
Simulation driven design of the German toll system
– profiling simulation performance

Tommy Baumann∗, Bernd Pfitzinger†‡ , Thomas Jestädt†
∗Andato GmbH & Co. KG, Ehrenbergstraße 11, 98693 Ilmenau, Germany. Email: tommy.baumann@andato.com

†Toll Collect GmbH, Linkstraße 4, 10785 Berlin, Germany. Email: {bernd.pfitzinger|thomas.jestaedt}@toll-collect.de
‡FOM Hochschule für Oekonomie & Management, Bismarckstraße 107, 10625 Berlin, Germany

Abstract—Taking an existing large-scale simulation model of
the German toll system we identify the typical workload by
profiling the runtime behavior. Crucial performance hot spots
are identified and related to the real-world application to analyze
and evaluate the observed efficiency. In a benchmark approach
we compare the observed performance to different simulation
frameworks.

I. INTRODUCTION

A
S technology advances, systems and processes with

higher complexity, interconnectedness and heterogene-

ity can be developed. Simultaneously, user requirements are

constantly increasing: Software evolution is a fact of life.

Modeling and simulation techniques are applied to design,

analyze, evaluate, validate, and optimize such systems. The

article analyzes the performance of a large-scale Discrete

Event Simulation (DES, [1]) simulation model of the German

toll system implemented in MSArchitect [2] – similar to and

larger than existing simulation models [3, 4].

The next section gives an overview of the automatic German

toll system, the corresponding simulation model and typical

simulation results. Section III introduces the simulation frame-

work architecture and performance measurement techniques.

Section IV analyzes and evaluates the simulation performance

of several DES kernels using small test models. Section

V analyses the performance within the application domain

followed by a summary in section VI.

II. EXECUTABLE MODEL OF THE GERMAN TOLL SYSTEM

For the application domain we use an existing simulation

model of the German toll system [5–7], a large-scale au-

tonomous toll system [8] operated by Toll Collect GmbH.

The tolls for heavy-goods vehicles (HGVs) driving on federal

motorways – a total of 4.36 bne in 2012 [9] – is collected by

the toll system, more than 90% fully automatic using the more

than 750 000 on-board units (OBUs) deployed in the HGVs.

The simulation model includes all subsystems necessary for

the automatic tolling processes (fig. 1) and for delivering

updates to the OBU software, geo and tariff data as well as a

model of the user interaction [10].

From the process perspective the simulation model covers

business and system processes differing at least 7 orders

of magnitude in time: All major technical processes with

durations of one second and longer are included in the model

aiming to predict the dynamic system behavior of fleet-wide

Vehicle

Fleet

Mobile data

network

Central

System

Scenario

Generator
driving patterns

Fig. 1. High-Level simulation model of the Toll Collect system (upper half)
and the model for the user interaction (scenario generator, lower half).

updates (taking weeks to months). In fact, the model includes

some processes with higher temporal resolution (down to 50

ms for the connection handling by the firewalls). Using the

Pearson correlation as metric to compare the simulation results

with the observed update rates between 04/2012 and 01/2013

we find the correlation to be above (better than) 0,994.
Even on the application level the user interaction (pre-

calculated driving patterns) creates a large number of events to

be processed by the simulation logic. On average each OBU

will be powered-on for 16% of the time and process tolls for

32 000 km annually ([11], one toll event per 4.2 km on average

[12]) spread across 1 300 power cycles (including three times

as many periods of loss of access to the mobile data network).

Of course, many more events are created from within the

application logic, e.g. to forward tolls to the central systems

or to run error recovery protocols in the case of network

unavailability.

III. SIMULATOR ARCHITECTURE AND PERFORMANCE

MEASUREMENT

This section describes the architecture of the simulator and

different possibilities to measure and evaluate simulation per-

formance. MSArchitect distinguishes between atomic models

and composite models (as most actor-oriented DES/PDES

tools) to capture the behavior and structure of systems and pro-

cesses. Atomics interact with the simulation kernel and contain

the whole behavioral description, including event consumption

and creation, time advance of events, and manipulation of

data entities. They are typically written in C++ (all common

programming languages work as well) and compiled into

binary code for execution. The composite models provide the

structural composition of models, but do not themselves con-

tribute to the execution semantics. Combining both modeling

types results in a hierarchical model tree with atomic models

as leafs and composite models as nodes, as shown in fig. 2.

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 923–926

978-1-4673-4471-5/$25.00 c© 2013, IEEE 923

TABLE I
TECHNICAL REPRESENTATION LAYERS USED IN MSARCHITECT

Technical layer Vocabulary Performance factors

DES Composition interconnection of ports, states and, parameters model hierarchy, summable model structure, data exchange via ports, forks
and merges, sharing of states, port multiplicities

DES Atomic Inter-
face

ports, states, parameters, lifecycle methods, in-
heritance, model/data types

data type conversion, reuse of data objects, memory organization

Code C++ types, variables, instructions, method calls,
control/data-flow, inheritance

kernel event scheduling, C++ type resolution, utilization of external code,
memory allocation, caching, code granularity/distribution

Machine Object code, register, memory, instructions
(arithmetic, jump, call)

CPU capabilities (instruction set, latencies, cache), memory, code structure

The definition of atomic models and composite models re-

lies on a well-defined application programming interface (API)

to the simulation kernel: Typically consisting of ports (com-

munication interfaces), states, parameters and methods [13].

Based on the simulation kernel API definition and the pos-

sibilities for model description four technical representation

layers can be differentiated in MSArchitect (tab. I, in principle

applicable to all DES tools) with different factors impacting

the performance on each layer. The DES Composition Layer

describes the interconnection of models within a composite

model and allows analyzing structural dependencies and prop-

erties [13]. On this layer, much of the performance depends

on the application level behavior and its implementation as

abstract simulation model. Starting with the DES Atomic

Interface Layer the performance becomes independent of the

application domain and is determined by the simulation toolset

([14], which describes the interface of atomic models as well

as restrictions on features available for the functional descrip-

tion). The Code Layer contains the functional implementation

of all atomics in the form of lifecycle methods and custom

code sections. The Machine Layer contains preprocessed and

compiled code for model execution and references to external

runtime libraries to be executed on a given CPU architecture.

The layers define the information available for profiling the

runtime behavior, collected either by the simulation kernel,

simulation logs or (external) performance profiling tools. This

analysis repeats the kernel benchmarks presented in [7] and

expands the performance analysis to the application level

taking the example of a real-world simulation in section V.

Fig. 2. Model hierarchy: Composite models and Atomics.

IV. BENCHMARK OF SIMULATION KERNEL PERFORMANCE

In this section we perform a kernel benchmark using the

five test models introduced in [7]. With regards to the technical

representation layers in tab. I the test models are defined on the

DES Composition Layer and the DES Atomic Interface Layer.

We included the most important performance influencing

factors in our tests: The Future Event List (FEL) management,

memory and data type management, pseudo-random number

generator performance, and arithmetic operations performance

[15].

Each test model is simulated with a set of simulation

parameters using different system design tools. We selected

six system design tools for evaluation: Ptolemy II, Omnet++,

AnyLogic, MLDesigner, SimEvents and MSArchitect. All

tools were run in serial mode on an Intel Core i7 X990 at 3.47

GHz with 24 GiByte RAM using either Windows 7 Enterprise

(64 bit) or openSuse 11.4 (32 bit, kernel 2.6.37.6).

Fig. 3 gives the results of the event processing performance

of the Runtime Scaling test. The tests show that neither the

event processing performance nor the memory consumption

is affected by increasing the simulation runtime and only

OMNeT++ is sensitive to the additional hierarchy levels.

However, from the test results it is already obvious that

the different tools vary in event processing performance by

an order of magnitude: MSArchitect provides the highest

speed. MLDesigner, AnyLogic, and OMNeT++ provide 25%

of the speed (compared to [7] the MSArchitect performance

improved by more than 30%). Ptolemy II is twenty times

slower. Looking at the memory usage during the simulation

the difference between the tools is again more than an order

Fig. 3. Runtime performance (top) and memory usage (bottom) scaling of
different DES tools.

924 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

of magnitude – the slowest tool using the most memory and

the fastest tool using the least.

Repeating the FEL Size Scaling test we observe – as

expected – a systematic performance reduction with increasing

FEL size, due to the increasing overhead for FEL management.

With increasing FEL size three of the five tools develop drastic

performance degradation coinciding with a rapid grow of

memory consumption. In absolute numbers, MSArchitect has

the best test performance and the lowest memory usage until

FEL size 10
6. Subsequently the memory usage of MLDesigner

is lower since MSArchitect runs in 64 bit mode only. However,

in our tests MLDesigner stopped to work for FEL sizes above

15 · 107. We tested MSArchitect successfully with a FEL size

of 108.

The comparison of the DES tools using the FEL Adaption,

Data Type Management and Random Number Generation tests

yield the same findings as presented previously ([7], with

some improvements in MSArchitects’ RNG performance):

Both, MSArchitect and OMNeT++ show the best performance

in some categories. MSArchitect is the fastest simulation

kernel in most categories and requires least memory for data

handling.

V. PROFILING OF THE SIMULATION MODEL

To evaluate the application-level simulation performance of

our model of the German toll system, we use both the kernel

logging capabilities of MSArchitect and an external profiling

application (Intel VTune). Kernel logging allows to count the

number of calls of atomic models as well as the total number

of samples (corresponding to a processor cycle). The external

profiler allows measuring the time and space complexity as

well as chip-level details on the instruction execution.

To profile the simulation model we take the simulation

scenario used to verify the simulation model of ther automatic

German toll system against real-world data (see section II)

using pre-calculated user interaction. The simulation model

reads and parses the driving patterns (containing the events

for power cycles, tolling and network unavailability) and feeds

the events into the simulation model. The simulation model in

turn creates many more events (e.g. for scheduling timeouts)

to be processed by the simulation kernel. Using a single CPU

core the simulation run encompassing a fleet of 700 000 OBUs

and a simulated time period of 45 weeks takes less than 10

hours to compute.

As mentioned above, in a first step we apply the kernel

logging capabilities of MSArchitect resulting in a file with

profiling information at the end of the simulation run. Tab. II

shows an excerpt of the file, containing the top-10 (out of 65)

atomic blocks by runtime.

First of all, the atomic block “AccessSessionStateSwitch”

is striking, consuming a large amount of time with a high

number of calls. The block is responsible for switching OBU

data structures in response to its state to one of the output

ports. As the block switches between 34 states, 539 samples

per call are acceptable. Nevertheless the number of calls could

be reduced for performance improvement by changing the

TABLE II
KERNEL LOGGING RESULTS: TOP 10 ATOMIC BLOCKS BY RUNTIME.

Atomic Block Calls Samples Time Samples
[M] [G] [%] per Call

AccessSessionStateSwitch 19 980 10 760 10,89 539
ExternDStxt 0,0007 9 565 9,68 13 665 M
StaHandling 482 6 503 6,58 13 483
EinzelbuchungsHandling 4 660 6 442 6,52 1 382
IpAutomat 7 323 5 749 5,82 785
Delay (Standard) 8 874 5 522 5,59 622
CheckComponentState 7 363 3 859 3,91 524
NetzverlustHandling 3 020 3 479 3,52 1 152
AccessSessionStateWrite 5 841 3 215 3,26 551
MfbSwitch 5 525 3 196 3,24 579

model architecture – especially once the model is ported to

the parallel DES core.

The next conspicuous atomic block is “ExternDStxt“, read-

ing the pre-generated files provided by the scenario generator

model as ASCII file. The block consumes 9,681% of the

runtime for 13 665 M samples/call and is rarely executed

(twice per simulated day). In order to reduce the load, sce-

narios should be computed on the fly. The atomic block

“StaHandling” is responsible for generating and controlling

status requests, which may result in update processes. The

block consumes 6,581% of simulation time. We see potential

for improvements in changing the implementation (e.g. con-

version of formulas to save operations, replacing divisions by

multiplications with reciprocal and using of compare functions

from standard libraries).

With 4 660 M calls “EinzelbuchungsHandling” is a fre-

quently executed atomic block. After analyzing the imple-

mentation we find 1 382 samples/call acceptable. The block

depends on the random number generator and would benefit

from faster random number generation algorithms. The atomic

block ”SimOutObuVersions” cyclically writes the software,

region, and tariff version of all OBUs to an output file. In

our scenario we simulate 50 weeks and write data every 30

minutes, resulting in 16801 calls. 89 M samples/call seems to

be quite costly and offers room for improvement.

In summary the simulation of the scenario took 98 811 263

M calls. Of these, the model components consumed 84,51%

and the simulation kernel (logical processor) 15,49%.

In the second step we apply the Intel VTune [16] profiler,

which operates at functional level resp. Code Layer (see table

III). The external profiler catches the activities of both the

simulation kernel and the simulation model (denoted as “K”

or “M” in tab. III).
Most of the CPU time is consumed by kernel functions

responsible for data transport. These functions are grouped

by component (resp. namespace msa.sim.core, denoted as

“K” in the first column of tab. III), as Port.send, Event-

Manager.enqueueEvent, LogicalProccesor.mainLoopFast, and

EventManager.dequeueEvent. In sum the functions consume

61,1% of the CPU time. Conspicuous is the relative high last

level cache miss rate of function EventManager.enqueueEvent

with 3,2% and the needed instructions per call of func-

tion LogicalProcessor.mainLoopFast with 2 379. However, the

TOMMY BAUMANN ET AL.: SIMULATION DRIVEN DESIGN OF THE GERMAN TOLL SYSTEM 925

TABLE III
VTUNE PROFILING RESULTS FOR SIMULATION KERNEL (K) AND MODEL

(M): TOP 10 FUNCTIONS BY RUNTIME

Shown are the CPU instructions retired (IR), estimated call count
(eCC), instructions per call (IPC) and last level cache miss rate
(MR).

Function Time IR eCC IPC MR
[%] [G] [M] [%]

K Port.send 9,0 44 689 65 0,4
K EventManager.enqueueEvent 7,7 21 92 237 3,2
K LogicalProcessor.mainLoopFast 7,0 17 7 2 379 0,3
K EventManager.dequeueEvent 6,3 104 2 517 41 1,1
K big. mul<unsigned int> 5,0 103 2 611 40 0,3
M StaHandling.Dice 4,8 12 11 1 097 0,1
K EventManager.scheduleEvent 3,5 53 1 286 42 0,2
K Any.extractToken 3,0 70 1 805 39 1,7
K Pin.popFrontToken 2,8 49 1 234 40 0,2
K EventManager.bucketOf 2,7 17 327 55 0,0

number of calls depends on the dispatch of data within

atomic model components, which are grouped in form of

user libraries. In our model we have two user libraries:

GPRSSimulation (GPRSSimulation.Components.Atomics, de-

noted as “M” in the first column of tab. III) and Standard

(msa.Standard.Control). The latter is a support library included

in MSArchitect. Combined they are responsible for 20,1% of

CPU time consumption. Performance critical and starting point

for improvement is function StaHandling.Dice with 1 097

instructions per call and a CPU time consumption of 4,80%.
Both, kernel logging and profiling showed that most of

the resources are utilized by functions responsible for data

input/output and functions responsible for transmission and

processing of tolling information. Relating the resource uti-

lization of model components to real-word applications we

could recognize a weak correlation: The application-level

performance is determined by the real-world behavior of the

simulated system.

VI. SUMMARY

Extending [7] we have shown how to analyze the per-

formance of DES simulations: Generic benchmark test-cases

allow a simple and direct comparison of different simulation

tools. Not surprisingly the tools differ vastly as to their time

and memory consumption. However, the benchmark results

cannot be transferred to the application domain: The workload

generated by a given simulation model determines in large

part its performance. Taking an existing simulation model

of a large-scale technical system we performed an in-depth

performance analysis for one simulation tool using both the

performance analysis methods provided by the simulation ker-

nel and an external profiler with access to the CPU hardware

profiling support.
Both profilers immediately identify the same bottleneck:

Reading the ASCII-formatted pre-calculated driving patterns

from disk. Consequently the simulation model is now inte-

grated with the scenario generator. This in turn will allow

implementing an optimization algorithm to fit the driving

patterns to the observed system behavior – a feature that we

expect to drastically improve the accuracy of the simulation

results for the short-term behavior [10].

The hardware profiler catches both the application-level

methods as well as the atomics provided by the simulation

kernel (with or without access to its source code). Looking e.g.

at the cache miss rate we find some simulation kernel routines

and several application-level methods with a considerable

probability of needing access to the main memory. We take

this as starting point for future improvements.

MSArchitect, the simulation kernel used in the application

benchmark, is currently extended to allow the automatic model

reduction and (semi-) automatic parallelization of simulation

runs. The single-core benchmark performed here will be the

baseline to measure the improvements against.

REFERENCES

[1] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous
data flow programs for digital signal processing,” IEEE Transactions on

Computers, vol. 100, no. 1, pp. 24–35, 1987.
[2] Andato GmbH & Co. KG, “MSArchitect,” [accessed 12-May-2013].

[Online]. Available: http://www.andato.com/
[3] K. Lunde and L. Kieble, “Simulating communication within a satellite-

based automated toll collection system,” Proceedings of the 55th Inter-
national Scientific Colloquium, pp. 318 – 323, 2010.

[4] K. Lunde, L. Kieble, and M.-A. Funk, “Prediction strategies in a service
level granting prefetching cache for version-controlled gis data,” ISAST

Transactions on Computers and Intelligent Systems, vol. 2, no. 2, pp.
46–51, 2010.

[5] B. Pfitzinger, T. Baumann, and T. Jestädt, “Analysis and evaluation of
the german toll system using a holistic executable specification,” 45th
Hawaii International Conference on System Sciences (HICSS), vol. 0,
pp. 5632–5638, 2012.

[6] ——, “Network resource usage of the german toll system: Lessons from
a realistic simulation model,” in 46th Hawaii International Conference
on System Sciences (HICSS). IEEE, 2013, pp. 5115–5122.

[7] T. Baumann, B. Pfitzinger, and T. Jestädt, “Simulation driven design
of the German toll system – evaluation and enhancement of simulation
performance,” in Computer Science and Information Systems (FedCSIS),

2012 Federated Conference on. IEEE, 2012, pp. 901–909.
[8] CEN , “ISO/TS 17575-1:2010 electronic fee collection - application

interface definition for autonomous systems - part 1: Charging,” 2010.
[9] Bundesministerium der Finanzen, “Sollbericht 2013,” Monatsbericht

des BMF, vol. 2, pp. 6–57, Feb. 2013. [Online]. Available:
http://www.bundesfinanzministerium.de/Content/DE/Monatsberichte/
2013/02/Downloads/monatsbericht 2013 02 deutsch.pdf? blob=
publicationFile&v=4

[10] B. Pfitzinger, T. Jestädt, and T. Baumann, “Simulating the German toll
system: Choosing ‘good enough’ driving patterns,” in Proceedings of the
mobil.TUM 2013 – International conference on mobility and transport,
Lehrstuhl für Verkehrstechnik, Ed. Technische Universität München,
2013.

[11] Bundesamt fùr Gùterverkehr, “Maut-Jahresstatistik 2011/2010,”
2012, [accessed 10-March-2012]. [Online]. Avail-
able: http://www.bag.bund.de/SharedDocs/Downloads/DE/Statistik/
Lkw-Maut/Jahrestab 11 10.pdf? blob=publicationFile

[12] M. Dettmar, F. Rottinger, and T. Jestädt, “Achieving excellence in GNSS
based tolling using the example of the german HGV tolling system,” in
Proceedings of the 9th ITS Europe Congress, Jun. 2013.

[13] Y. Zhou and E. A. Lee, “Causality interfaces for actor networks,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 7, no. 3,
p. 29, 2008.

[14] A. Pacholik, T. Baumann, W. Fengler, and D. Grüner, “Discrete event
simulation performance – benchmarking simulators,” in International

Simulation Multi-Conference (SummerSim), Genoa, Italy, 2012.
[15] G. S. Fishman, Discrete-Event Simulation: Modeling, Programming and

Analysis. Berlin: Springer, 2001.
[16] Intel, “Intel VTune Amplifier,” [accessed 12-May-2013]. [Online].

Available: http://software.intel.com/en-us/intel-vtune-amplifier-xe

926 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

