
Object-oriented Approach to Timed Colored Petri
Net Simulation

Michał Kowalski and Wojciech Rząsa
Rzeszow University of Technology

Department of Computer and Control Engineering
al. Powstancow Warszawy 12, 35-959 Rzeszow, Poland

Email: michal.kowalski.87@gmail.com, wrzasa@prz-rzeszow.pl

Abstract—This paper presents object-oriented design of library
meant for modeling and simulating Timed Colored Petri Net
models. The approach is prepared to integrate TCPN models
with crucial parts of larger applications implemented in object-
oriented languages. The formal models can be tightly joined with
applications allowing the latter to interpret states of the formal
model in their domain of responsibility. This approach allows
less error-prone and more pervasive use of formal methods to
improve quality of software created with imperative languages.

Index Terms—Petri nets, simulation, object-oriented, integra-
tion.

I. INTRODUCTION

T
Imed Colored Petri Net (TCPN) is a flavor of Petri Net
formalism designed by K. Jensen [6]. It is suitable for

modeling and analysis of distributed and concurrent systems.
Since in Colored Petri Nets (CPN) tokens can carry values
(colors) of specified types (colorsets) models created using
CPN are more compact and thus more clear. Consequently,
CPN can be conveniently used to analyze large systems. Time
extension of Timed Colored Petri Net enables analysis of time
relationships e.g. efficiency.

Petri net based model can be formally analyzed to prove
its properties as described e.g. in [9] and for CPN in [6]. The
models can also be simulated, to observe behavior of modeled
systems. Both approaches are used, to derive conclusions about
the analyzed systems [1], [11], [15], [14]. This approach, how-
ever, is rarely used in business applications (e.g. in banking,
trade, accounting). The first reason, certainly, being complexity
and scale of this kind of software. Secondly, for the sake of
special competences required for modeling and analysis and
thus cost of this process.

Certainly, large applications could benefit from formal-
based analysis or from incorporating formally-verified mod-
ules. Especially, that most of contemporary systems are not
only concurrent, but also distributed and thus significantly
complex. However, majority of these systems are implemented
using imperative languages that are hardly susceptible to
formal analysis, with Java as pervasively used example.

It is however, possible to incorporate formalisms-based
approach into larger applications, also the ones implemented
using imperative languages [2], [12]. This results in crucial
parts of a system that can be formally verified, or directly
steered by a formal model, minimizing possibility of errors.

To make this approach more pervasive it is however neces-
sary to prepare libraries designed for programming languages
commonly used in business applications and enabling conve-
nient incorporation of formalisms. In this work we present
an approach to enable TCPN-based modeling using Java
– one of most frequently used object oriented programing
languages. We present object-oriented design of library we
have implemented to support modeling and simulation of
Timed Colored Petri Nets as a part of larger systems. This
first approach assumes that TCPN model should be correctly
simulated. Formal analysis of TCPN models is considered as
possible future work.

II. RELATED WORK

There is great variety of Petri net flavors and there is
also great variety of computer tools designed to create and
analyze Petri net models. An extensive list is maintained e.g.
by University of Hamburg1. For Jensen’s Timed Colored Petri
Nets there are two important software packages: Design/CPN

[3] and newer, rewritten in Java: CPN Tools [7], [10]. Both of
them have GUI to create Petri net models and both implement
algorithms enabling simulation and formal analysis. Also
both tools provide interfaces for external communication, that
allow various levels of integration using various programming
languages.

Design/CPN has interface called COMMS/CPN [5]. It al-
lows to communicate with simulator while Petri net is being
simulated. It is a message passing interface with small set of
functions that allow to establish connection, send and receive
messages. The functions should be called from Standard ML
code being part of Petri net model (e.g. guards). There is
Java/CPN interface, that facilitates establishing communica-
tion with COMMS/CPN from Java software.

The newer CPN/Tools has two kinds of interfaces forming
Access/CPN framework [17]. The first one, available for
Standard ML and more tightly connected with the model
is designed with state space analysis in mind. It is worth
mentioning, that this interface is meant to be formalism
independent, not strictly connected to TCPN. The second part
of Access/CPN is Java CPN Model Interface. It allows to

1http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/db.html

Proceedings of the 2013 Federated Conference on
Computer Science and Information Systems pp. 1389–1392

978-1-4673-4471-5/$25.00 c© 2013, IEEE 1389

create or import model created using CPN Tools. It also
supports TCP/IP based communication with running simulator.

The presented TCPN design and analysis tools certainly
provide interesting interfaces that can be used in selected ap-
plications. The message passing communication allows to steer
TCPN simulator and respond to some events. It is however
a low level communication solution. It also does not allow
for tight coupling of TCPN models with applications: TCPN
model should be implemented using Standard ML programing
language, and Petri net side of communication should also be
programmed in Standard ML. It is not possible to implement
guards and inscriptions directly in object-oriented language
and pass objects as token values.

Petri Net Kernel [16] is a Java library designed to support
implementation of various types of Petri nets. It can also be
adapted for Timed Colored Petri Nets and in fact was exploited
in our research done so far [12], [13], [14]. This general
purpose tool has an important disadvantage: token values in
Colored Petri Nets are represented by String objects. This
approach has certain justification: in Java String objects are
immutable, as tokens in Petri nets. Consequently, design of
the programing language ensures one of important assump-
tions of the formalism. This has, however, two important
disadvantages. First, in applications where tokens should carry
values more complex than strings, it is not convenient to
develop String representation of each possible value to
pass it to the model and then parse it to an object when its
being collected. Second, the performance loss resulting from
necessity of parsing the strings is significant.

III. CHALLENGES OF OBJECT-ORIENTED DESIGN FOR

TCPN

Library designed in this work should enable modeling and
correct simulation of TCPN models. The simulator should be
able to run automatically without requiring user interaction
and efficiency of simulation must be sufficient for practical
applications.

Tight integration of a model as a part of a larger application
should be possible, in order to allow subsequent states of
a model to be automatically interpreted by an application in its
domain of responsibility. In order to limit the effort required
by integration, model of Petri nets should be created using
classes and objects of Java. Additionally, the library should
put possibly small restrictions on objects that are traversing
TCPN models in the form of tokens and on implementation
of TCPN guards and inscriptions.

Petri net formalism, however, puts restrictions on behavior
of its models. The one that strongly affects the design of the
library and presents significant challenge, concerns behavior of
tokens. Tokens in TCPN are immutable similarly to symbols
in functional languages. Presented solution must correspond to
this demand, to ensure correct behavior of TCPN model. This
requirement must be reconciled with the need to put almost
arbitrary object as token value, as mentioned above.

IV. OBJECT-ORIENTED REPRESENTATION OF TCPN

This section presents object-oriented design of the library
together with solutions to major problems.

A. Elements of the TCPN Graph

The bipartite graph of Timed Colored Petri Nets consisting
of two types of vertexes: Places and Transitions and of Arcs

joining the vertexes is described by the natural entities used
in object-oriented design.

Places are represented by objects of class Place holding
String attribute describing name, Class attribute called
type and describing type of the place and marking attribute
described by a class implementing IMarking interface.

Transitions are described by two attributes: name of class
String and by guard used to determine if the transition
can be fired. Guard is implemented as a reference to an
object implementing IGuard interface which defines only
one method called guard. The method gets binding as an
argument and returns a Boolean value to indicate the guard
result.

In this work we distinguished input arcs (from a place to
a transition) and output arcs (from a transition to a place)
and described them separately. For simplicity, we assumed that
input arcs will be used only to define number of tokens used in
firing a transition, more complex operations can be performed
on output arcs using not only basic expressions but also func-
tions. This assumption does not limit expressiveness power of
TCPN and considerably facilitates simulation process.

Input arcs are objects of class InputArc and hold refer-
ences to the places being their sources. The InputArc class
objects have also inscription attribute describing tokens
that should flow through this arc while firing transitions. The
inscription is a String in the format analogous to the one
defined by K. Jensen [6] and describing count of tokens and
variables.

Output arcs are represented by objects of class OutputArc
and containing references to their destination places and
inscriptions. The inscriptions are represented by objects im-
plementing the IExpression interface that defines method
called process. The method receives binding of the tran-
sition being fired as an argument, and returns collection of
tokens (class Token) that should be put in the output place
as a result of transition firing. The process method can
perform any desired operations on tokens and their contents.
BasicOutputArcExpression class provides means to
define simple expressions analogous to the ones used for input
arcs.

The references between subsequent elements of TCPN join
transitions with their input and output arcs, while the arcs store
references to their source or destination places. This solution
allows to conveniently access required information while firing
a transition by simulator. Parser for arc inscriptions provided
as strings is an implementation of finite automata.

1390 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

B. Tokens

Tokens indicating state of a Petri net model are represented
by generic class Token. Type of the class parameter corre-
sponds to the type of the token used in Petri nets. It also
determines type for the value field that holds the token value.
This way any class can be used as token type, according to the
requirements. Token timestamp is represented by timestamp
field of the Token class.

Consistent simulation of a Petri net requires token values to
be controlled by the net only. In Java this is not easy to achieve,
since objects are passed to and from methods by reference,
not by value. Consequently, it might happen that one object is
referred by more than one token as its value or a user could
modify value of an object during simulation interfering with
the simulation algorithm.

The TCPN designed by K. Jensen are described using
functional programing language. This solves the previously
mentioned problems by natural means of this paradigm: the
tokens are immutable, as are symbols in functional program-
ming. To emulate this behavior in Java, we decided that the
following requirements are crucial: (1) TCPN simulator can be
trusted to deal with the tokens respecting Petri net principles.
(2) By design we must ensure that the user will not be able to
breach the rules of TCPN simulation, despite his or her lack
of knowledge concerning these principles. (3) For efficiency
reasons objects should be copied as rarely as possible.

In order to meet the above requirements, we clone token
values (using deep cloning described in [4]) when they enter
simulator structures and when they are about to leave these
structures. Thus, the compromise ensures correct simulation,
regardless of how the token values are processed outside
of the TCPN structures, concurrently preserving reasonable
efficiency overhead.

C. Marking

Simulation of TCPN consists on subtracting and adding
tokens from and to the markings of Petri net places, therefore
proper implementation of marking is crucial for efficiency of
the simulator. The structure used for implementation of mark-
ing must enable efficient search and verification of existence
of tokens of known values. In case of Jensen’s timed nets the
structure should also enable efficient consideration of token
timestamps. As stated in [8] the marking can be a composite
structure consisting of more than one data structures holding
tokens and of consistent interface allowing to operate on the
marking as a whole and designed for Petri net simulator.

The implementation corresponding to the above mentioned
requirements is placed in BasicMarking class. During
simulation of a timed net at the given moment only these
tokens from a marking are important, that have timestamps not
greater than current simulation time. Therefore, conforming
to the solution described by Mortensen et al. in [8], we
decided to divide tokens in a marking into two separate
structures. The tokens, that can be used in current firing of
a transition (i.e. with timestamps not greater than current sim-
ulation time) are stored in activeTokens field. The tokens

with timestamps indicating that they can be used later are
placed in waitingTokens field. These fields refer to objects
of different classes, implementing different data structures.
The activeTokens data structure is an implementation
of hash table with support for storing multiple values for
a single key. The hash function in this structure uses token
values as keys. Thus tokens with given values can be found
efficiently while firing a transition, this being a key of efficient
TCPN simulation. When simulation clock is advanced selected
tokens from watingTokens in each place must be moved
to the activeTokens structure. To perform this operation
efficiently, the waitingTokens structure is a priority queue
sorted by tokens timestamps (TokenComparator class is
responsible for proper comparison of the tokens in the queue).

The BasicMarking class implements IMarking in-
terface and the BasicMarking can be easily substituted
by different implementation of marking implementing the
same interface, which ensures all required methods are pro-
vided by the implementation. Each marking must implement
getDistinctTokens returning list of tokens from the
marking used to generate bindings while simulation. Boolean
method containsToken allows to verify if the given token
exists in the marking. Method getToken removes from
the marking a token holding given value and returns this
token. Methods putToken and putTokens enable adding
tokens to the marking. During simulation getNextTime

method is used to determine the least value of the clock
that would release new tokens from waitingTokens to
activeTokens in this marking. Finally, setTime method
is called while each change of simulation clock.

D. Petri Net Structure

The structure of TCPN model is stored in an object of class
CPNet. The user is supposed to create TCPN model by cre-
ating Place, Transition, InputArc and OutputArc

objects together with guards and inscriptions implementing
IGuard and IExpression interfaces. For efficiency of
simulation it is however vital, to provide various information
about the net as quickly as possible, without the need to
repeatedly exploit computationally intensive graph algorithms.
Therefore, after user provided the model, the CPNet class per-
forms additional processing in order to cache data concerning
model structure and efficiently provide required information
for the simulator.

On the basis of the list of transitions provided by the user
the CPNet class creates list of all places in the model (as
Java ArrayList). Additionally it caches Petri net structure
in an array analogous to graph incidence matrix. The internal
structures are filled by method init of class CPNet that
should be called after the CPNet object is provided with the
list of objects representing TCPN transition.

The proposed solution allows to reconcile requirements
concerning efficient access to different aspects of TCPN model
while simulation, with the need to ensure consistency between
different representations. Obviously the structure of the Petri
net cannot be changed after the call to the init method.

MICHAŁ KOWALSKI, WOCIECH RZĄSA: OBJECT-ORIENTED APPROACH TO TIMED COLORED PETRI NET SIMULATION 1391

V. SIMULATION DATA STRUCTURES

Variables are represented in different ways, depending on
the context. In the arc structures they are represented as
objects of class Var containing String attribute name and
Integer attribute denoting quantity of tokens to be removed
from a place. In a binding the variables are represented as their
names of class String. Similarly to [6] variable’s range is
limited to arcs connected with one transition and their type
must be consistent with type of places their arcs are related to.

Bindings are entities assigning variables to their values dur-
ing simulation. Subsequent bindings are stored in HashMap

objects with the key being the variable name and value of
class Token. Thus, during simulation access to variable values
connected with a binding is both convenient and efficient. The
HashMap is encapsulated in the Binding class that exposes
two methods: get to obtain tokens assigned to a variable and
insert to set binding between a variable and a token.

VI. INTEGRATION INTERFACE

The goal of this work was to enable integration of Petri
nets with software implemented using imperative programing
language. Designed approach enables this integration in two
possible ways.

Firstly, crucial elements that create Petri net model and that
are part of its behavior, can be objects used in the other parts
of application. Tokens can carry objects of arbitrary classes
as their values. Transition guards and arc inscriptions can be
implemented to depend on application logic.

Secondly, the presented solution is equipped with event
listener interface. The listeners can be registered to be called
before and after events concerning changes in markings,
transition firing, and changes of simulation clock.

VII. SUMMARY

In this paper we presented object-oriented approach to mod-
eling and simulation using Timed Colored Petri Nets. Petri net
model with all its components, including token values, guards
and inscriptions, should be implemented in object-oriented
programming language. The concept was implemented as
library in the pervasively used Java.

The approach allows one to integrate Petri net model in
a larger application and let it benefit form the formalism-
based simulation. The integration can be done while the model
is implemented, by joining its components with components
of the larger system. It can also be tightened by the use
listener interface that allow to implement code responding to
specific events occurring in Petri net model. Consequently, the
enclosing software can influence behavior of the formal model.
Concurrently, the Petri net can steer behavior of the software
that can interpret events from the model and apply them in
the software’s domain of responsibility.

The design of the approach ensures not only tight and
convenient integration with object-oriented software. It also
ensures that the rules of TCPN simulation are preserved. Thus,

the software can benefit from the formal rules, governing
behavior of modeled processes and from their correctness.

The presented solution includes TCPN simulator, that allows
execution of created model. Care was taken, to ensure effi-
ciency of TCPN simulation that allows practical applications.
Necessary optimizations were designed and implemented and
if required, additional solutions can be developed.

REFERENCES

[1] BinWang, MaodeMa: A Server Independent Authentication Scheme for
RFID Systems. IEEE Trans. on Industrial Informatics, vol. 8, no. 3, pp.
689-696, Aug 2012.

[2] Dec G, Jȩdrzejec B, Rza̧sa W.: Kolorowana sieć Petriego jako model
systemu podejmowania decyzji kredytowej. STUDIA INFORMATICA
2010, Vol. 31, Number 2A (89), 2010.

[3] Christensen S, Jorgensen J. B., Kristensen L., M.: Tools and Algorithms
for the Construction and Analysis of Systems Lecture Notes in Computer
Science Volume 1217, 1997, pp 209-223 Design/CPN—A computer tool
for Coloured Petri Nets

[4] Cooper J. W.: The Design Patterns Java Companion, 1998
[5] Gallasch G., Kristensen L. M.: COMMS/CPN: A communication in-

frastructure for external communication with Design/CPN. In K. Jensen,
editor, Third Workshop and Tutorial on Practical Use of Coloured Petri
Nets and the CPN Tools, DAIMI PB-554, pages 75–91. Department of
Computer Science, University of Aarhus, Denmark, 2001.

[6] Jensen K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and
Practical Use. Vol. 1, 2, 3. EATCS Monographs on Theoretical Computer
Science, Springer-Verlag, 1994.

[7] Jensen K., Kristensen L. M., Wells L.: Coloured Petri Nets and CPN
Tools for Modelling and Validation of Concurrent Systems. International
Journal on Software Tools for Technology Transfer (STTT)9(3-4), pp.
213-254, 2007.

[8] Mortensen, K. H. Efficient Data-Structures and Algorithms for a
Coloured Petri Nets Simulator. In: Kurt Jensen (Ed.): 3rd Workshop and
Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools
(CPN’01), pages 57–74. DAIMI PB-554, Aarhus University, August
2001.

[9] Murata T.: Petri Nets: Properties, Analysis and Applications. Proc. of
the IEEE, vol. 77, No. 4, April 1989

[10] Ratzer A.V., Wells L., Lassen H. M., Laursen M., Qvortrup J. F.,
Stissing M. S., Westergaard M., Christensen S., Jensen K.: CPN Tools
for Editing, Simulating, and Analysing Coloured Petri Nets. Proc. of
24th International Conference on Applications and Theory of Petri Nets
(Petri Nets 2003). Lecture Notes in Computer Science 2679, pp. 450-
462, Springer-Verlag Berlin, 2003.

[11] Lv Y., Lee C., Wu Z., Chan H., Ip W.: Priority based Distributed
Manufacturing Process Modeling via Hierarchical Timed Colored Petri
Net". IEEE Trans. on Industrial Informatics, (to be published).

[12] Rza̧sa W.: Combining Timed Colored Petri Nets and Real TCP Im-
plementation to Reliably Simulate Distributed Applications. CN 2009,
CCIS 39, pp. 79-86, 2009, Eds. A. Kwiecień, P. Gaj, and P. Stera.

[13] Rza̧sa W.: Timed Colored Petri Net Based Estimation of Efficiency
of the Grid Applications. PhD thesis. AGH University of Science and
Technology, Faculty of Electrical Engineering, Automatics, Computer
Science and Electronics, 2011, Kraków, Poland.

[14] Rza̧sa W., Bubak M.: Simulation Method Supporting Development of
Parallel Applications for Grids. In proc. of CGW’10, pp. 194–201,
KrakÃłw 2011, ISBN 978-83-61433-03-3.

[15] Rzońca D., Stec A., Trybus B.: Data Acquisition Server for Mini
Distributed Control System, w: KwiecieÅĎ A., Gaj P., Stera P. (Eds.):
Computer Networks 2011, Communications in Computer and Informa-
tion Science 160, Springer-Verlag Berlin Heidelberg 2011, pp. 398-406.

[16] Weber M.:, Kindler E.: The Petri Net Kernel. Petri Net Technology
for Communication-Based Systems Lecture Notes in Computer Science
Volume 2472, 2003, pp 109–123

[17] Westergaard M., Kristensen L. M.: The Access/CPN Framework: A Tool
for Interacting with the CPN Tools Simulator. Applications and Theory
of Petri Nets Lecture Notes in Computer Science Volume 5606, 2009,
pp 313–322

1392 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

