative Online Visualization and Steering frame-

work, COVS [3] integrates tools for visualization (VTK),

communication libraries (VISIT, PV3), steering tools

(VISIT, ICENI, gViz).

RealityGrid [4]. [5] is a library which serves as an API

which uses check-pointing techniques for steering com-

mands.

CUMULVS (Collaborative User Migration, User Library

for Visualization and Steering) [6], [7] developed at Oak

Ridge National Laboratory, besides steering, it benefits of

powerful recovery techniques and tasks migration.

CSE [8], [9] (Computational Steering Environment) car-

ries out steering through a data manager which works

closely with simulation processes (called satellites).

After examining all these platforms it became obvious

that choosing the right tools for a distributed simulation and

steering system is not an easy task. While ensuring scalabil-

ity, portability, flexibility, extensibility, could be achieved

with the proper tools, ensuring safety seems more like a de-

sign task. Writing safe code does not guarantee that the out-

put of the application will be safe. Just imagine the effects of

a malfunction of a medical software which assists a surgery.

It is essential that at each moment in time, the application is

in a consistent and expected state. When designing the appli-

cation one must make sure that the application reacts accord-

ingly no matter what. This led us to the idea of representing

the tasks (processing units) as finite state machines. This

way, we force the application developer to consider all states

that the application may step into, prior to implementing

them properly. Besides an execution model (transitioning

states until a final state has been reached) finite state ma-

chines serve as packages which can be spread across a dis-

tributed environment leading our way towards load balanc-

ing and recovery algorithms.

A similar approach has been introduced in [10], and it

made use of Statecharts as a conceptual model for a visual

tool called Statemate. Statemate is a very powerful simula-

tion environment for statecharts-based models. Statecharts

imply a hierarchical and compositional structure increasing

the complexity of the model which could lead to an increase

of the risk of design errors.

Our previous researches have resulted in the implementa-

tion of a state machines-based distributed framework

(SMBDS) [11] consisting of an execution engine as well as

a class library. The class library reduces the development

time considerably by including a set of interfaces and base

classes. Developing new applications on top of the frame-

Architectural Redesign of a Distributed Execution Environment

Cosmin M. Poteraș
University of Craiova,

Department of Computers and
Information Technology

Faculty of Automation, Computers
and Electronics

Craiova, Romania
cpoteras@software.ucv.ro

Mihai Mocanu
University of Craiova,

Department of Computers and
Information Technology

Faculty of Automation, Computers
and Electronics

Craiova, Romania
mocanu_mihai@software.ucv.ro

Marian Cristian Mihăescu
University of Craiova,

Department of Computers and
Information Technology

Faculty of Automation, Computers
and Electronics

Craiova, Romania
mihaescu@software.ucv.ro

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 603–610

978-1-4673-4471-5/$25.00 c© 2013, IEEE 603

work only requires the implementation of these interfaces

and classes (parameters and state machines). The execution

engine loads them and runs them on the distributed environ-

ment. SMBDS has been implemented on top of the .Net

Framework using C# language. In order to be able to dy-

namically load custom parameter/state machines classes,

the .Net Reflection package has been used. However, C#

still remains a static language and for this reason all nodes in

the distributed system needed to have access to all code files

which makes the distributed environment harder to maintain

(whenever a new type of state machine is needed, all nodes

need to be updated with the corresponding code file). To

overcome this drawback we started considering the power of

dynamic languages. There were arguments in favor and

against dynamic languages, which will be discussed later in

this paper. However we considered the advantages of using

dynamic languages worth assuming the drawbacks. This led

us to a redesign process which changed the framework al-

most entirely. At first, we considered only including the dy-

namic code as a string and simply run it. But then, as we dig

into the load balancing and scheduling algorithms, we real-

ized that the execution model is similar to a graph, so why

not changing the execution engine so we can take advantage

of the NoSQL graph databases. We will discuss the execu-

tion model later in this paper.

The rest of the paper is organized as follows. Section II

shortly presents the technologies used for implementation

pointing out the main benefits of using them. Section III

shortly describes the architecture of the state ma-

chines-based distributed system (SMBDS) as it used to be

prior to the redesign process and explains the reasons behind

redesign. Section III presents a new execution model for the

state machines-based distributed framework. Section V con-

cludes the paper and presents our future development inten-

tions.

II. TOOLS AND TECHNOLOGIES

In this section we will argument our decisions regarding

the infrastructure.

The first choice that we have had to make after deciding

to use a dynamic language, was which language we should

use. The most popular dynamic languages that we have con-

sidered were Python and Ruby. A ‘versus’ discussion be-

tween Ruby and Python is beyond the scope of this paper.

After all they can both reach the scope of our framework.

However we decided to go for JRuby, as it stands on top of

the Java Virtual Machine which makes it possible to call

java code from JRuby offering the possibility of including

dynamically invoked java code in our state machines.

The second choice that we have had to make was related

to the graph representation of our execution model. We have

examined the most popular graph database infrastructures,

namely Neo4j, Titan Server with three storage back ends

(Apache Cassandra, Apache HBase, Oracle Berkley DB) to-

gether with the Tinkerpop stack [12].

Neo4j proved to be the most mature graph database.

However it falls fast in distributed environments as it’s stor-

age is limited to only one machine.

 Titan claims to bring a lot of performance boost. Even

though it is a relatively new product and it has some limita-

tions (for example, the most important: indexes need to be

declared before first use of the key), Titan Server seems a

good choice since it uses very powerful storages behind it.

Considering the CAP theorem (any practical database sys-

tem can only provide two of the following three: scalability,

availability and consistency), Titan can use three storage

backends: Apache HBase, which provides consistency and

scalability, Oracle Berkley DB which provides consistency

and availability and Apache Cassandra which provides scal-

ability and availability.

In our case HBase and Cassandra seem to be the best

choices depending on the applications needs (distributed

systems require scalability). There is a tradeoff between high

availability (Cassandra) and consistency (HBase). Both of

them are scalable therefore they are suitable for our frame-

work’s needs. Their performance and reliability have been

successfully proven in production environments at Facebook

or Twitter.

As HBase and Cassandra are open-source, distributed and

column-oriented storages, and not really graph databases, it

might feel strange to use them as graphs, however the Tin-

kerpop stack models successfully the graphs on top of these

storages and they claim for very high performance results

[13], [14], outperforming regular SQL relational databases.

The Tinkerpop stack includes a very powerful graph tra-

versal language, Gremlin, built on top of a widely used java

interface for graph databases, Blueprints. This makes Grem-

lin compatible with multiple existing graph engines and

eventually with future engines that will implement the Blue-

prints interface. Being implemented on top of JVM, Gremlin

can run java code, so one can actually traverse the graph

with custom java code.

Putting all these pieces together we get a very powerful

distributed platform for our framework.

Fig. 1 illustrates the software stack for our framework.

JVM is where all tools met. On top of it runs JRuby together

with all libraries that implement Blueprints. As a bridge be-

tween SMBDS and the graph database storages we are using

the Tinkerpop’s Gremlin language which complies to the

Blueprints interface.

604 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

Fig. 1 Software stack

III. FRAMEWORK’S ARCHITECTURE

This section is intended to reveal the motivation behind

the redesign process. Let’s examine the static architecture of

the system before we proceed with the redesign process.

The challenge behind SMBDS was to offer safety and re-

liability while taking advantage of a distributed execution

environment. SMBDS aims of ensuring safety at design time

rather than code safety only, and it does that by representing

all computational tasks as finite state machines. This repre-

sentation forces the application developer to consider all

states that the application may step into and react accord-

ingly to each of them. This eliminates the erroneous states

while offering a robust and traceable execution model.

The architecture of SMBDS is illustrated in Fig. 2.

SMBDS consists of five modules: Simulation Module (or

Processing Module), Visualization Module, Control and

Communication Module, Shared Memory and Client Appli-

cation.

All the magic of SMBDS happens on the simulation level

as this is where the simulation tasks, represented as state ma-

chines, are being executed.

Each node of the system owns a state machines manager

which is the bridge between all modules, mainly because it

is responsible for acquiring the state machines from the dis-

tributed environment, migrating them to other hosts when

necessary, running the state machines and at the same time

interacting with the client application for handling steering

commands and providing visualization information.

Fig. 2 State Machines-Based Distributed System’s architecture.

COSMIN M. POTERAS ET AL.: ARCHITECTURAL REDESIGN OF A DISTRIBUTED EXECUTION ENVIRONMENT 605

The control and communication module is able to acquire

data, forward output data towards the visualization pipeline

while monitoring the available resources and executing

steering commands.

As we are dealing with a decentralized architecture, the

shared memory took the form of a distributed storage space

and it holds the system’s parameters (steerable variables).

The user analysis the output data filtered by the visualiza-

tion pipeline, monitors the state of the computational re-

sources as well as the execution distribution across nodes,

and interacts with the system by launching new tasks (state

machines), changing the execution parameters (stored in the

shared memory), guiding the simulation towards the space

of interest.

Concerning the applications development, SMBDS ex-

poses a class library which facilitates the implementation of

custom finite state machines which once created, will be

passed to the state machines managers and executed.

Implementing new custom state machines requires the im-

plementation of an interface (IParameter), representing the

state machine’s parameters, if not already implemented, and

the extension of a state machine class (StateMachine). Based

on these two, the framework’s engine is able to manage the

execution of state machines. Figure 3 illustrates the class di-

agram of the framework’s execution engine.

The engine’s main class is the StateMachineManager. Each

host will launch a state machines manager which will run

continuously until final states are reached. The main role of

this class is to manage the execution of state machines but

also migrate the state machines to (pack and send) and from

(receive and unpack) other hosts (state machine managers).

Packing a state machine consists of pausing the execution

and extracting data from the state machine (extracting

StateMachineData object), while unpacking restores the ma-

chine’s execution by creating an instance of the correspond-

ing state machine class, initializing the state machine with

the StateMachineData object and lastly resuming the execu-

tion from the state where it has previously been paused. Any

computations performed for the interrupted state, carried out

before packing, will be discarded.

It becomes obvious that migrating a state machine consists

of simply sending the StateMachineData object towards the

destination host. The StateMachineData class holds execu-

tion data of a state machine: a list of parameters, a transition

table, the current state, a unique identifier (needed for track-

ing the machine especially when dealing with migration),

the type of the state machine (used to pick the correct state

machine class when packing/unpacking the machine

using .Net Reflection) and a list of final states.

Fig. 3 SMBDS class diagram.

606 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

The StateMachine class exposed by the framework’s li-

brary is an abstract class exposing an abstract method called

performComputation which executes the code associated

with the current state. This method is being invoked by the

state machines manager after each transition. The computa-

tions are carried out taking as input the values of the ma-

chine’s parameters. The parameters are usually altered by

the computations of the current state. After the execution of

the current state the machines manager invokes the get-

NextState() method of the machine’s transition table which

based on the current values of the parameters and the current

state determines which is the next state to be transitioned.

The manager loops again and invokes the performComputa-

tion method for the newly transitioned state unless the state

is not final.

To make it more clear, we will include a sample template

of how the performComputation method could look like:

void performComputation(List<IParameter>

params,int currentState){

 switch(currentState){

case: 1

{//code for state 1}

break;

case: 2

{//code for state 1}

break;

…..
 case: N

{//code for state N}

break;

default:

throw new Excetion

(“Invalid state. Design time error”)

 }

}

It becomes obvious that the business logic of an applica-

tion will reside in the performComputation method, in the

parameter classes as well as in the transition table. This is

why the application developer will be needed to derive from

the StateMachine class and implement the performComputa-

tion method for every type of state machine.

The TranzitionTable class is nothing more than a mapping

between <parameter values, current state> tuples and future

states. The business logic in case of the TransitionTable class

resides in the values it contains rather than in its implemen-

tation.

The parameter classes will implement the IParameter inter-

face which exposes the equals method which is required to

match the values of two parameters and return true if they

are considered to be equal or false otherwise. The equals

method’s implementation might range from very simple

equalities to very complex checkings against custom objects,

depending on the business logic requirements.

That being said, we can resume the applications imple-

mentation requirements to three steps:

1. Implement the parameters classes

2. Implement a state machine class for each type of state

machines needed by the application, by extending the

StateMachine class

3. Define transition tables.

Here is where the main drawback of the system appears.

Since the framework has been developed using a static lan-

guage (C#) the newly developed state machine class needs

to be available on all nodes in order for that node to be able

to run state machines of that type. So we can easily identify

three important drawbacks at this stage:

- Updating a running application may not be an easy

task due to security restrictions.

- All state machines need to comply to one of the

classes, which avoids building and executing custom

state machines on-the-fly

- The development time increases by the fact that any

change in code needs to be spread across the distrib-

uted environment in order to be well tested. Also if

one needs to run a certain state machine only few

times, the development time might exceed the usage

time for that state machine.

IV. DYNAMIC EXECUTION MODEL

To overcome the drawbacks identified in the previous sec-

tion we have considered the use of dynamic languages. In-

stead of implementing classes every time we needed a new

type of state machines, we can now include the code as

string on the state machine object itself and invoke it dy-

namically when needed. This raises an important contro-

versy specific to dynamic languages, namely code safety. As

the code is not compiled prior to running it, it might contain

erroneous code (typos, references to undefined variables or

methods, etc) which can damage the execution Besides try-

ing to overcome unsafe code at design time by considering

all states that a machine can step into prior to writing the

code, we could make use of an adequate development strat-

egy like test driven development and we can increase code

safety. However it is well known that dynamic program-

ming requires a lot more attention when writing code than

static programming. Assuming that we need to pay attention

when writing code, and tediously test it before running it in

production, this tradeoff gives us a lot of flexibility.

We can now run as many custom state machines as we

want without having to implement classes and move code

files across the running system, while reducing the develop-

ment effort.

Extending the StateMachine class for each type of state

machines is no longer needed. We simply make use of the

StateMachine class and add a new attribute called codeMap-

ping which will map states to their corresponding code rep-

resented as strings.

For example, in Ruby Language, the codeMapping at-

tribute could be of type Hash and have as keys the state

numbers, and as values string containing the code that needs

to be run for the associated state:

COSMIN M. POTERAS ET AL.: ARCHITECTURAL REDESIGN OF A DISTRIBUTED EXECUTION ENVIRONMENT 607

codeMapping = {

 1 => “puts ‘code for state 1’”,

 2 => “puts ‘code for state 2’”,

 # …..

 N => “puts ‘code for state N’”,

 }

In this context, the state machines manager, would simply

invoke the code defined for the current state.

So, instead of calling:
performComputation(params, state)

it will simply invoke the code dynamically:
eval(machine.codeMapping[state])

At this stage, our state machines have become abstract

collections of states which are nothing but objects that com-

bine code and data, and define some kind of ordering be-

tween them resulted from the transition table.

Each state is very similar to a function which takes input

parameters and input data, executes some custom code

against them and outputs transition parameters and data

needed by other states, and so on. If we were to represent

the structure of states machines based on their states, data

and transition table, it would look like a graph. The nodes of

the graph would be the states or data objects, and the arrows

would be the dependencies between states constrained by

the value of the transition parameters (according to the tran-

sition table). Taking it further, we can represent all state ma-

chines running at a certain moment and we can conclude

that we’re dealing with a graph of states and data objects

with dependencies between them and we no longer care to

which state machine they belong to. Such a graph is illus-

trated in Fig. 4.

The figure includes the states of two finite state machines

(S1i for the former and S2i for the latter) and their input/out-

put data objects (di). The transitions between states are being

conditioned by the machine’s parameters (P) values. For ex-

ample, machine 1 will move from state S10 to state S12 only if

the value of P1 matches the value on the arrow (relationship)

between S10 and S12, which is V12. Each state can be launched

only if all data dependencies are satisfied, and the state is

considered to be executed completely only after all output

data has been delivered. In case a state needs as input data,

another state’s output, the former state can’t be launched un-

less the latter has been completed. The execution relies on

the execution pointers. These are nodes in the graph and

they point out the last executed state of each state machine.

As the machine traverses throughout it’s states the corre-

sponding pointer will move to the new state.

Fig. 4 Execution graph.

608 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

It becomes obvious that the execution graph has to be

shared by all nodes (execution managers). Normally this

would be an important loss for our architecture since the old

architecture was not centralized. Keeping the graph in the

shared memory area would not be very efficient since it has

a distributed architecture and it would require important

amount of synchronization communication which would

slow down the system considerably.

Fortunately, graph databases and their spectacular evolu-

tion have allowed us to benefit from a very powerful infra-

structure for distributed environments which has been dis-

cussed in section II.

Considering the new execution model we can easily ob-

serve that the simulation module of the old architecture no

longer handles state machines entirely but states of ma-

chines.

For this reason the execution manager available on each

host will be responsible for acquiring states that can be im-

mediately executed, run them, save the output and then han-

dle another state.

The algorithm can be resumed by presenting the approxi-

mate structure of the class that handles the database

(GraphDB), and the main loop that keeps the engine running

until the execution is finished.

class GraphDB

def exist_final_states

 execution_pointers.out.each do |state|

return false if not state.is_final?

 end

 return true

end

def pick

 execution_pointers.out.out.filter

{P = V && in(data).available}

end

def save_output(state)

 database.save(state.output_data)

 exec_pointer= state.in.in(exec_pointer)

 exec_pointer.save_params

(state.output_params)

 exec_pointer.out = state

end

end

The exist_final_states method checks if all final states

have been reached, in which moment the execution should

stop, by traversing the graph starting from the execution

pointer nodes, following the outgoing relationships and re-

turning true if all states pointed by the execution pointers are

final states, otherwise it returns false.

The pick method starts from all the execution_pointers,

traverses down the tree through the last completed states,

down to the next state by checking the current parameters’

values and returns the first state found. The method can be

easily adjusted to return more than one state depending on

the load balancing policy.

The save_output method, saves the output data objects re-

sulted after processing the current state into the graph, iden-

tifies the corresponding execution pointer and moves its po-

sition to the currently completed state.

The main loop run on every process (simulation process),

is similar to the following piece of code:

while graphDB.exist_final_states

current_state = graph_db.pick()

//dynamically run the Ruby code

eval(current_state.code)

graph_db.save_output(current_state)

end

V. CONCLUSIONS AND FUTURE WORK

The proposed architecture brings more flexibility to our

distributed framework by allowing the developer to write

dynamic code and at the same time reduces the development

effort by not requiring the implementation of static code for

each type of custom state machine. As a consequence the up-

date process of a running application no longer requires

sending code files across the distributed environment, but

simply running finite state machines with embedded custom

dynamic code.

The new graph execution model breaks the finite state

machines into independent states and handles them all to-

gether. As new state machines arrive, their states get ap-

pended to the graph and dynamically allocated to computa-

tional resources (through each host’s execution manager).

The new approach ensure fair load balancing by having

the nodes acquire the processing tasks (machines’ states) as

their resources become available as opposed to static alloca-

tion (prior to launching the application) or centralized dy-

namic allocation algorithms.

Reducing the amount of work required by a task at the

minimum of only one state also improves the load balanc-

ing.

Our near future research thoughts refer, to evaluating the

performance of the new architecture and identify the perfor-

mance gain as well as the weaknesses of the new platform

architecture.

Dynamic load balancing algorithms have always been an

important lead for us and they will be given special concern

in the near future.

Data distribution plays a very important role when we

deal with load balancing algorithms in distributed environ-

ments, as it is more efficient to move the processing towards

data than the other way around, therefore special interest

will be shown on this issue.

Creating tools for better monitoring and steering of the

distributed environment, of both resources and execution is

also on our to-do list.

COSMIN M. POTERAS ET AL.: ARCHITECTURAL REDESIGN OF A DISTRIBUTED EXECUTION ENVIRONMENT 609

REFERENCES

[1] W. Gu, J. Vetter and K. Schwann. An annotated Bibliography of Inter-
active Program Steering, SIGPLAN Notices 29 (1994), pp. 140-148
and Technical Report GIT-CC-94-15 (Georgia Institute of Technology)

[2] R.J. Allan and M. Ashworth. A Survey of Distributed Computing,
Computational Grid, Meta-computing and Network Information Tools,
available from http://www.ukhec.ac.uk/publications/reports/survey.pdf

[3] Morris Riedel, Wolfgang Frings, Sonja Habbinga, Thomas Eicker-
mann, Daniel Mallmann, Achim Streit, Felix Wolf, Thomas Lippert,
Andreas Ernst, Rainer Spurzem: Extending the collaborative online vi-
sualization and steering framework for computational Grids with at-
tribute-based authorization. GRID 2008: 104-111

[4] S. Jha, S. Pickles, and A. Porter. A Computational Steering API for
Scientific Grid Applications: Design, Implementation and Lessons. In
Workshop on Grid Application Programming Interfaces, Brussels, Bel-
gium, Sept. 2004.

[5] J. M. Brooke, P. V. Coveney, J. Harting, S. Jha, S. M. Pickles, R. L.
Pinning and A. R. Porter, Computational Steering in RealityGrid, Pro-
ceedings of the UK e-Science All Hands Meeting, September 2-4,
2003

[6] J. A. Kohl and P. M. Papadopoulos. Efficient and Flexible Fault Toler-
ance and Migration of Scientific Simulations Using CUMULVS. In
2nd SIGMETRICS Symposium on Parallel and Distributed Tools,
Welches, OR, Aug. 1998.

[7] G. A. Geist, J. A. Kohl, and P. M. Papadopoulos. CUMULVS: Provid-
ing Fault-Tolerance, Visualization and Steering of Parallel Applica-
tions. Intl. Journal of High Performance Computing Applications,
11(3):224-236, Aug. 1997.

[8] J.J. van Wijk and R. van Liere. An environment for computational
steering. In G.M. Nielson, H. M¨uller, and H. Hagen, editors, Scien-
tific Visualization: Overviews, Methodologies, and Techniques, pages
89–110. Computer Society Press, 1997.

[9] R. van Liere, J.D. Mulder, and J.J. van Wijk. Computational steering.
Future Generation Computer Systems, 12(5):441–450, April 1997.

[10] David Harel, Michal Politi - Modeling Reactive Systems with State-
charts: The Statemate Approach, McGraw-Hill, Inc. New York, 1998,
ISBN:0070262055

[11] Cosmin M. Poteras, Mihai L. Mocanu - A State Machine-Based Paral-
lel Paradigm Applied in the Design of a Visualization and Steering
Framework, Recent Researches in Applied Informatics, Proceedings of
the 2nd International conference on Applied Informatics and Comput-
ing Theory (AICT '11), ISBN : 978-1-61804-034-3, pp232-236,
WSEAS, Prague, Czech Republic, September 26-28, 2011

[12] www.tinkerpop.com
[13] Rodrigues, M.A., Broecheler, M., “Titan: The Rise of Big Graph

Data”, Public Lecture at Jive Software, Palo Alto, 2012
[14] Broecheler, M., LaRocque, D., Rodrigues, M.A., “Titan: A Highly

Scalabe, Distributed Graph Database”, GraphLab Workshop 2012, San
Francisco, 2012

610 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

