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Abstract—Clinical Decision Support Systems (CDSSs) need to
disseminate expertise in formats that suit different end users and
with functionality tuned to the context of assessment. This paper
reports research into a method for designing and implementing
knowledge structures that facilitate the required flexibility. A
psychological model of expertise is represented using a series of
formally specified and linked XML trees that capture increasing
elements of the model, starting with hierarchical structuring,
incorporating reasoning with uncertainty, and ending with deliv-
ering the final CDSS. The method was applied to the Galatean
Risk and Safety Tool, GRiST, which is a web-based clinical
decision support system (www.egrist.org) for assessing mental-
health risks. Results of its clinical implementation demonstrate
that the method can produce a system that is able to deliver
expertise targetted and formatted for specific patient groups,
different clinical disciplines, and alternative assessment settings.
The approach may be useful for developing other real-world
systems using human expertise and is currently being applied to
a logistics domain.

I. INTRODUCTION

MANY Clinical Decision Support Systems (CDSSs) with

appropriate functionality have been successfully de-

veloped in academic institutions but never seen the light of

day within healthcare practice. There are two fundamental

reasons why these systems are not adopted. One is the failure

to integrate with the way organisations and their individual

employees work. The other is the inability to communicate

information effectively beyond the immediate remit of the

CDSS, which is often too narrow in the first place. This paper

describes a research approach that attempts to circumvent both

problems by developing a CDSS that has flexible requirements

and data sharing protocols built into the design process from

the very beginning. The CDSS is the Galatean Risk and Safety

Tool, GRiST [1], [2], that helps assess and manage risks

associated with mental-health problems.

The aim of the research was to design GRiST so that it

could disseminate mental-health expertise using appropriate

language for the particular type of recipient and in a format

commensurate with the variable circumstances of assessment.

This is no easy task because it would need to accommodate

end users ranging from psychiatrists with years of specialist

medical education to carers or charity workers who may have

minimal training. In fact, GRiST was later adapted for self-

assessments, by patients who do not have any predefined

common ground apart from mental-health problems. Assess-

ment contexts were also highly variable because GRiST was

intended to be deployed for mental-health patients across the

care pathway, from primary care, through secondary care and

specialist services, and back to care in the community.

The complexity of health services in general and mental

health in particular is one reason why the UK Government

had so many problems with its National Programme for

Information Technology [3] that was intended to revolutionise

information systems and processes within the National Health

Service (NHS). When GRiST was available for deployment

in 2006, the oft-acknowledged “cinderella” mental-health ser-

vices were still more paper-based than most in the NHS.

GRiST set out to tackle barriers to information technology (IT)

and its adoption by a design process dedicated to developing

flexible interfaces and delivery formats for heterogeneous

users and contexts. The research questions were: (i) how can

the knowledge base be presented in the format and language

most appropriate for each intended type of user? and (ii) how

can the information technology generate flexible interfaces to

the knowledge so that they fit with the different contexts of

assessment?

The paper will first briefly review the clinical rationale

for GRiST before describing the main functionality and un-

derlying philosophy of the system. This will provide the

context for the cognitive engineering approach that was used

to develop knowledge structures providing risk assessments

and advice. Their implementation as a sophisticated set of

linked XML trees will be described, showing how they support

the full GRiST CDSS and its deployment across health and

community settings. Examples of the variety of interfaces and

language used will be given along with an evaluation of the

clinical implementation and adoption. The paper will end by

considering the next steps for the research programme and

how these have been facilitated by the knowledge structure

design principles.

II. BACKGROUND

To prevent serious untoward incidents (SUIs) amongst in-

patients and in the community, clinicians need new and reliable
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research evidence to help them detect high risk patients and

to support risk management decisions. Despite patient safety

being central to NHS policy [4], SUIs remain worryingly

common [5]–[7]. Identified causes are lack of sufficient, ac-

cessible information about patients’ risk profiles [5] and poor

risk management or care planning [5], [6]. Risk assessment

and management are core competencies for mental health

clinicians [8], [9], but the two processes are often not properly

connected [10].

There is a clear need to improve clinical practice, which

was the motivation for GRiST. It is set apart from alternative

risk-assessment and management tools by explicitly modelling

human expertise within a generic model of psychological

classification. This was a fundamental design principle; if

GRiST is based on how humans in general organise their

knowledge and reason with it, then its expertise will be in

a universally accessible format. It enables GRiST to transcend

disciplinary specialisms and opens its expertise up to people

with no training at all.

GRiST is designed to assist the early detection of multiple

risks amongst people with mental health problems, including

suicide, self-harm, harm to others, self-neglect, and vulner-

ability. It records patient data (cues) to provide a precise

information profile that supports the risk judgements given

by clinicians.

Risk assessment can be formulated as a classification prob-

lem where each risk such as suicide or harm to others is a class

and the support for each class determines the level of risk. The

factors determining which risk gains most support will be the

patient cues such as previous risk history, current intention,

emotional and mental state, as deemed relevant by the assessor.

The classification task is to formulate the support for each

risk from the input data and activate appropriate interventions

associated with the most supported class.

In GRiST, risk classes are represented by hierarchical

knowledge structures or trees called galateas [11], which are

used to represent mental-health expertise. The trunk or root

node of the tree is the risk. It is deconstructed into subconcepts

that are themselves trees until the leaf nodes are reached,

representing the input data.

Figure 1 provides a hypothetical illustration of how the

galateas represent classes and their support. The data used

for input to the tree can be any type but it is then converted

into a fuzzy-set membership grade, MG, from 0 to 1. Zero

represents no support for the root decision class and 1 rep-

resents maximum support, but for this item of information

alone; its MG at this point is independent of any other item.

The main role of the MGs is in converting from real-world

patient data to the model input. This is shown in Figure 1 by

the MG row of the datum nodes, which defines a distribution

of MGs matching the range of potential input data values.

Values above or below the range take the MG associated with

the maximum or minimum value respectively; values within

the range are found by linear interpolation if they don’t match

a value specified in the distribution. For example, the “number

of attempts” datum in Figure 1 has the value 3, which is 0.6

Fig. 1. Hypothetical example of how membership grades (MGs) are processed
from patient input data to risk concept. RIs are relative influences, which
represent the weights of data and concepts.

along the value range between 0 and 5 and so is assigned an

MG that is 0.6 between 0 and 1; i.e. 0.6, as given by the MG

outside the box for that datum. For others, such as “days since

last attempt”, the patient data is passed through a function,

f(data), before matching the value-mg distribution: two dates,

in this case, which the function uses to generate the number

of days between them, 20. Twenty is one-third between 10

and 40 and so is one third along the MG continuum between

0.6 and 0, producing an MG of 0.4, likewise shown outside

the datum-node box. The MG is then multiplied by the RI

associated with the datum, as shown in the RIs row, to give

the MG contribution to the parent concept.

The parent concept MG is the sum of its children con-

tributions, which is how 0.52 is assigned to the concept

node in Figure 1. If this concept also had a parent, then the

concept would have its own RI and its contribution to the

parent would be the product of its RI and MG in the same

way that it received its children MGs. The MGs percolate in

this manner through to the root node to produce the overall

class membership and thus the risk evaluation. Equation 1

formalises the process

MGC =

n∑

i=1

MGiRIpi (1)

where C is a concept, MG is the membership grade

generated at each datum node, i, of the concept, and RIpi
is the product of all the RIs along the path, p, from the datum

node to the concept.

The focus of this paper is how the hierarchical modelling of

expertise translates into an ontology that can drive the GRiST

CDSS. The added value of the hierarchy is that it represents

the conceptual structure understood by human decision makers

when relating influential factors to the decisions taken. There

is plenty of evidence for the psychological validity of this
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hierarchical knowledge structuring. For example, expert chess

players “chunk” positions of chess pieces into hierarchical

types of game states [12]. Similar strategies have been shown

in other domains such as architecture [13], fault diagnosis [14],

and medicine [15]. A review of the evidence [16] concluded

that “on balance, it is difficult to dismiss hierarchical organi-

sation as only a construct” (p31) and more recent research has

begun to show its neural correlates [17], [18].

The psychological grounding of GRiST is not unique, of

course, when it comes to intelligent knowledge-based systems

(IKBSs) [19], [20]. However, it uses a generic classification

model that represents expertise in a non-specialist format.

It can be understood without requiring clinical training and

makes it ideal for communicating to heterogeneous users (see

[11] for more on the Galatean model rationale).

A. Cognitive engineering and the GRiST ontology

The GRiST approach to constructing decision support sys-

tems can be categorised as cognitive engineering because it

is the application of cognitive science to IT systems that are

intended to help solve real-world problems [21]. For cognitive

engineering, models need to encapsulate expertise in a format

that can be accessed by the experts and that is commensurate

with the inputs and outputs those experts are familiar with

in their problem-solving worlds [22]. IKBS Engineers were

coming to this conclusion with the idea of situated cognition

[23], which argues that thinking cannot be separated from the

environment [24], [25]. These environments change and static

IKBSs based on a single, giant elicitation exercise are doomed

to fail because they will not be flexible enough to evolve or

even be maintained easily [26, pg. 767].

There has been a change in tack from psychology to the

data itself, with machine learning, data mining, and pattern

recognition approaches coming to the fore. In a recent review

of artificial intelligence in medicine [27] Peter Szolovits points

out that in the early days, “we thought we knew a lot, but had

little or no actual data. Today we are inundated with data, but

have correspondingly devalued expertise” (pg. 12). The focus

is on the machine, how knowledge can be structured for easy

processing, and how useful outputs can be induced from the

data. It is the same focus that stimulated the rise of ontologies

for organising data into shared knowledge bases. Nevertheless,

despite Musen’s claim that cognitive models do not lead to

scalable and maintainable IKBSs [28], “the symbiosis between

cognitive science and cognitive engineering shows no sign

of abating” [21, pg. 582] and continues to be the case in

medicine [29].

The GRiST research tries to bring human and machine

closer together using a form of ontology that has an intuitive

connection with the knowledge used by mental-health experts.

The interface between human and machine ontologies should

be a primary focus for knowledge engineering [30], especially

for CDSSs based on clinical expertise. The most basic form

of ontology is a controlled and extensible vocabulary [31],

[32], which means that dictionaries and thesauri would count.

These are very familiar to people and emphasises the point that

ontologies are not strictly the preserve of machines. Indeed,

all sensate beings create some kind of ontology for interacting

with their environment [33].

Maintaining the intuitive representation of the GRiST

knowledge base meant that the terms should reflect the natural

language of human users [34], [35]. This is particularly

important in mental-health risk screening because of the

diversity of information that relates to risk and the lack of

any all-encompassing coding schemes. Where schemes do

exist, e.g., ICD-10 [36] and DSM-IV [37], they focus on

diagnostic categories for mental disorders such as depression

and schizophrenia and do not encompass the diversity of

peoples’ histories and current behaviour that impact on risk.

Attempts to create ontologies within mental health have also

focused on diagnoses [38], not risk, and have been aimed

at data interoperability rather than formalising expertise and

clinical decision making.

The GRiST ontology development was designed to ensure

the end product met the needs of its users and organisational

settings [39] by extensive iteration between clinicians and the

evolving CDSS. The galatean psychological model kept the

human-machine interface open and intuitive. It has a precisely

specified semantics for hierarchical knowledge, incorporating

parameters required for processing uncertainty, and the mathe-

matical functions for propagating them through the hierarchy.

This coupling of the ontology with its problem-solving method

(classification) helps construct a system that solves real-world

tasks [40], but does so by emphasising the fluid relationships

of human intuition rather than machine formalisms and logic-

based reasoners [41]. The next section explains the method in

detail.

III. METHOD

The goal of the methods reported in this paper was to create

galatea knowledge structures that were able to evolve with

expert consensus and support customised knowledge delivery

for a variety of end users accessing it in different contexts. The

first problem was how to develop and manage the hiearchical

knowledge, which was solved using mind maps.

A. Mind maps

One of the most intuitive aids for note-taking, brainstorm-

ing, and generally organising ideas is the mind map [42].

Its layout reflects the goal of representing free-flowing, un-

constrained associations of the mind at the same time as

structuring knowledge hierarchically; it exactly accords with

the knowledge-engineering requirements of GRiST.

There are many mind mapping software programs available.

Freemind [43] was chosen because it is: (i) open-source; (ii)

available across platforms; (iii) creates node structures that

can be easily edited; (iv) enables icons to be incorporated into

the nodes; (v) attaches notes to the node without obscuring

the structure; and, most importantly, (vi) uses XML directly

for representing the mind map rather than it being only an

export choice. Its structure-editing role was integrated with the

GRiST knowledge-engineering toolkit by creating an XSLT

CHRISTOPHER D. BUCKINGHAM ET AL.: DESIGNING MULTIPLE USER PERSPECTIVES AND FUNCTIONALITY 213



Fig. 2. Hypothetical and simplified mind map of risk assessment expertise

Fig. 3. Expanded key node showing icons that help drive knowledge
engineering

document that transformed the Freemind mind map XML into

the GRiST structure tree.

A useful resource for helping users control structure changes

and also to direct the style sheet is Freemind’s icons. Figure 2

shows a simplified example of how Freemind defines the

knowledge structure; Figure 3 expands the “Key” node that

explains the icons helping control the translation between mind

map specification of knowledge structures and the subsequent

GRiST XML trees. Many concepts, such as depression, under-

lie all risks and so are repeated in the knowledge hierarchy.

The blue arrow icon enables the mind map to define the full

structure in one place. When the style sheet detects the blue

arrow, it looks for a node with the same name that has the

round number 1 icon associated with it (see Figure 2). The

other icons are similarly used to specify aspects of the galatean

structure, such as the face, which identifies leaf nodes of the

galatea where value-mg distributions are defined. The f(x)
node indicates which patient data are required to generate the

matching value to the value-mg distribution. This is the case

for the time period between the assessment and the most recent

suicide attempt, for example, as shown in Figure 1.

Every risk node, both leaf and concept, has a subnode called

“attributes”, which contains attributes required by the GRiST

XML trees. These enable the XSLT conversion document to

translate between Freemind mind map format and GRiST

XML nodes by making the attributes an explicit structure

in Freemind. Otherwise, they would be unrecognised and

ignored by Freemind when creating the mind map. The XSLT

conversion document looks in the attributes subnode and

creates them as well-formed attributes of the output XML tree

that is at the root of the GRiST ontology. The next section

introduces the GRiST XML trees and their attributes in more

detail.

B. GRiST XML tree functionalities, attributes, and relation-

ships

Once the initial knowledge structure has been specified in

Freemind, it is translated via the XSLT specification into the

GRiST initial XML. The idea is to have a base tree that

incorporates the requirements for all patient types and assess-

ment circumstances. It is a kind of “universal” or Everyman

tree incorporating every issue for every user. The knowledge-

engineering task is to encapsulate the different subtypes with

their particular perspectives and priorities within the GRiST

XML trees and extract them for delivery within the CDSS.

For GRiST, the subtypes reflect the variety of patient being

assessed and the contexts of assessment. Four patient types or

populations were quickly distinguished as GRiST developed:

children and adolescents; working-age adults; older adults;

and learning disabilities. Delivering GRiST across assessment

contexts also required functional variations that may apply to

more than one population (i.e. are not unified with populations)

and so needed to be treated separately. Customisations of this

type are called services. GRiST is thus tailored along the axes

of populations for different assessment trees and services, if it

turns out that the functionality needs customising as well as

the underlying classification tree; service functionality can be

applied to combined subsets of more than one population.

Three objectives were pursued when designing the GRiST

XML structures: (i) define the structures of all trees; (ii)

instantiate the trees with parameters required for classifying

patients according to their particular population; and (iii)

generate the specific data structures required for delivering the

variety of CDSS functionality for end users. The trees can be

summarised as follows (Table I defines the main attributes):

The Super Structure Tree (SST), which contains for all popula-

tions, all structural information about nodes and the questions

attached to them, with associated values and membership

grades. The SST also enumerates all the services that it may

be used in with the accompanying more modest functional

customisations required across different end users. The SST

is the base “Everyman” tree that holds common information

across them all as well as information about how to generate

the distinctive sub-trees.

The Structure Tree (ST), which contains structural, question,

value, and value-mg information for an individual population.

It is generated from the SST, and can be conceived of as

an SST tailored for one and only one population. Service
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TABLE I
EXAMPLES OF ATTRIBUTES USED BY THE GRIST XML SPECIFICATIONS TO DRIVE KNOWLEDGE ENGINEERING TOOLS AND DELIVERY FUNCTIONALITY

OF THE CDSS. THE TREES COLUMN IDENTIFIES THE TREES THAT CONTAIN THE ATTRIBUTE.

Attribute Semantics Trees

label name of tree node that can vary for populations all trees
code code for tree node, which is invariant all trees
populations="(population-name)” different populations of users defined by the tree SST
services defines services with particular configurations SST, ST, RIT,
help="(help text)” SST, ST, RIT, QT
generic="[path to generic

node]"

locates full definition of node SST, ST, RIT

generic-type="g" repeating nodes with invariant uncertainty parameters SST, ST, RIT
generic-type="gd" repeating nodes with varying uncertainty parameters SST, ST, RIT, CAT
generic-datum="[path to

definition of datum]"

locates full definition of node SST, ST, RIT

value-mg="((0 0)(7 1)(10 0.5))" association list of values and membership grades SST, ST, RIT
level prunes tree at different levels of assessor expertise SST, ST, RIT
question="question question for collecting item of information SST, ST, RIT
values="values" defines the type of the item of information SST, ST, RIT, QT
layer="n" specifies order of initial data collection SST, ST, RIT, CAT
filter-q="question" question indicating whether subtree is applicable or not SST, ST, RIT, CAT
persistent="hard/soft/value" carries data forward from previous assessment SST, ST, RIT, QT
service configures node with given services customisation SST, ST, RIT, CAT
prune-for removes branch/node for a population SST
other attributes ... emerging out of knowledge engineering any

definitions contained in the SST will be carried over to the ST,

meaning that customisations defined for a given service type

will apply across all populations. The ST is used to generate

the RIT corresponding to a population.

The Relative Influence Tree (RIT), which holds the RIs for all

nodes. Nodes with generic-type attribute of “gd” are expanded

in all locations that point to them because these nodes may

have different internal RIs (for concepts) or value-mgs (for

datum nodes) in the locations. The RIT structure is generated

from the ST and used to elicit and store the RIs.

Together, the ST and RIT are sufficient to specify all the

information required for the Galatean psychological model of

classification to be instantiated. They provide the complete on-

tology and problem-solving package and are the end products

of the knowledge elicitation stage. However, four more trees

are required by the end-user decision support tools. Three are

derived from the ST and/or RIT and one is generated by the

decision tool during the assessment of decisions, as follows:

The Class Assessment Tree (CAT) is generated from the RIT

because it needs the RI attribute. It produces the full galatean

tree for classifying objects and so has all nodes fully expanded

in all locations, with no paths to separate generic nodes.

The Question Tree (QT) is generated from the RIT and has all

the information required to display questions, obtain associated

answers, and generate membership grades for the answers.

The Answer Tree (AT) is generated during an assessment by

the data-gathering tool, and stores all user-supplied data.

The Landmark Tree (LT) is a tree used for helping assessors to

navigate the CAT during assessments. It is a reduced version

of the CAT, and will highlight nodes that may be of particular

interest or relevance to the current assessment. It is envisaged

that this will be derived from the Freemind mind map defining

the base structure.

Table I provides examples of attributes that represent

data defining the psychological model and its specifications

of variations for populations and services. For example,

prune-for="(older working-age)" means remove

this branch of Everyman for older-age and working-age adults

but not for any of the other listed populations. Many of the

node attributes have an “enhanced” form where they can have

different values for the populations of classification trees. This

was required to encompass the variety of end-user perspectives

that went beyond simply providing different views of the

Everyman tree structure but also different representations of

the data. For example, the tree node labels for the service-user

self-assessment population are different to those seen by the

mental-health practitioners assessing services users, as shown

for the suicide node label:

label="(((service-user) "ending your own

life") ((iapt learning-disabilities older

child-adolescent working-age) "suicide"))"

Lisp-like association lists are used to pair the population

or service with its customised value. They provide great flex-

ibility for dynamically creating and updating customisations

within the SST. They are integral to giving the correct values

to the tree transformation procedures that generate the correct

trees for each population and service.

Customisation of the same population tree across differ-

ent service provider contexts is effected by the services

attribute in the top-level root node of the ST. Each service
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Fig. 4. Screenshot of the admin interface for managing population trees

provider represents a particular set of (minor) customisa-

tions/configurations that will be applied to GRiST’s question

set when conducting an assessment for that service. The top-

level root node of the ST will have a:

services=

"((structure

((service1 (association list of mods))

(service2 (association list of mods))

(...)))

(rendition

((service1 (association list of mods))

(service2 (association list of mods))

(...)))"

attribute, defining all the services for which customisa-

tion/configuration data exists in the ST. Within the services

attribute, these modifications (abbreviated to mods in the

example) are organised as:

Structural modifications: those that involve dynamic (just-in-

time) manipulations of the trees in some way prior to their

being used to drive a GRiST assessment. Assessment tools

will be agnostic of the structural changes, and will therefore

not need to perform any additional processing.

Rendition modifications: those that involve dynamic (just-in-

time) manipulations of the rendition of the GRiST assessment.

Additional coding effort will be required in each assessment

tool to realise the rendition manipulations.

The normal behaviour is that in order for a tree node to

be amenable to the application of the defined modifications,

it needs to “subscribe” to the modifications via a service

attribute. For example, service="rendition" placed in

a node will cause all the service-specified renditions to be

applied to that node, such as providing it with a prefix or

changing the font to bold, both of which were required for

the IAPT service described in the results.

IV. RESULTS

The principle behind managing the different XML trees is

to have one single master tree (i.e., the SST) that is used to

generate all the other ones. The conversions will be carried

out using XSLT in the main and the resulting trees will be

labelled so that they can be linked to the particular master

tree from which they are derived.

An administrator’s interface was provided for uploading,

viewing and manipulating the trees (Figure 4). The website

automates the derivation of all trees from each SST: namely

each population’s STs, RITs, and CATs and QTs at various

levels (higher level trees pruned at concepts can be used for

assessors with greater expertise who can use judgements in

place of low-level data). Active trees (i.e. those delivered to

end users) need to be marked so that experimental or legacy

trees can be made or kept available alongside the current “live”

ones for testing before deployment. When the GRiST CDSS is

accessed from a patient record system, parameters are passed

to the clinical server to indicate which patient assessent is

being conducted and what population to invoke.

The success of the methodological approach has been

clearly demonstrated over the years by the ability to create

new trees suited to particular patient types when requested by

mental-health practitioners. The first derivations enable GRiST

to cover all age ranges, not just working age, and an addi-

tional specialist population was recently added for learning

disabilities. Most conclusive was the need to produce a tool

for self-assessments that patients could use in the community.

This led to the development of myGRiST that exploited the

enhanced attribute values to produce variations of nearly all the

tree nodes. Not only were different data-collection questions

and accompanying help text boxes required but also most tree

branch names were changed to ones more suitable for non-

clinicians. These substantial variations were all linked to the

same common Everyman tree, which meant that clinical and

patient answers were always directly comparable: the trees

provide a common language and knowledge base despite their

multiple manifestations.

The method facilitates a single genotype with a variety of

phenotypes. But it also provides different drivers of the end-

user CDSS tools. Clinicians tend to be under serious time

pressure and want to collect data as efficiently and concisely

as possible. This meant their tool was driven by the ST, which

keeps class-specific questions separate from generic concepts

that are applicable to all classes, and only expands generic

concepts once. In other words, it reflects the original mind map

with no structural redundancy. On the other hand, the service

users conducting self assessments have more time to explore

risks dynamically. They wanted less control over the order of

access and they also wished to answer generic concepts such as

their relationships, current behaviour, living conditions, etc. in

the context of whichever risk they were considering. For them,

their tool was driven by the CAT, which expands all concepts

in all locations to provide full trees for every risk.

The first service customisations were also motivated by

time pressures, especially for primary-care practices. Here, the

visibility and rendition of risk tree data was needed across all

populations (i.e. not limited to only working-age adults). At

present, the main service customisation currently in use is for

a primary-care service provided to general practitioners called

Improving Access to Psychological Therapies (IAPT).
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Since mental-health organisations started using the elec-

tronic (web service) version of GRiST in 2010, more than

2,000 clinicians have conducted the following number of

completed assessments for the different populations and the

IAPT service.

working age population: 50,193

children and adolescents population: 4,008

older adults population: 28,188

iapt service: 696

These results are testimony to the knowledge engineering

method that facilitated accommodation of different end-user

requirements. They also demonstrate the robustness of their

implementation, with different populations and services being

requested dynamically in real-time.

V. CONCLUSIONS

This paper has described a methodology for eliciting, evolv-

ing, and delivering complex mental-health expertise using a

psychological model of classification. The new research re-

ported here develops GRiST from its initial construction [44],

[45] into a fully-fledged knowledge engineering environment

that can manage both structure changes and subtle variations

in knowledge parameters within an integrated system. The

sophisticated application of attributes and XSLT to deliver

customised services has been proven by continuous delivery to

mental-health practitioners, every hour of every day of every

week.

GRiST is generating an accumulating database of patient

information that will help parameterise the galatean model

underlying the CDSS. The RIs will be learned from the data to

provide models of expert consensus that can detect risks more

accurately and target appropriate advice. Efficiency of data

collection will exploit the latest research on fast and frugal

classification [46], [47] where the most important information

is identified first and processed very rapidly. More in-depth

analysis only needs to take place if the decision-maker remains

ambivalent.

New GRiST versions have been requested for forensic

services, accident and emergency, and ante-natal clinics. The

knowledge engineering methodology means they can be deliv-

ered in short timespans because few or no changes are required

in end-user applications. Structural information in the GRiST

ontology is given by the node nesting but information about

the role of the node, both for the psychological classification

model and its delivery within a CDSS, is held by attributes.

There is no limit to the number of attributes that can be added,

which provides great flexibility for amending node behaviours

as knowledge engineering progresses.

The disadvantage is that the meaning of attributes has to be

recorded outside the XML. Ontology specification languages

such as OWL [48] have more power to include semantics

and logical relationships but the galatean approach traded

flexibility of knowledge structure with the need for a detailed

specification document to accompany it. Any tools operating

on the XML would need to refer to the specification document

and ensure their operations were in full accordance with the

definitions. Once this has been achieved, then any changes

in the ontology using existing attributes require no further

software development.

The GRiST ontology was able to integrate natural language

for people with codes more convenient to machines, helping to

keep the human-machine interface closely aligned [34], [35].

Now that it has stabilised, it makes more sense to consider

translating it into a formal specification language [49]. This

would make it easier to validate the tree transformations and

embed the rules more formally within the machine specifica-

tion. An ontology language would also help with the problems

of interoperability that are endemic within mental-health ser-

vices, possibly to a greater extent than in other health areas.

There is an inherent difficulty with categorising intangible

mental-health constructs but data interchange on more straight-

forward health and social-care patient data would be beneficial.

GRiST is explicit about how this generic information links

to risks but mental-health organisations often collect it in

other documentation not related to risk. Sharing it has proved

problematic and its absence from risk documentation could

present a danger to proper care [10].

Whether or not the current GRiST ontology is converted into

a language such as OWL, instantiation of the galatean model

as a formal specification of mental-health risk expertise has led

to assessment tools that have generated considerable interest

both in the UK and abroad. The method has applicability

to any domain where human expertise can be disseminated

within a DSS and where the DSS will be used by people with

varying needs, characteristics, and work contexts. Evidence for

this is emerging from the logistics domain where the galatean

approach is being applied. The expertise and decision context

is very different, with the goal being to optimise the use of

vehicles for deliveries and collections based on predicting the

number of orders. The knowledge trees have already success-

fully captured expertise that is able to represent alternative

perspectives [50] and implementation of the CDSS is currently

underway. Irrespective of the particular application domain,

whether a CDSS is actually used in the real world depends

on how flexible it is in meeting varying user requirements and

modus operandi; this paper reports a method that should help

improve its chances of adoption.
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