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Abstract—We discuss some enhancements of approxi-
mate SQL extensions available in Infobright’s database
technology. We explain how these new enhancements
can speed up execution of complex correlated sub-
queries, which are quite popular in advanced database
applications. We compare our research to the state-
of-the-art solutions in the area of analytic databases.
We also show in what sense our technology follows the
principles of rough sets and granular computing.

Index Terms—Analytic Databases, Data Granula-
tion, Approximate SQL, Correlated Subqueries.

I. Introduction

C
OLUMNAR databases provide a number of benefits
with regard to both data storage (e.g.: data com-

pression [1]) and data processing (e.g.: on-demand materi-
alization [2]). Their characteristics are particularly advan-
tageous for exploratory sessions and ad hoc analytics. The
principles of columnar stores can be also combined with
a pipelined and iterative processing [3], leading toward
modern analytic engines able to handle rapidly growing
data sets.

Infobright’s technology discussed in this article com-
bines the benefits of columnar architectures with utiliza-
tion of a metadata layer aimed at limiting data accesses
while resolving queries [4]. In our solution, the content
of each data column is split onto collections of values of
some consecutive rows. Each data pack created this way
is represented by its statistics. Such statistics are utilized
by algorithms identifying data packs sufficient to complete
particular stages of a given query execution [5].

The above solution is an example of a more general
strategy of scaling complex computations on large data
sets. Following the principles of rough sets [6] and granular
computing [7], this methodology can be expressed by the
four following steps: 1) Decompose data onto granules;
2) Create statistical snapshots for each of granules; 3)
Do approximate computations on snapshots; 4) Whenever
there is no other choice, access some of granules.

Certainly, such methodology should be compared to
other approaches based on decomposing and merging com-
putational tasks (see e.g. [8], [9]). It also requires address-
ing some details specific for particular applications, such
as assuring sufficiently fast data decomposition methods,
creating small but sufficiently informative snapshots, re-

designing standard computational methods and accessing
data granules in a minimized and optimized way.

Once the above challenges are solved, one can achieve
a powerful framework where approximate computations
assist execution of both standard and novel types of
operations over massive data. In particular, in databases,
it can be utilized to support both classical SQL statements
and their approximate generalizations.

In the case of Infobright’s RDBMS products, we dis-
tinguish three levels of such approximate assistance: 1)
Optimization of data operations, which are components of
execution of typical SQL statements [10]; 2) Computation
of approximated results of SQL statements that occur in
correlated subqueries in order to speed up answering to
the main queries [11]; 3) Computation of approximated
results visible to end users, which means actually extend-
ing standard SQL syntax [12].

In this paper we focus on the last two out of the above-
outlined levels. We discuss an enhancement of our previous
approximate SQL execution framework, now based on
statistical metadata operations combined with accessing
a small percentage of heuristically most informative data
granules. We also report some performance tests proving
that this new implementation can speed up a wide range
of practically useful correlated subqueries.

The paper is organized as follows: Section II outlines
some examples of understanding approximate SQL. Sec-
tion III recalls our database technology, that is, Info-
bright’s RDBMS solution. Section IV reports our previ-
ous research in the area of approximate SQL. Section V
introduces new enhancements into our approximate SQL
framework. Section VI recalls basic notions and challenges
related to correlated subqueries. Section VII discusses
application of enhanced approximate SQL framework to
optimization of correlated subquery computation. Section
VIII reports some performance tests corresponding to
correlated subquery execution. Section IX discusses cor-
relation between data sampling and precision of enhanced
approximate query results. Finally, Section X concludes
this study.

II. Approximate SQL

In such areas as, e.g., business intelligence or online
analytics, there is a discussion whether the answers to SQL
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statements have to be always exact. As an example, in
the case of rapidly growing and/or dynamically changing
data sets, often with a limited/variable access or limited
time/budget resuorces, the outcomes of a standard SQL
statement may get practically useless prior to finishing its
execution. An analogous dilemma arises for SQL-based
versions of some machine learning methods, which work
heuristically anyway [13].

There are many aspects of introducing approximate
SQL. For instance, one can estimate actual SQL results
by executing queries against data samples [14]. One can
also rely on data synopses [15]. A database system may
build numerous synopses for various subsets of columns
and measures. Each query is then translated and calcu-
lated using only synopses. The answer obtained in such a
way is returned as approximation. Yet another possibility
is to generalize SQL operators in order to provide end
users with more flexible answers [16]. Such extensions are
especially useful when query constraints turn out to be too
restrictive to produce any results or columns’ data types
are too complex for standard conditions and operations.

The two out of the above aspects can be clearly found
in Infobright’s technology. Our statistical metadata layer
can be utilized to heuristically identify subsets of data
packs that form sufficiently informative samples. It can be
also interpreted as data synopses, which produces query
approximations for both internal and external purposes.
We go back to these aspects in Section IV, after getting
more familiar with the considered database architecture.
With regard to the third above-mentioned aspect, which
is tending toward more flexible answers by modifying SQL
operators, some of our approximate query functionalities
can be regarded as SQL syntax extensions. However, one
should remember that Infobright’s main inspiration for
query approximations is to speed up execution and/or
decrease a size of standard SQL outcomes by answering
with not fully accurate/complete results.

Let us also mention about one more important direction
in the area of SQL approximations, specially related to
the enhancements proposed in this paper. It is dedicated
to controlling a complex query execution over time, by
means of converging outcome approximations [17]. Such
a convergence can take different forms, e.g.: monitoring
partial query results until the calculation is completely
finished, with possibility to stop it at any moment in
time, or pre-defining some execution time and/or resource
constraints that, when reached, will automatically stop
further process even if the given query results are still
inaccurate. We go back to this topic in Section VI.

III. Infobright’s Architecture

In Infobright’s RDBMS, rows loaded into a data table
are partitioned onto so called row packs, each consisting
of, by default, 216 of rows. Each row pack is partitioned
onto data packs, each consisting of 216 values of a column.
Thus, each data pack corresponds to a single row pack

and a single data column. Data packs are compressed
and stored on disk. During query execution selected data
packs are read from disk, decompressed and analyzed.
Decompression stage commonly constitutes query evalu-
ation time or is its significant factor, so one tends to
limit number of data packs decompressions. That is why,
among others, some subset of most recently used data
packs are available decompressed in memory. Prior to
compression, various types of statistics are computed for
each of data packs. For each data table, there is so called
granulated information system with objects corresponding
to row packs and attributes – to statistics. If justified we
can consider also information systems with objects related
to the pairs of row packs from different tables (see e.g.
[5]). Granulated information systems constitute so called
Infobright’s knowledge grid.

There are various strategies of partitioning rows into row
packs. In a general area of data processing and mining,
we may refer to this task as to data granulation [7].
Appropriate data organization will have, among others,
direct impact on informativeness of data synopses and
– in consequence – on engine performance. However, we
need to realize that in the case of database solutions
expected to analyze large amounts of data being loaded
in nearly real time such granulation needs to be very fast,
possibly guided by some optimized criteria but utilized
rather heuristically. While loading (or reloading, e.g., by
an insert from select operation) data, one may control
the number of rows in row packs (that is, the number
of rows does not need to be always 216). To a certain
extent, one may also slightly influence the ordering of
rows for the purposes of producing better-compressed row
packs described by more meaningful statistics, following
analogies to data stream clustering [18].

Knowledge grid can be treated as a metadata layer.
Besides simple statistics displayed in Fig. 1, it may also
contain more advanced structures [19]. However, the size
of all such structures needs to be far smaller than the size
of data. Since granulated tables residing in knowledge grid
are organized in a columnar way, so their columns, called
knowledge nodes, can be selectively employed while query-
ing. Another metadata layer stores information about lo-
cation and status of data packs. It also contains lower-level
statistics assisting in data decompression and, if applica-
ble, translating incoming requests in order to resolve them
using only partially decompressed data. There is also one
more metadata layer responsible for interpretation of the
contents of data packs and knowledge nodes. It contains,
e.g., value dictionaries for columns with relatively small
number of unique values and domain-specific descriptions
of values of long alphanumeric columns, which may assist
in their better compression [20].

The most fundamental way of using knowledge nodes
during query execution refers to classification of data packs
into three categories analogous to positive, negative, and
boundary regions in the theory of rough sets [6]: Relevant
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Fig. 1. Illustration for Section III. Simplified min/max knowledge
nodes for numeric data columns a and b in table T are presented at the
left side. Symbols R, S and I denote relevant, suspect and irrelevant
data packs, respectively. E denotes a need of processing at the exact
level. I/E means that the decision whether a given pack is irrelevant
or requires exact processing will be made adaptively, depending on
the outcomes of previous calculations [5].

(R) packs with all elements relevant for further execution;
Irrelevant (I) packs with no elements relevant for further
execution; Suspect (S) packs that cannot be R/I-classified
based on available knowledge nodes.

As an example, consider table T with 350,000 rows and
columns a and b. We have six row packs: (A1,B1) for
rows 1-65,536, (A2,B2) for rows 65,537-131,072 and so on.
Consider knowledge nodes with minimum and maximum
values displayed in Fig. 1. Assume there are no nulls and
no other types of knowledge nodes available. Consider
the following statement: select max(a) from T where

b>15; [5]. The first execution stage uses min/max knowl-
edge node for column b to classify data packs of b (and
the whole corresponding row packs) onto relevant (B4),
irrelevant (B5) and suspect (B1, B2, B3, B6) regions with
respect to condition B>15. The second stage employs the
third row pack to approximate the final result as MAX(A)

≥ 18. Thus, only row packs (A1,B1) and (A3,B3) require
further investigation. Maximum in A1 is higher than in A3,
so, at the third stage, approximation is changed to MAX(A)

≥ X, where X depends on the result of exact processing
of the first row pack. If X ≥ 22, then there is no need to
access the third row pack. Otherwise, we need to proceed
with its exact processing to get the precise outcome.

The first realistic implementation of an analogous gran-
ulated metadata support for query execution refers to
[4], where the idea was to partition data into blocks of
consecutively loaded rows, annotate each of such blocks
with its min/max values with respect to particular data
columns, and use such statistics against where clauses in
order to eliminate out-of-scope blocks. However, the above
example shows that the analysis of fully in-scope row packs
is equally useful, as in such cases it is enough to take
statistics instead accessing data. Moreover, it is worth re-
categorizing data packs as relevant/irrelevant iteratively,
which distinguishes us from other approaches.

+--------+--------+------+
select | min(a) | sum(a) | b |
min(a), sum(a), b +--------+--------+------+
from T | 2 | 3 | 2 |
where b > 1 | 2 | 2 | 6 |
group by b; | null | null | 5 |

| 1 | 3 | 3 |
+--------+--------+------+

select roughly +--------+--------+------+
min(a), sum(a), b | min(a) | sum(a) | b |
from T +--------+--------+------+
where b > 1 | 1 | 2 | 2 |
group by b; | 2 | 3 | 6 |

+--------+--------+------+

Fig. 2. Example of SQL select statement and its rough version.
Tables at the right sides display the results of both queries [10].

We refer to the literature for more examples how to
utilize knowledge nodes in order to speed up data opera-
tions. Let us just mention that in case of multi-column
where conditions some data packs, within a single row
pack, can be identified as relevant/irrelevant while others
may remain suspect. Furthermore, statistics and statuses
of different data packs can be combined while processing
complex (boolean, arithmetic, etc.) expressions treated as
dynamically derived data columns [10]. (Actually, results
of correlated subqueries investigated in further sections
may be interpreted as such complex expressions.) It is
also worth noting that knowledge nodes can be computed
and efficiently used for intermediate results and structures
created during query execution, such as e.g. hash tables
storing partial outputs of joins and aggregations [21].

IV. Infobright’s Query Approximations

Let us now go back to an outline of approximate SQL
approaches that we developed so far. In [5], we introduced
informally the notion of rough query, in order to better
explain some internal data operations in our database
engine. In [22], rough query was formalized for the pur-
poses of correlated subquery optimizations. This topic was
continued in [11]. Finally, in [12], we formulated the syntax
of rough SQL statements and their results.

The following aspects of rough SQL were studied in [12]:
1) Query execution algorithms; 2) Internal results format;
3) Reporting results to end users. Let us explain those
aspects using an example from Section III. Recall that by
utilizing min/max knowledge nodes of columns a and b

we could compute that the outcome of select max(a)

from T where b>15; is at least 18. This is because of
row pack (A3,B3), within which there must be at least
one row satisfying condition b>15 and having value not
less than 18 on a. We obtain approximation in the form
of interval 〈18, 25〉. This would be actually the answer
to query select roughly max(a) from T where b>15;

within the rough SQL framework introduced in [12].
Every select SQL statement returns a set of tuples
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labeled with the values of some attributes corresponding to
the items after select. Approximation of a query answer
can be specified as statistics describing attributes of such a
tabular outcome. Rough SQL can be assumed to produce
a kind of knowledge grid for such attributes. Accordingly,
the results of rough queries in [12] were provided as
ranges 〈lower, upper〉 approximating the results of the
corresponding standard queries. Here we should notice
that, as for now, our approach concerns only numeric
columns, however some efforts of analogous representation
for alphanumeric columns have been done too.

Consider an example in Fig. 2, where the task is to
compute aggregations min(a) and sum(a) with respect to
column b. The resulting tuples correspond to the groups
induced by b. There are three attributes: min(a), sum(a)

and b. Rough version of the same SQL computes ranges
for two aggregations and the grouping column. Rough
outcome tells us that for each resulting tuple, if its value
of min(a) is not null, then it is for sure between 1 and
2. Similarly, sum(a) is in 〈2, 3〉, and b is in 〈2, 6〉.

In parallel to our research on rough SQL, in [19] we
started to extend Infobright’s framework toward a kind
of inexact querying. Those studies were further continued
in [23]. In this approach, we do not compute query result
approximations, neither with full nor partial confidence
that they are correct. Instead, we attempt to speed up the
query execution process by quickly producing potentially
inaccurate results that look in a standard way.

In this case, we follow an expectation that approximate
queries yield tuples being almost the same as those result-
ing from standard queries. We enriched knowledge nodes
and the corresponding query processing functions in order
to compute degrees of data packs’ (ir)relevance. We also
investigated inexact knowledge nodes that describe data
packs almost correctly, neglecting local outliers in order to
provide crisper min/max intervals. Then, basing on some
analogies with extensions of rough sets (see e.g. [24]), we
loosened the criteria for R/I pack status, i.e., we treated
almost not suspect packs as if they were truly (ir)relevant
. This way, we created a framework for computing inexact
query outputs with a decreased need for data access.

In [23], we also proposed a more probabilistic approach,
where so called degrees of (ir)relevance, i.e., dynamically
derived coefficients that heuristically estimate how many
elements of particular data packs might satisfy query
conditions, are employed to randomly select row packs for
further processing. In this case, we can work with stan-
dard knowledge nodes [5]. However, with some probability
proportional to the above degrees, data packs that are
potentially almost relevant or irrelevant may be classified
as fully relevant or irrelevant, respectively.

The above randomized approach inspired us to develop
a number of intelligent sampling techniques. Given the
architecture described in Section III, it is important to
randomly select a reasonably small subset of row packs
and then choose a sample of rows from those row packs

A

B

Fig. 3. A: Comparison of a result of a standard select statement
(symbolized by smaller rectangle) with the results of its sampled
(circle) and rough (bigger rectangle) versions; B: Illustration how
a sampled result can be modified using knowledge nodes and how
rough result may become crisper by accessing some of data packs.

only. A challenge is to select row packs providing suffi-
cient representativeness of the final sample. In this case,
utilizing knowledge nodes in order to compute degrees of
row packs’ (ir)relevance with respect to particular query
conditions is very helpful. While producing a sample, fully
relevant data packs should have the highest chance to get
selected while fully irrelevant data packs should not be
considered at all. For suspect data packs, their degrees
of (ir)relevance should directly influence the probability
of taking them into account during sample generation. In
further sections, we refer to queries executed over samples
generated in this way as to sampled queries.

V. Enhanced Rough SQL

Rough SQL reported in [12] provides fast responses,
but the spans of approximations are often not informative
enough to end users nor internal optimization mechanisms.
On the other hand, sampled queries discussed in the end of
Section IV provide fast responses (although not as fast as
rough queries) that are potentially more informative, but
end users have no means to analyze how accurate they
are (see Fig. 3A). Certainly, it is crucial to approximate
errors occurring for particular data packs and to propagate
them through the whole query execution process in order
to provide end users with overall estimation. This task gets
more complicated along a growing complexity of analytical
SQL statements and needs to be considered for all query
methods. Thus, a question arises whether it is possible
to combine benefits of rough queries and sampled queries
within a unified framework.

The above question can be answered in at least two ways
(see Fig. 3B). One of possibilities is to enrich sampled
queries with an analysis whether their results remain
within the bounds produced by rough versions of the
same queries. If a given sampled result is not within such
bounds, we can quickly move it toward the closest edge

of rough SQL approximation. Another possibility is to
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Fig. 4. Illustration how enhanced sampled query results (circles)
and enhanced rough query results (bigger rectangles) are expected
to behave with respect to a standard query result (smaller rectangle)
while accessing more and more data packs.

develop a crisper version of rough SQL that would pro-
vide better ranges for both sample-based and fully exact
querying, by combining statistical information provided
by knowledge nodes with crisp information about opened
data packs. Actually, in this case one should expect that
rough SQL enriched by additional information about the
content of a subset of suspect data packs should provide
reasonable ranges for sampled SQL, where a sample is
created basing on the same subset of data packs.

From a technical point of view, sampled querying is
based on selecting subsets of row packs and then selecting
some rows from those row packs. Therefore, it requires
decompression of those row packs. Once we have some
row packs decompressed, their content can be used to
improve rough SQL results in the same time. Realization
of this idea is actually very simple: When a data pack is
accessed, we can replace its statistics stored in Infobright’s
knowledge grid with very crisp information about only
those of its elements, which are useful at a given stage of
query execution (e.g.: which correspond to rows satisfying
conditions over other columns in a given select state-
ment). This means that knowledge nodes, or rather their
copies utilized while executing a given query, can become
crisper over time, leading to a crisper final result.

Let us emphasize that from a practical point of view
there is no requirement for results of sampled queries to fall
within the bounds provided by their rough counterparts.
It depends entirely on expectations of end users. For
distinction, we will refer to a sampled query mechanism
enriched by rough results analysis as to an enhanced
sampled querying. Analogously, we refer to a rough query
mechanism enriched by information from a subset of sus-
pect data packs as to an enhanced rough querying.

Let us go back for a while to the idea presented in
[12], where rough SQL was based entirely on Infobright’s
knowledge grid. We implemented a number of techniques
utilizing knowledge nodes at particular stages of execution
of select statements. All of them are based on heuristics
analogous to the mechanisms of dynamic approximation
of standard query outcomes, as shown in Section III.
Approximations are often not perfectly precise but can be
obtained very fast. However, additional data access may
not necessarily lead to a dramatic slowdown of rough SQL
execution. For instance, it is worth noting that Infobright

caches recently used data packs in memory. Integration
of information residing in knowledge nodes with such
packs within a framework for enhanced rough SQL may
significantly improve precision of results.

Let us also recall that Infobright’s query execution
should be treated as an iterative process, where knowledge
nodes and information acquired from data accessed at a
particular stage can be employed for heuristic selection of
the very next packs that are likely to mostly contribute to
narrowing down the 〈lower, upper〉 ranges. In general, we
can think about several strategies of choosing data packs
or row packs to be processed. For instance, to improve
enhanced rough SQL results with minimum data accesses,
we should choose packs that are expected to maximize
information gain for after-select attributes (which may
follow exactly the same heuristics as in the example in
Section III). On the other hand, in order to increase reli-
ability of sample-based querying, we should rather choose
row packs that seem to be statistically representative with
respect to the query domain (as discussed in the end
of Section IV). Finally, in order to speed up execution
without losing quality, we should attempt to combine the
above strategies with information about data packs that
are currently cached in memory.

Finally, let us note that enhanced rough query result
ranges become crisper (or at least not less crisp) when
more row packs are taken into account. There is no guar-
antee that a distance between actual query and approx-
imated query results decreases monotonically. However,
while enhanced rough query result ranges become crisper,
we intuitively expect to approximate the above distance
better and better (see Fig. 4). As mentioned in Section II,
there are also some approaches where an end user provides
an upper bound for query processing time and accept-
able nature of answers (partial or approximate). One can
imagine an analogous framework designed for Infobright,
wherein a query is executed starting with rough infor-
mation and then it is gradually refined by decompressing
heuristically selected pieces of data. The execution process
can be then bounded by means of various parameters,
such as time, acceptable errors, or percentage of data
accessed. We can also consider a design of Infobright-
specific incremental querying, although it would require
further extensions of end user interfaces.

VI. Correlated Subqueries

A correlated subquery is a query nested in some other
query, called an outer query, which often operates on
another table, called an outer table, and which is parame-
terized by some outer table’s values. Correlated subqueries
can occur in a number of SQL clauses. For illustrative
purposes, consider the following example of the where

clause of the outer query: U.x=(select max(T.a) from T

where T.b>U.y). If U and T are large, then the execution
of the outer query on T may be time consuming. However,
as pointed out in [22], one can quickly derive rough answers
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to particular subqueries and, for each row in T, check
whether the above condition could be successfully resolved
by using such dynamically obtained statistics.

Importance of correlated subqueries is visible in sev-
eral areas of business intelligence, such as the trend or
predictive analysis. Complex nested queries may occur at
the reporting stages focused on identifying anomalies and
risk indicators. They may be useful also in applications
requiring storage of large sets of hierarchical objects in a
relational format. In many cases, e.g. for large metadata
repositories, a dynamic reconstruction of such objects may
be also supported by massive self-join operations or some
recursive SQL extensions, if available. However, there are
cases where the usage of correlated subqueries seems to be
particularly convenient, if they perform fast enough.

Internal rough query algorithms have been utilized in
Infobright’s RDBMS for a longer time in order to speed
up correlated subqueries [11]. Surely, one can adopt here
some well-known methods of the correlated subquery op-
timization [25], such as caching results for last-observed
parameters or rewriting nested queries into semi-joins.
However, in some cases, the nested part of a query may still
need to be processed in its direct form for a huge amount
of rows of an external table. Fast production of query
approximations may eliminate the need of a standard
computation at least for a subset of such rows.

For a subquery in the where clause, we launch its rough
version with parameters induced by each consecutive row
in the outer table. We attempt to use its rough outcome
to avoid the exact mode of execution. For the above-
mentioned example of the clause U.x=(select max(T.a)

from T where T.b>U.y), we can express it in two stages:
(x, s̃(y)) and (x, s(y)). The first of them symbolizes, for
a given row, the comparison of its value on column x

with a rough result of the subquery parameterized by its
value on column y. If such a comparison is not sufficient
to decide whether that row satisfies the where clause,
i.e., if the value of U.x does not yield fully relevant or
fully irrelevant condition when comparing with the result
of statement select roughly max(T.a) from T where

T.b>U.y; then, for that particular row, we need to proceed
with the standard subquery execution s(y).

A broader roadmap for rough query-related future op-
timizations of correlated subqueries was presented in [11].
In all cases presented in that paper, the preciseness of
rough query outcomes is crucial for ability to minimize
data access and speed up computations.

VII. Optimization of Correlated Subqueries by
Enhanced Rough SQL

Efficiency of different forms of approximate or ran-
domized query frameworks can be examined in multiple
ways. For example, in [23] we investigated stability and
reliability of the results of top-k queries while tuning
parameters of random selection of almost suspect data
packs. As another example, in [12] we presented some

TABLE I
The amount of data packs accessed while querying. The

TPCH100 query is a standard benchmark query. The
TEST 1 and TEST 2 queries come from Infobright’s
internal benchmark framework. The SYNAT 1 and

SYNAT 2 queries are taken from the SYNAT project [26].
The remaining queries represent Infobright’s customers.

SQL statement rough → exact rough → enhanced → exact
TPCH100 2869154 185330
TELCO 1 21663 12087
TELCO 2 9579 3
WEBLOGS 51047 28769
TEST 1 40707 40707
TEST 2 40707 3
SYNAT 1 333582 333552
SYNAT 2 252868 251242

strategies utilizing rough queries to speed up standard
SQL calculations. In this paper, we focus on the origi-
nal idea of using rough SQL to improve performance of
correlated subqueries [22]. Our goal is to show that ad-
ditional employment of enhanced rough SQL mechanisms
described in Section VI can lead to further gains in this
area. In the nearest future, we plan to extend our tests also
onto other aspects of practically most promising enhanced
rough SQL applications.

At the first glance, one may suspect that accessing
data packs slows down producing rough subquery out-
comes. However, crisper outcomes let us eliminate more
calculations at a higher level. Moreover, we implemented
it in such a way that the enhanced rough query execu-
tion is triggered only if standard rough query fails. In
our previous implementation, we would follow with exact
subquery immediately. In the new implementation, we
proceed with exact computation only if enhanced rough
query fails to give us results that would be precise enough.
Therefore, it is not about a trade-off between the amount
of accessed packs and precision of results – the way it
was implemented assures that we always win by applying
this new mechanism. Symbolically, we replace the previous
strategy expressed by the pair of stages (x, s̃(y)) and
(x, s(y)) by a triple, where (x, s̃(y)) is followed by (x, s(y))
and then by (x, s(y)), where s(y) denotes an enhanced
rough execution of inner query s with parameters set up
by a value of outer column y. Surely, the other strategies
reported in [11] could be extended this way as well.

Mechanism of enhancing is parameterizable. Before run-
ning query we can choose how many row packs for sin-
gle subquery evaluation are permitted to be additionally
decompressed. If not specified explicitly, all experiments
described in the following section were performed for the
only one row pack per subquery evaluation permitted.

VIII. Experimental Results

Table I illustrates one of specific classes of correlated
subqueries aimed at selecting and processing extreme
cases for some categories. Such nested queries differ from
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relatively simpler group by statements in a way of consid-
ering observations marked as extreme. They are useful for
some aspects of time-oriented analysis, extreme behaviour
or outliers tracing. Specific tasks corresponding to such
queries may look, e.g., as selecting all latest news about
each company in the news table

select * from news n1 where pub_date

= ( select max(pub_date) from news n2

where n1.company_id = n1.company_id )

or, for a set of stemmed documents, selecting all stems that
are of a maximal TF-IDF value for particular documents
(see [26] for comparison)

select stem from stemmed_docs x where tf_idf

= ( select max(tf_idf) from stemmed_docs

where x.id_doc = id_doc )

The results in Table I are displayed by means of data
packs that had to be opened. Such measure for considered
class of queries, reflects real performance of query eval-
uation fairy accurately. We will then identify number of
decompressed data packs with query performance under-
stood as time spent waiting for the results.

The last column reports the results of our new approach,
where the intermediate enhanced rough SQL version of a
correlated subquery is computed with only one heuristi-
cally selected row pack to be additionally accessed. This
shows a huge potential of the proposed method. For some
of the considered queries, we were able to provide and test
equivalent non-nested select statements with additional
group by or self-join operators. Usually, such rewriting
significantly improves performance. However, for queries
such as TELCO 2 and TEST 2, it was impossible to find
an alternative way of execution that would be comparably
fast to the strategy based on enhanced rough SQL.

IX. Discussion

Let us now elaborate more on how the data sampling
intensity correlates with the precision of enhanced rough
query results. First of all, it turns out that queries with
correlated subqueries based on MIN/MAX aggregations
can particularly gain from enhanced rough SQL as such
aggregations are sensitive to information about single
observations. Figure 5 illustrates it by presenting enhanced
rough queries for selected values of additional decompres-
sions of row packs per query evaluation. Parameter equal
to 0 means an ordinary rough SQL (with no extra data
accesses). We can see that after accessing nine additional
row packs we achieve fully crisp result.

On the contrary, the precision of, e.g., COUNT is
expected to be linear with respect to the number of
additional accesses [23]. It makes the enhanced rough
query sampling strategy for COUNT (as well as SUM
and AVG) questionable, although in some cases accessing
several data packs may still help in resolving a query
condition. Generally, these types of aggregations may be
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Fig. 5. Exemplary scenario of influence of increasing number of row
pack decompressed during enhanced rough query (ERQ) calculation
on ranges returned by ERQ performed on customer’s data (SELECT
ROUGHLY MIN(col) FROM t WHERE cond); 0 stands for original
rough query; for 9 row packs we achieve crisp result

handled better by enhanced sampled queries, although
inexactness of their outcomes is not always acceptable by
end users.

It is also worth elaborating on sampling strategies that
could decrease a need of additional decompressions by,
e.g., achieving crisp results after shorter period of time.
For example, one of such strategies for MIN/MAX aggre-
gations is to start decompression from data packs with
the most extreme values represented by their knowledge
nodes (like in Figure 5). A similar strategy could be fol-
lowed for COUNT DISTINCT aggregations by referring to
data packs with the highest estimated number of distinct
values. However, analyzing results from Figure 5 (in par-
ticular the little improvement in range estimation between
cases with parameter set to 1 and 6) we anticipate the
need of enrich sampling strategy development of utilizing
information contained e.g. in histograms.

Additional decompressions may be done randomly but a
more intelligent procedure is recommended. The presented
results also suggest that in case of correlated subquery op-
timization such mechanism may be complementary to syn-
tactic reformulation of queries (for instance into JOINs).
It should be also pointed out that some on-load row
reorganization strategies aimed at improving the quality
of knowledge nodes may further increase effectiveness of
sampling mechanisms [18]. This is because, generally, the
increase in the quality of rough information represented by
knowledge nodes helps a lot in all aspects of Infobright’s
querying algorithms.

X. Conclusions

We discussed some enhancements of rough SQL frame-
work developed by Infobright. We reported how such
enhancements can speed up execution of correlated sub-
queries. In our future research, we are going to examine
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further cases of practical usage of enhanced rough SQL.
We will also attempt to better analyze convergence of
query approximations depending on various strategies of
sampling blocks of rows during query execution.
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[18] D. Ślȩzak, M. Kowalski, V. Eastwood, and J. Wróblewski,
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