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Abstract—Experts are able to predict sales based on approx-
imate reasoning and subjective beliefs related to market trends
in general but also to imprecise linguistic concepts about time
series evolution. Linguistic concepts are linked with demand
and supply, but their dependencies are difficult to be captured
via traditional methods for crisp data analysis. There are data
mining techniques that provide linguistic and easily interpretable
knowledge about time series datasets and there is a wealth of
mathematical models for forecasting. Nonetheless, the industry
is still lacking tools that enable an intelligent combination of those
two methodologies for predictive purposes. Within this paper we
incorporate the imprecise linguistic knowledge in the forecasting
process by means of linear regression. Bayesian inference is
performed to estimate its parameters and generate posterior
distributions. The approach is illustrated by experiments for real-
life sales time series from the pharmaceutical market.

Index Terms—linguistic knowledge, time series analysis,
Bayesian linear regression, posterior simulation

I. INTRODUCTION

H
UMAN-BEINGS have the unique ability to process im-

precise information and solve complex problems based

mostly on their intuition and expertise [14]. This ability allows

us to easily interpret and describe temporal data in natural

language with words and propositions. Such information, often

imprecise, is called temporal linguistic knowledge within this

paper.
As observed in a selected pharmaceutical company experts

were able to predict future sales and make related decisions

based on approximate reasoning about imprecise information

driven from visual inspection of time series data sets. It was

observed that experts recognized important dependencies be-

tween linguistic temporal knowledge even in situations when

analysis of crisp time series datasets showed no significant

correlations. We pose the question whether linguistic temporal

knowledge may bring information about new correlations

useful for the time series forecasting process.
The linguistic knowledge about temporal data is provided

by the experts of selected domain or is extracted automatically

thanks to the knowledge discovery and data mining techniques.

Among the recent developments in the field of intelligent com-

puting there are efficient methods that provide interpretable

knowledge from huge datasets.

The problem of time series abstraction and labeling mean-

ingful intervals by means of clustering, machine learning and

function approximation methods, statistical test or multiscale

methods is addressed e.g. in [2], [10], [13]. The concept of pat-

tern recognition has been widely discussed for example in [7],

[8], [9], [11], [12]. One of the goals of data mining research

is to provide linguistic and human-consistent description of

raw data. Within this paper we take data mining results as the

input for the forecasting procedure.

We provide a predictive model to support decision making

in the international pharmaceutical sales market. Linguistic

knowledge about temporal data is transformed into imprecisely

labeled sequences that are incorporated into the probabilistic

model as explanatory variables. We adopt Bayesian linear

regression model and perform posterior simulation. We operate

on parameters for which linguistic concepts are transparent and

could easily be interpreted by experts.

The structure of this paper is as follows. Next chapter in-

troduces basic definitions related to temporal linguistic knowl-

edge about time series. Chapter 3 presents the forecasting

process with temporal linguistic knowledge incorporated into

the regression model. The description of the experiments and

results for time series from the pharmaceutical industry are

gathered in chapter 4. Paper concludes with general remarks

and further research opportunities.

II. LINGUISTIC CONCEPTS ABOUT TEMPORAL DATA

In this section we define formal language for temporal lin-

guistic concepts that we consider most appealing for predictive

purposes.

Let O = {o1, o2..., oq} denote a finite set of objects in a

considered domain. The properties of objects are measured by

observables. Let M = {m1,m2...,mr} denote a finite set of

observables in the considered domain.

Definition 1: Object’s property

A pair (o,m) such that o ∈ O and m ∈ M is called object’s

property.

The sequence of measurements for object’s property is

treated as discrete time series.
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TABLE I
ILLUSTRATIVE EXAMPLES FOR IMPRECISE LABEL, OBSERVABLE AND

OBJECT.

Domain Object Observable Imprecise label

Pharmaceutical market

Product 1 sales high
Product 1 supply high
Product 1 sales increasing
Europe inflation increasing

Mood tracking

Patient A anxiety high
Patient A weight constant
Patient A hours slept constant
Patient B medication increasing

Definition 2: Discrete time series

Discrete time series {yt}
n
t=1 ∈ Ψn is a sequence of obser-

vations of given object’s property (o,m) such that o ∈ O

and m ∈ M measured at successive t ∈ T = {1, ..., n}
moments and at uniform time intervals. For each t ∈ T the

observation yt is a realization of the random variable Yt.

Random variables Yt are defined on the probability space

(Ω, A, P ), where Ω is the set of all possible outcomes of the

random experiment, A is a σ-field of subsets of Ω, and P is

a probability measure associated with (A,P ).

As stated in [1] during visual inspection people perceive

and process shapes rather than single data points. We describe

the evolution of time series with adjectives like high, medium,

low, light, heavy, interesting, increasing, constant, decreasing,

interesting, long, short, strong, weak, slight, etc. Such adjec-

tives refer to imprecise values, trends, judgments or features

and are called imprecise labels within this paper.

Let S = {s1, s2..., sl} denote a finite set of imprecise labels

referring to either qualitative or quantitative measurements for

observables applicable in the considered domain. Depending

on the context, values for the imprecise label are assigned

subjectively by experts or are calculated based on the fuzzy

numbers and membership functions. For basic definitions

related to the fuzzy sets theory see e.g. [6].

In real-life situations understanding and interpretation of

imprecise labels depends on context and may change in time.

Within this approach we assume one interpretation that is

constant in time.

As presented in Table I for application sales, supply and

inflation are observables when considering application in phar-

maceutical market. If the problem of mood tracking to support

medical diagnosis is considered, the observables measure the

anxiety or weight of a patient. However, the general idea of

visual inspection and processing trends is the same regardless

of the practical context.

Definition 3: Imprecise labeled sequence

Let f : Ψn × S × T → [0, 1] denote function assigning

the degree of truth that label s ∈ S applies at the mo-

ment t ∈ T for object’s property measured by time series

y ∈ Ψn. Imprecise labeled sequence {xs,y
t }nt=1 is calculated

from x
s,y
t := f(y, s, t).

Fig. 1. Example of time series and imprecise labeled sequence.

Fig. 1 presents an illustrative example of sales time series

and its imprecise labeled sequence. In this context, for each

observation of time series representing sales of Product A, the

expert subjectively assigned the degree of truth for decreasing

trend. Imprecise labeled sequences are processed within the

presented approach.

III. BAYESIAN REGRESSION WITH LINGUISTIC

KNOWLEDGE

The forecasting procedure consists of the phase of process-

ing temporal data and the posterior simulation. As outlined

in Fig. 2 the input for the model are discrete time series and

definitions of the linguistic concepts. As a result of the model,

the forecast and its regressive components are provided.

A. Processing temporal data

Let Y k
n = {{y1t }

n
t=1, ..., {y

k
t }

n
t=1} denote k-vector of multi-

variate discrete time series. Let {y1t }
n
t=1 denote a time series of

object’s property to be predicted. For clarity reasons, we limit

considerations to the one-step-ahead forecast and the vector

of interest ω contains one element ω = {y1n+1}. Predictions

for longer horizons are iterated by repeating the procedure.

For s ∈ S and k−1 time series y ∈ {{y2t }
n
t=1, ..., {y

k
t }

n
t=1},

imprecise labeled sequences {xs,y
t }nt=1 are created based on

data mining techniques or as a result of subjective expertise.

Sequences {xs,y
t }nt=1 interpreted as degree of truth that the

imprecise label is valid at each moment for given object’s

property, represent the linguistic knowledge for the regression

model.

B. Posterior simulation

Imprecise labeled sequences {xs,y
t }nt=1 are included into

the linear regression as explanatory variables. We adopt the

multiple normal linear regression model which can be written

as:

y = Xβ + ǫ, ǫ ∼ N(0, σ2In)

where X is the n × ((k − 1) × l) matrix of explanatory

variables, y is the n×1 vector of dependent variables and ǫ is

an n× 1 vector of independent identically distributed normal
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Fig. 2. Overview of the forecasting procedure based on Bayesian regression
model with temporal linguistic knowledge.

random variables. We perform Bayesian inference to estimate

the vector of parameters θ = (β, σ).
Following definition of Geweke [4], [5] the complete model

A for Bayesian inference consists of:

1) the observables density

p(Yt|θA, A) =
T∏

t=1

p(yt|Yt−1, θA, A)

in which θA ∈ ΘA is a kA × 1 vector of unobservables

2) the prior density p(θA|A)
3) the vector of interest density (the posterior density)

p(ω|yo, A) =

∫
ΘA

p(ω|yo, θA, A)p(θA|y
o, A)dv(θA)

p(θA|y
o, A) =

p(θA|A)p(y
o|θA, A)

p(yo|A)

The problem statement is to find a decision, known in

Bayesian theory as an action a, which minimizes the following

equation:

E[L(a, ω)|yo, A] =

∫
ΘA

L(a, ω)p(ω|yo, A)dω

Posterior predictive distributions are approached by means

of Markov Chain Monte Carlo Methods (MCMC). Posterior

simulation yields a pseudo-random sequence of the vector

of interest to estimate its posterior moments. MCMC were

initially developed in 1940s and gained popularity thanks to

their great success in practical applications [5].

For simplicity, we assume that prior for β is independent

from prior for σ and we apply Gibbs Sampling which leads

to sampling from multivariate probability density. The sam-

pling procedure begins with arbitrary values for β0 and σ0,

computes mean and variance of β0 conditional on the initial

value σ0, uses the computed mean and variance to draw a

multivariate normal random vector β1 and uses the β1 with a

random draw to determine σ1.

Details for posterior density, drawings construction and

sampling algorithm are available in [5]. Gelfand and Smith [3]

proved that with Gibbs Sampler large sets of draws converge in

the limit to the true joint posterior distribution of parameters.

The results for the linear regression model with linguistic

knowledge are the predictive distribution for the future obser-

vations of the time series of interest and the model parameters.

Parameters are easily interpreted in a natural language as they

are directly linked with imprecise labels.

IV. EXPERIMENTAL RESULTS

The purpose of this experiment is to illustrate the per-

formance of the forecasting method for real-life data at the

example of sales time series from the pharmaceutical industry.
Train dataset consists of 6 normalized time series repre-

senting monthly sales of different products in the period from

Jan’05 to Dec’09. Fig. 3 shows exemplary time series from

the train dataset. The test dataset contains 6-month-long sales

continuation for each product and is used for evaluation.

Fig. 3. Exemplary time series from the train dataset representing monthly
sales of Product No.1 and Product No. 4.

We consider following 6 imprecise labels in the experiment:

low, medium, high, increasing, constant, decreasing. Values

for imprecise labeled sequences referring to increasing,

constant, decreasing labels are defined based on experts’

subjective beliefs. For labels: low, medium, high triangular

fuzzy numbers are constructed based on the minimum, average

and maximum values calculated from the time series. Then,

imprecise labeled sequences are calculated from appropriate

membership functions.
We first analyze correlations between the time series to

be predicted and the imprecise labeled sequences to verify

whether the imprecise linguistic knowledge may bring valu-

able information in the linear regression model. For each

product we compare Pearson correlation coefficient between

its sales time series and the imprecise labeled sequences

derived for other products.
As demonstrated by the results in Table II correlations

between sales time series and imprecise labeled sequences

range from 0,10 to 0,14 and are on average by 20% higher

than between different sales time series itself. Correlation

coefficients are on average higher for labels of imprecise trends

than values.

TABLE II
CORRELATION COEFFICIENTS BETWEEN SALES TIME SERIES AND

IMPRECISE LABELED SEQUENCES (ILS)

Mean Median StdDev
Sales vs Sales 0,10 0.08 0.05

Sales vs Increasing 0,14 0.14 0.04
Sales vs Constant 0,12 0.13 0.06
Sales vs Decreasing 0,13 0.10 0.07
Sales vs Low 0,11 0.10 0.05
Sales vs Medium 0,12 0.12 0.05
Sales vs High 0,10 0.08 0.04
Sales vs All ILS 0,12 0.11 0.05
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Table III provides detailed correlations per product. It is

interesting to observe that for example the correlation coeffi-

cient (0,21) between sales time series of Product No. 2 and

decreasing trends of other products is higher than correlation

coefficient (0,17) between Product No. 2 sales time series and

other sales time series itself.

TABLE III
CORRELATION COEFFICIENTS PER PRODUCT

P1 P2 P3 P4 P5 P6
Sales vs Sales 0,16 0,17 0,05 0,09 0,04 0,07
Sales vs Increasing 0,17 0,18 0,10 0,11 0,16 0,11
Sales vs Constant 0,13 0,21 0,12 0,13 0,03 0,07
Sales vs Decreasing 0,22 0,21 0,09 0,10 0,06 0,09
Sales vs Low 0,19 0,17 0,11 0,07 0,06 0,09
Sales vs Medium 0,19 0,14 0,16 0,05 0,09 0,08
Sales vs High 0,13 0,15 0,06 0,09 0,07 0,08

The second step of the experiment is the comparative

analysis of the forecasts’ accuracy of the Bayesian regression

model with linguistic knowledge (BRLK) and the traditional

Vector Autoregression (VAR). Table IV summarizes mean

absolute percentage error (MAPE) and deviation (MAPD).

TABLE IV
MEAN ABSOLUTE PERCENTAGE ERROR(MAPE) AND DEVIATION(MAPD)

FOR 6- AND 1-STEP-AHEAD FORECAST OF BRLK AND VAR

h=6 h=6 h=6 h=6 h=1 h=1
MAPE MAPE MAPD MAPD APE APE
BRLK VAR BRLK VAR BRLK VAR

P1 0,173 0,199 0,101 0,129 0,036 0,129
P2 0,425 0,509 0,193 0,165 0,202 0,317
P3 0,696 0,476 0,210 0,278 0,900 0,745
P4 0,282 0,396 0,371 0,237 0,026 0,326
P5 0,389 0,459 0,317 0,177 0,188 0,364
P6 0,444 0,371 0,281 0,222 0,703 0,559
All 0,402 0,402 0,246 0,201 0,342 0,407

As demonstrated by results in Table IV absolute percentage

error for 1-step-ahead forecast is 0,342 and 0,407, respectively

for BRLK and VAR. For 6-month-long forecast MAPE is the

same and relatively high for both models, and amounts to

0,402. Forecasts generated by VAR are characterized by a

lower standard deviation.

We conclude that Bayesian regression model with linguistic

knowledge and VAR models are comparable in terms of fore-

casts’ accuracy. The Bayesian regression model with linguistic

knowledge delivers forecasts of a higher interpretability than

traditional VAR as its components are naturally linked with

the linguistic concepts.

V. CONCLUSION

The performed experiment confirmed that the approach with

additional linguistic knowledge is adequate to support sales

forecasting. Imprecise labeled sequences enable to discover

new correlations in the dataset that lead to construction of the

linear regression model. Produced forecasts are accurate on a

similar level as forecasts provided by Vector Autoregression.

The main advantage of the proposed solution is the easy

interpretation of predictions and model parameters required

for forecasting process, which is of special importance for

experts involved in real-life forecasting for large datasets. The

proposed solution is in line with visual pattern recognition

capabilities of humans and delivers additional knowledge

about dependencies in multivariate time series datasets.

Next experiments for multivariate time series from other

domains and on benchmark data are planned in order to ana-

lyze further benefits and limitations of the proposed technique.

Another topic planned to be explored is the introduction of

multiple interpretation for imprecise labels.

Within the approach simple forms of linguistic knowledge

are considered. The potential to include advanced forms of

linguistic knowledge like imprecise features, frequent temporal

patterns, association rules and temporal linguistic summaries

remains open for future research.
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