
Towards an Efficient Multi-Stage Riemann Solver
for Nuclear Physics Simulations

Sebastian Cygert,
Joanna Porter-Sobieraj

Warsaw University of Technology

Faculty of Mathematics and Information Science

Koszykowa 75, 00-662 Warsaw,

Poland

Email: j.porter@mini.pw.edu.pl

Daniel Kikoła
Purdue University

Department of Physics

525 Northwestern Ave.,

West Lafayette, IN 47907,

United States

Email: dkikola@purdue.edu

Jan Sikorski,
Marcin Słodkowski

Warsaw University of Technology

Faculty of Physics

Koszykowa 75, 00-662 Warsaw,

Poland

Email: slodkow@if.pw.edu.pl

Abstract—Relativistic numerical hydrodynamics is an impor-
tant tool in high energy nuclear science. However, such simu-
lations are extremely demanding in terms of computing power.
This paper focuses on improving the speed of solving the Riemann
problem with the MUSTA-FORCE algorithm by employing the
CUDA parallel programming model. We also propose a new
approach to 3D finite difference algorithms, which employ a
GPU that uses surface memory. Numerical experiments show
an unprecedented increase in the computing power compared to
a CPU.

I. MOTIVATION

N
UMERICAL hydrodynamics has been used in many sci-

entific and engineering applications for decades, mostly

due to its relative simplicity. Even a complicated, dynamic

system can be described with a small set of relatively simple

hyperbolic conservation laws in this framework. All the infor-

mation about the physical properties of a system is contained

in a single equation of state, which is the relationship between

the thermodynamic properties of the analyzed system. Knowl-

edge of the details of the interactions that take place on the

microscopic level is not required. However, there is one strong

assumption underlying the use of hydrodynamics: the system

has to be at least in the local thermodynamic equilibrium,

which means that the thermodynamic quantities for any point

are approximately constant around that point.

Recently relativistic hydrodynamics has been applied in

studies of a new field of physics: high energy nuclear science.

The goal of high energy nuclear science is to study the

interactions between the basic constituents of matter; quarks

and gluons. In normal conditions, quarks and gluons are bound

together to form nucleons: protons and neutrons. However,

the forces binding quarks together can be subjected to a

sufficiently high energy density, leading to a transition from

ordinary nuclear matter to a new state, where quarks and

gluons behave like quasi-free particles. Such a soup of quarks

and gluons is called a Quark-Gluon Plasma (QGP), and it

is hypothesized to have existed in the early universe, a few

millionths of a second after the Big Bang. The energy density

This work was supported in part by Dean’s Grant (2012) at the Faculty of
Physics Warsaw University of Technology

of nuclear matter created in relativistic heavy ion collisions

at the Relativistic Heavy Ion Collider (RHIC) at Brookheaven

National Laboratory, or the Large Hadron Collider (LHC) at

CERN, is sufficiently high that a phase transition to a QGP is

expected in such reactions.

In the collisions of heavy nuclei at RHIC or LHC, a decrease

in the amount of nuclear matter occurs with exposure to the

extreme energy density. The first phase of collisions consists

of interactions with a large momentum transfer. Then the

system expands, equilibrates and forms the QGP. Relativistic

hydrodynamics can then be employed to extract the properties

of the QGP. Relativistic ideal fluid dynamics has indeed been

used in the theoretical modeling of the QGP and remarkable

agreement between experimental data and simulations has

been found, leading to the unexpected conclusion that hot

nuclear matter behaves like a nearly frictionless liquid (i.e.

with extremely low viscosity) [1], [2].

The initial success of relativistic hydrodynamics stimulated

further development of the numerical codes needed for a more

precise understanding of the fundamental properties of the

quark and gluon dynamics in the QGP.

Firstly, fully (3+1)-dimensional simulations (3 spatial di-

mensions + time) are necessary to describe the system’s

evolution without any assumptions regarding its symmetries.

Such numerical problems are well defined and numerical

methods are available; however, (3+1)-dimensional simula-

tions are extremely expensive in terms of computing power.

Moreover, the fluctuations in the pre-QGP phase might have

an impact on the dynamics of the QGP, therefore event-by-

event studies (where an event is a single collision between

heavy ions) with fluctuating initial conditions and with a large

amount of statistics are of particular interest and require a

fast and efficient computer code. Furthermore, studies of jets

(which are narrow beams of particles with a high momentum)

and their propagation through the hot nuclear medium can

provide information about the fundamental properties of the

QGP (transport coefficients, for instance). However, such

studies require an accurate representation of relativistic flows

and shock waves. This requires a larger numerical grid in

the simulations, which in turn increases the computing time

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 441–446

978-1-4673-4471-5/$25.00 c© 2013, IEEE 441

needed significantly.

Due to all these factors, there is a constantly increasing

demand for computing resources in relativistic hydrodynamics

simulations. Graphics Processing Unit (GPU) computing is a

promising solution for this problem, and offers an unprece-

dented increase in computing power compared to standard

CPU simulations. In this paper, we present the concept of

an implementation of 3+1 ideal hydrodynamics simulations

carried out on a GPU using an NVIDIA CUDA framework

and test results for selected physics problems.

II. EQUATION SYSTEM FOR THE RIEMANN PROBLEM

A. Hydrodynamics Equations

Equations of relativistic hydrodynamics can be written in a

conservative form:

∂U

∂t
+

∂F (U)

∂x
+

∂G(U)

∂y
+

∂H(U)

∂z
= 0 (1)

where U = (E,Mx,My,Mz, R) is a vector of conserved

quantities in the laboratory rest frame, E is the energy density,

Mi is the momentum density in the i-th Cartesian coordinate

and R is a conserved charge density (e.g. a baryon number).

F,G,H are vectors of fluxes of those quantities in the x, y, z
directions, defined as:

F (U) =













(E + p)vx
Mxvx + p
Myvx
Mzvx
Rvx













G(U) =













(E + p)vy
Mxvy

Myvy + p
Mzvy
Rvy













H(U) =













(E + p)vz
Mxvz
Myvz

Mzvz + p
Rvz













(2)

where v is the velocity and p is pressure, defined by an

equation of state: p = p(e, n); e and n are the energy and

charge density in the fluid rest frame (i.e. in a frame where

velocity vanishes, v = (0, 0, 0)).

B. Numerical Scheme

In numerical applications, all continuous fields have to be

represented in a finite number of degrees of freedom, e.g. on a

fixed numerical grid. In our program we use a finite-difference

scheme on a Cartesian grid. Since non-conservative methods

(i.e. methods based on non-conservative variables) have been

shown to fail (do not converge to a correct solution) if a shock

wave is present in the solution [3], a conservative method is

used.

There are two standard approaches to solving the problem

(1): dimensional splitting and a finite volume method. Deriva-

tion of dimensional splitting methods is based on Taylor series

expansions and may give incorrect results for discontinuous

solutions [4], thus a finite volume method was chosen. For a

three-dimensional problem, such a scheme reads:

Un+1
i,j,k = Un

i,j,k +
∆t

∆x

(

Fi− 1

2
,j,k − Fi+ 1

2
,j,k

)

+
∆t

∆y

(

Gi,j− 1

2
,k −Gi,j+ 1

2
,k

)

+
∆t

∆z

(

Hi,j,k− 1

2

−Hi,j,k+ 1

2

)

(3)

where Un
i,j,k represents a conserved quantity at the discrete

time tn; ∆t and ∆x, ∆y, ∆z are time and space steps,

respectively, and Fi− 1

2
,j,k, ... , Hi,j,k+ 1

2

are numerical fluxes

through cell boundaries.

The central point of a particular scheme is the construction

of intercell fluxes Fi− 1

2
,j,k, ... , Hi,j,k+ 1

2

. There are two

distinct approaches to this problem: the upwind and centered

schemes.

The main feature of upwind schemes is that they explicitly

exploit information about wave propagation contained in the

equations, usually by solving a one-dimensional Riemann

problem locally. The accuracy of such schemes is highly

dependent on the choice of a particular Riemann solver,

which should ideally be complete (i.e. take into account all

characteristic fields present in the exact solution).

On the other hand, centered methods do not solve the

Riemann problem directly, and therefore are usually simpler

and more general, at the cost of accuracy (given that there is

a complete Riemann solver available).

In order to obtain a general and accurate algorithm, we

use a hybrid MUSTA (MUlti-STAge) approach [5], [6]. This

utilizes a centered flux in a predictor-corrector loop, solving

the Riemann problem numerically, i.e. without using a priori

information about waves.

The algorithm in a one-dimensional case is as follows:

1) In order to calculate flux Fi+ 1

2

we introduce auxiliary

variables U
(l)
L and U

(l)
R and their fluxes F

(l)
L and F

(l)
R .

2) Set U0
L = Ui, U

0
R = Ui+1.

3) Calculate F
(l)
L = F (U

(l)
L) and F

(l)
R = F (U

(l)
R) using (1).

4) Calculate F
(l)

i+ 1

2

using a centered flux, U
(l)
L , U

(l)
R , F

(l)
L

and F
(l)
R . If l reached a predefined value, stop.

5) Solve Riemann problem locally:

U
(l+1)
L = U

(l)
L − ∆t

∆x

(

F
(l)

i+ 1

2

− F
(l)
L

)

U
(l+1)
R = U

(l)
R − ∆t

∆x

(

F
(l)
R − F

(l)

i+ 1

2

) (4)

6) Go back to step 3.

One drawback to using such an algorithm is that it is

numerically more expensive than other, more conventional,

algorithms, for instance the SHASTA (SHarp And Smooth

Transport Algorithm) [7], [8].

442 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

As a centered flux, we used the FORCE (First ORder

CEntered) scheme:

F force
i+ 1

2

=
1

2

(

F lw
i+ 1

2

+ F lf
i+ 1

2

)

(5)

where F lw
i+ 1

2

is the Lax-Wendroff type flux (in terms of

MUSTA auxilliary variables):

F lw
i+ 1

2

= F

(

1

2
(UL + UR)−

1

2

α∆t

∆x
(UR − UL)

)

(6)

and F lf
i+ 1

2

is the Lax-Friedrichs type flux:

F lf
i+ 1

2

=
1

2
(FL + FR)−

1

2

∆x

α∆t
(UR − UL) (7)

In a three-dimensional case α = 3, but other values may also

be considered.

To achieve second order accuracy in space and time, we ex-

tend our algorithm with MUSCL-Hancock scheme. The basic

idea of this scheme is to use more cells to interpolate inter-cell

values and evolve them half a time step. The algorithm is:

1) Replace cell average values Un
i by a piece-wise linear

function inside i-th cell:

Ui(x) = Un
i +

(x− xi)

∆x
∆i (8)

where ∆i is a slope vector and will be defined later.

In the local coordinates the points x = 0 and x = ∆x
correspond to boundaries of the cell xi− 1

2

and xi+ 1

2

.

The values at these points are UL
i = Un

i − ∆i/2 and

UR
i = Un

i +∆i/2.

2) Propagate UL
i and UR

i by a time 1
2∆t:

ŨL
i = UL

i +
1

2

∆t

∆x
(F (UL

i)− F (UR
i))

+
1

2

∆t

∆y
(G(UL

i)−G(UR
i))

+
1

2

∆t

∆z
(H(UL

i)−H(UR
i))

ŨR
i = UR

i +
1

2

∆t

∆x
(F (UL

i)− F (UR
i))

+
1

2

∆t

∆y
(G(UL

i)−G(UR
i))

+
1

2

∆t

∆z
(H(UL

i)−H(UR
i))

(9)

3) Use ŨL
i and ŨR

i as U0
L and U0

R in MUSTA.

A simple choice for the slope ∆i in (8) is:

∆i =
1

2
(Un

i+1 − Un
i−1) (10)

which indeed results in a second-order accurate algorithm.

However, as predicted by Godunov’s theorem, it has the

unpleasant effect of producing spurious oscillations in the

vicinity of strong gradients.

To solve this issue, a number of flux limiting and slope

limiting methods have been proposed. We employed a slope

limiting method; instead of ∆i as in (10) we use:

∆̃i = ξ(ri)∆i (11)

in (8), where ξ is called the slope limiter, and ri is defined

as:

ri =
Ui − Ui−1

Ui+1 − Ui

(12)

There are a number of possible choices for ξ, each with its own

characteristics and features. One possibility is the MINBEE

limiter:

ξmb(r) = max(0,min(1, r)) (13)

and there is another, called SUPERBEE:

ξsb(r) = max(0,min(2r, 1),min(r, 2)) (14)

Introducing non-linearity in the scheme provides less oscilla-

tions near high gradients and retains good accuracy in smooth

areas of the solution.

III. IMPLEMENTATION NOTES

A. GPUs – an Overview

Recent developments in GPU technology have transformed

them into very powerful devices offering a notable speed

increase compared to traditional CPUs in high performance

computing. The reason behind this lies in the difference in

structure between these two processors. GPUs use many more

resources for arithmetic operations at the expense of cache and

flow control.

The basic idea of a GPU is that it is built around an

array of Streaming Multiprocessors (SMs). Compute Unified

Device Architecture (CUDA) allows a programmer to define

a special function kernel which is executed on a GPU device

by a number of threads which are organized into blocks. Each

thread block executes in parallel on a single SM independently

and in undefined order.

CUDA threads can access several memory spaces. Global

memory, which has a very big latency, can be accessed by all

the threads. Threads within one block can cooperate through

shared memory. Shared memory is expected to be much faster

than global memory and many applications benefit from using

it. Registers, whose limited number is distributed to threads

by a streaming multiprocessor, offer the lowest latency. By

default, all the variables are placed in registers for as long

as the latter are available. When there is a lack of registers,

other variables go in the local memory which resides in device

memory and provides the same high memory latency. This is

called register spilling and causes a notable slow down for

applications.

The main drawback of shared memory is its limited size

(48 KB in contemporary GPUs). This is sufficient for many

applications, but for others - such as image processing where

millions of pixels are transformed in parallel - it is not. For

such cases data may be put into texture memory which resides

in device memory and is cached in the texture cache. As a

SEBASTIAN CYGERT ET AL.: TOWARDS AN EFFICIENT MULTI-STAGE RIEMANN SOLVER FOR NUCLEAR PHYSICS SIMULATIONS 443

result, data read from texture memory cost one read from

global memory on cache miss, and give almost immediate

access otherwise. The texture cache is optimized for 2D

spatial locality. Texture memory offers only data reading while

surface memory offers both read and write operations.

Threads are executed in groups of 32 parallel threads called

warps, of which all execute the same instruction scheduled by

the warp scheduler. If, due to conditional sentences, different

threads within a warp follow different paths, then the scheduler

visits each path taken sequentially, disabling threads that are

not active in the current path. This is called branching and

effects slow down in execution.

A common bottleneck for many GPU applications is mem-

ory access latency due to the limited size of cache, especially

when using global device memory. However, those latencies

can be hidden by a warp scheduler. At every instruction issue

time, a warp scheduler selects a warp that is ready to execute

its next instruction, if any, and issues the instruction to the

active threads of the warp. It can easily be seen that CUDA

performs this most effectively when there are plenty of threads

to be executed.

B. Data Organization

GPUs have recently been widely used for many advanced

computations. Typical examples have involved 3D finite dif-

ference computations using the most popular sliding-window

approach, which operates using shared memory [9] - [12].

Some papers have also studied using texture memory to

optimize the solution in fluid dynamics [13], [14].

In our approach surface memory is applied to hold the

simulation data. Surface memory retains all the benefits of

texture memory, but it also works in write mode. It is available

for NVIDIA GPUs with a compute capability of 2.x or higher.

Currently, surface memory does not support double precision

floating-point arithmetic and all the calculations are done

solely in single precision.

Surface memory offers several benefits over the popular

sliding-window approach. Due to the limited size of shared

memory, only a limited amount of the data can be held in it

and hence loop tiling has to be performed. An input grid is

divided into smaller blocks (tiles) that fit into shared memory,

the threads copy these parts of the data from global to shared

memory and perform computations in the latter. Thus, the

shared memory can be seen as a manually managed cache. It

can easily be noticed that this results in data access redundancy

which can be computed using the formula (n ∗ m + k(n +
m))/(n∗m), where n and m stand for a block’s size and k is

the order of stencil [10]. In contrast to shared memory, which

is highly limited in size, the maximum number of elements

we can bound to surface memory is 65536x32768x2048 [15].

Therefore, in practice surface memory is limited only by its

size and in most cases all the data can be kept in surface

memory.

Surface memory allows the algorithm to decrease register

usage. In our approach, the numerical scheme requires a single

cell to contain more than one simple variable. When we

multiply the size of a cell by the number of cells needed in

stencil computation it is easy to notice that the registers are

quite heavily used in this algorithm.

Using surface memory it is also easier to modify and test

different numerical schemes. Code which uses shared memory

is usually dedicated to just one kind of stencil. Changing the

order or direction of the stencil results in changing many lines

of code. In the case of surface memory, since all data are held

in it and global indexing is used, this change may be done at

once and handling special cases is kept to a minimum. Hence,

it is a more general approach.

C. GPU Algorithm

In this section we present the idea behind the algorithm

which uses surface memory.

Algorithm 1 Data processing schema for a thread (i, j) and

an order-4 stencil computation

for n in 1..N do

for k in 3..Z-Dimension −2 do

Load neighbor cells from surface memory.

Compute cell U(i, j, k).
Write result to surface memory.

Synchronize threads.

end for

end for

The presented algorithm was built based on the idea of the

sliding-window algorithm. All threads work on a 2D xy-slice

of the grid, benefiting from optimization for the 2D spatial

locality of surface memory, and iterate through the Z-axis. The

Compute cell method refers to the MUSTA-FORCE algorithm.

In this algorithm we use two surfaces which are employed

alternately for read/write operations. It is possible to use just

one surface but this would put more pressure on registers and

require additional synchronizations. Since memory usage is

not a problem in our simulation we decided to stay with two

surfaces being used.

IV. EXPERIMENTAL RESULTS

We examined the performance of the parallel GPU code and

compared it to the performance of the sequential CPU code.

The goal of our research was just to verify the usefulness of

GPUs for solving equations of relativistic hydrodynamics and

to approximate the order of magnitude of the possible speed-

up. Therefore, we measured the time needed to perform the

simulations on a single GPU and a single CPU core. This

allowed us to estimate the time required to perform massive

physics simulations.

The numerical experiments were executed on an Intel Pen-

tium B960, 2.2 GHz processor with an NVIDIA GeForce

610 1 GB graphics card with Compute Capability 2.1. The

figures show the time taken for a hydrodynamic simulation,

using the MUSTA-FORCE algorithm approach for various

configurations of input data.

444 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

Fig. 1. The speed-up gained by using surface memory compared to CPU
implementation for the MUSTA-FORCE algorithm as a function of the total
number of cells

Fig. 2. Execution time for shared memory and surface memory approaches
for 100 steps of the MUSTA-FORCE algorithm as a function of the total
number of cells

With the GPU, the tests were carried out for 100 time steps

of the MUSTA-FORCE algorithm, using grids of dimensions

603, 1103, 1603, 2003, and 2203. A single cell, containing a

vector U , occupies 20 bytes of memory. The maximum grid

that fitted within the memory limitations was 2403.

The simulations on the CPU were conducted on smaller

grids. We interrupted the calculations for grids when the time

exceeded a few hours, because it would have taken days to

Fig. 3. Execution time for 100 steps of a generalized 3D finite difference
algorithm

perform massive tests on the CPU.

Fig. 1 shows the acceleration factor gained by using a GPU

instead of a CPU. The GPU implementation speed-up is over

200 for bigger numbers of cells. For a grid of size 1103,

the GPU simulation took 1 minute while the CPU required

over 3 hours. This proves that finite difference computations

are a perfect example of an algorithm that fits the parallel

computation concept. The whole algorithm can easily be

divided into small parts that single threads can perform in

parallel.

Note that the simulation on the CPU is very slow. The

estimated effort for 100 time steps and a grid with 220 cells in

each dimension is almost 30 hours. Such large grids are neces-

sary in the case of studies of ultra-relativistic flows and strong

shocks. Moreover, event-by-event simulations require samples

of thousands of such simulations (events). Because of this,

the total computing time needed for such analysis (assuming

1,000 events) amounts to as much as 3 years, which makes

such a study extremely hard, if not impossible, without parallel

computing. This example illustrates how expensive, in terms

of computation and memory usage, relativistic hydrodynamic

simulations are.

The next thing we examined was various implementations

on a GPU. Fig. 2 presents a comparison between the execution

time for the sliding-window algorithm using shared memory,

and surface memory implementations. For shared memory

we used a 16x16 data tile, which we found to be the most

effective size. The first, naive surface memory implementation

used exactly the same approach as with the shared memory

algorithm. Thus it can be concluded that surface memory is

about 8 times slower. The revised version of the algorithm

with surface memory, presented in section 3c, used all its

benefits - keeping all data in surface memory, lower usage of

registers, and smaller branching. It decreased the simulation

time significantly. As a result the timing of the surface memory

and sliding-window approach turned out to be almost identical.

Profiling of the application showed that here we are faced

with register spilling which causes a serious slow down. This

is due to the fact that the MUSTA-FORCE and MUSCL

algorithms we have used, both use many temporary cells

interpolated during computations. Now, when there only a

maximum of 63 registers per thread, and each cell takes 5

of them, a lot of data need to be kept in local memory.

Usage of local memory instead of registers is one of the

biggest limitations in current GPUs. Our tests showed that

just increasing the size of a single cell kept in memory without

any other extra computation cost, made the time of simulation

increase 5-fold.

Since one of our goals was to evaluate the effectiveness

of the surface memory approach for 3D finite difference

computations we prepared another version of the application,

which performs an interpolation between the cells instead

of the whole MUSTA-FORCE algorithm. Fig. 3 shows that

the sliding-window approach is more than 50% slower than

the surface algorithm. This proves our thesis that the results

in Fig. 2 are affected by register pressure. Profiling of this

SEBASTIAN CYGERT ET AL.: TOWARDS AN EFFICIENT MULTI-STAGE RIEMANN SOLVER FOR NUCLEAR PHYSICS SIMULATIONS 445

application shows that achieved occupancy is higher for the

surface algorithm (0.45 instead of 0.32), there is lower usage

of registers (in the surface algorithm all data is kept in registers

while in the second approach 8 variables are also kept in

local memory), and that there is a slightly smaller number of

branches (12.5% instead of 14.5% on average). These numbers

and the test results prove that despite the fact that surface

memory is slower than shared memory, the benefits it offers

allow the application to achieve better performance.

V. CONCLUSION

In this paper the possibilities of using GPUs for developing

a solver for the Riemann problem have been examined. We

studied two methods of 3D finite difference computation – a

sliding-window algorithm using shared memory and our new

approach based on surface memory.

First of all, the GPU proved to be a good choice for 3D

finite difference computations. Such a problem scales perfectly

with parallel computations and thus is very effective. Our

implementation is over 200 times faster than a sequential

implementation on a CPU. This number shows that graphics

cards offer greater computational power for problems that can

be divided into independent subproblems.

We have investigated the usefulness of our novel approach

using surface memory. Because the amount of memory avail-

able is very big all the data can be kept in surface, which

thus decreases data redundancy and pressure on registers.

On the other hand, shared memory is in general faster than

surface memory. As a result, in our application using the

MUSTA-FORCE algorithm, both implementations have very

comparable speeds. However, as we showed, the results were

affected by register spilling caused by the high memory cost

of the algorithm used. To investigate the effectiveness of

surface memory in 3D finite difference methods we prepared

a simplified version of an algorithm that minimized register

usage. As a result, the surface memory approach turned out

to be faster than the one with the sliding-window approach. It

should also be stressed that surface memory implementation is

more general and, in contrast to the shared memory approach,

can easily be changed to use any other kind and order of

isotropic, or anisotropic, stencil in any direction.

In this paper we showed that GPUs are very effective

for hydrodynamics simulations in comparison to CPUs. The

current GPU implementation allows a device to perform a

massive number of simulations in a reasonable time. This was

previously impossible, even in our preliminary parallel CPU

implementation with the use of a cluster computer and MPI.

The designed GPU algorithm, based on surface memory, is

easy to modify and proved to be a valuable new tool for high

energy nuclear science.

REFERENCES

[1] J. Adams et al., “Experimental and theoretical challenges in the search
for the quark gluon plasma: The STAR Collaboration’s critical assess-
ment of the evidence from RHIC collisions,” Nucl.Phys., vol. A757, pp.
102–183, 2005.

[2] “RHIC Scientists Serve Up "Perfect" Liquid,” Brookhaven National
Laboratory Press Release. [Online]. Available: http://www.bnl.gov/
newsroom/news.php?a=1303

[3] T.Y. Hou, P.G. LeFloch, Why non-conservative schemes converge to the
wrong solutions: error analysis, Math. of Comput., 62: 497-530, 1994.

[4] E. F. Toro, Multi-stage predictor-corrector fluxes for hyperbolic equa-
tions. Isaac Newton Institute for Mathematical Sciences Preprint Series
NI03037-NPA , University of Cambridge, UK, 2003.

[5] E.F. Toro, MUSTA: A multi-stage numerical flux, Applied Numerical

Mathematics, 56(10-11), pp.1464-1479, 2006.
[6] E.F. Toro, V.A. Titarev, MUSTA fluxes for systems of conservation laws,

Journal of Computational Physics, 216(2), pp.403-429, 2006.
[7] J.P. Boris, D.L. Book, Flux-corrected transport. I. SHASTA, a fluid

transport algorithm that works, J. Comput. Phys., 11(1), pp.38-69, 1973.
[8] J. Gerhard, V. Lindenstruth, M. Bleicher, Relativistic hydrodynamics on

graphic cards, Computer Physics Communications, 184(2), pp. 311-319,
2013.

[9] G. Zumbusch: Vectorized Higher Order Finite Difference Kernels, In:
Proc. of the 11th international conference on Applied Parallel and
Scientific Computing, pp. 343-357, 2012.

[10] P. Micikevicius: 3D fnite difference computation on GPUs using Cuda.
In: Proc. 2nd Workshop on General Purpose Processing on Graphics
Processing Units, 2009.

[11] T. Nagaoka, S.Watamabe, A GPU-Based Calculation Using the Three-
Dimensional FDTD Method for Electromagnetic Field Analysis in 32nd
Annual Internation Conference of the IEEE EMBS Buenos Aires, 2010.

[12] V. Demir, A. Z. Elsherbeni, Compute Unified Architecture (CUDA)
Based Finite-Difference Time-Domain (FDTD) Implementation in Aces
Journal vol. 25, 2010.

[13] E. Elsen, P. LeGresley, E. Darve, Large calculation of the flow over a
hypersonic vehicle using a GPU, J. Comput. Phys., 227(24), pp. 10148-
10161, 2008.

[14] E. Phillips, M. Fatica, Implementing the Himeno benchmark with CUDA
on GPU clusters. In IEEE International Parallel & Distributed Processing
Symposium, pp. 1-10, 2010.

[15] NVIDIA Corporation: NVIDIA CUDA Programming Guide Version 5.0,
2012.

446 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

