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Abstract—Persistent data of most business applications contain
recursive data structures, i.e. hierarchies and networks. Process-
ing such data stored in relational databases is not straightfor-
ward, since the relational algebra and calculus do not provide
adequate facilities. Therefore, it is not surprising that initial
SQL standards do not contain recursion as well. Although it
was introduced by SQL:1999, even now it is implemented in
few selected database management systems. In particular, one
of the most popular DBMSs (MySQL) does support recursive
queries yet. Numerous classes of queries can be accelerated
using redundant data structures. Recursive queries form such
a class. In this paper we consider four materialization solutions
that speed up recursive queries. Three of them belong to the
state-of-the-art, while the fourth one is the contribution of this
paper. The latter method assures that the required redundant
storage is linearithmic. The other methods do not guarantee such
a limitation. We also present thorough experimental evaluation
of all these solutions using data of various sizes up to million
records. Since all these methods require writing complex code
if applied directly, we have prototyped an integration of them
into Hibernate object-relational mapping system. This way all the
peculiarities are hidden from application developers. Architects
can simply choose the appropriate materialization method and
record their decisions in configuration files. All necessary routines
and storage objects are then generated automatically by the ORM
layer.

I. INTRODUCTION

D
ATA models of numerous business enterprises encom-

pass recursive data structures in the form of hierarchies

and networks. They store data on e.g. railway networks, bill of

material and product categorization. Their actual storage for-

mat can be chosen from a plethora of proposals [1]. There are

various ways to query such data. Obviously, a dedicated 3GL

client code can be written. Then, the data processing is done

on the client side. In this case a significant amount of complex

source code must be created, debugged and maintained. This

usually causes a noteworthy increase of the budget and a shift

in the delivery schedule. Therefore, a server side solution

is called for. It was proposed as extensions to SQL, e.g.

Oracle’s CONNECT BY clause or recursive Common Table

Expressions eventually adopted in SQL:1999. Such extensions

have been implemented in numerous database systems [2].

This work was supported by the Polish National Science Centre grants
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Simultaneously the academia worked on optimization meth-

ods for such queries [3], [4], [5]. However, there are still

database managements systems that do not support recursion

in queries, e.g. MySQL. Since they are widely adopted and

used, applications programmers often face the question how to

query their recursive data. As noted above, they can choose to

hardcode suitable logic in the application. In spite of deceptive

simplicity of this solutions, it causes merely troubles: lower

efficiency, increased cost and complexity, as well as reduced

maintainability.
On the other hand, object-relational mapping systems

(ORM) [6], [7] are a possible way to solve the above prob-

lem. They bridge the gap between data models of relational

storage and object-oriented code [8], [9]. Besides this basic

functionality, they also establish a thick abstraction layer that

can be augmented with abundant features. In our research, we

have prepared proof-of-concept extensions to Hibernate that

realize recursive queries [10], [11], [12], partial aggregation

[13] and functional indices [14]. In particular, we experi-

mented with adding recursion on top of database systems

that do not implement it directly [15]. In order to accelerate

processing recursive queries in such a setting we proposed

adding redundant data.
In this paper we describe another format of redundant data

called logarithmic paths. Its advantage lays in its linearithmic

size, while most state-of-the-art methods possibly lead to

squared space complexity. We also describe our proof-of-

concept implementation of this new method and three known

techniques to build redundant data that facilitate recursive

querying. They are nested sets, materialized paths and full

paths. We show results of extensive performance experiments

to verify the quality of these solutions. They have shown that

there is no dominating method. All of them have advantages

and disadvantages. We summarize them and present recom-

mendations when each of them seems to be the most suitable.
The contributions of this paper are as follows:

• a novel (linearithmic in space) method to build redundant

data that accelerate recursive querying,

• a proof-of-concept implementation of this method in

Hibernate assisted with the implementation of three state-

of-the-art methods,
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> SELECT * FROM emp;

eid | fname | sname | bid

-----+-----------+-----------+-----

1 | John | Travolta |

2 | Bruce | Willis | 1

3 | Marilyn | Monroe |

4 | Angelina | Jolie | 3

5 | Brad | Pitt | 4

6 | Hugh | Grant | 4

7 | Colin | Firth | 3

8 | Keira | Knightley | 6

9 | Sean | Connery | 1

10 | Pierce | Brosnan | 3

...

Fig. 1. Example persistent data on the hierarchy of employees in a company.

• a thorough experimental evaluation of the performance

of these four methods,

• an analysis of their quality and circumstances under

which each of them is recommended.

The paper is organized as follows. In Section II we address

the related work. Section III describes the integration of the

proposed method with Hibernate object-relational mapping

system. In Section IV we present the new materialization

method that uses only linearithmic space. Section V reports

the results of an experimental evaluation of four methods to

build redundant data for recursive queries. Section VI contains

recommendations when each of the considered methods is

most suitable. Section VII concludes.

II. RELATED WORK

Recursive relationships between entities can be imple-

mented with an additional database table or by a single foreign

key in case of hierarchies (many-to-one association). If nodes

and edges are stored in the same table, querying such data can

be more efficient. There are numerous optimisation methods

for recursive queries [3], [4], [5]. The survey [2] summarizes

implementations of recursive queries in commercial and open-

source database management systems.

As noted above, a single table with self-referencing foreign

key is the most straightforward way to store hierarchical data.

In all sections of this paper we use a hierarchy of employees

in a company as the running example. The number of levels

of the hierarchy is not limited. Therefore, there exists no

number n such that all leaves of the hierarchy are no further

than n hops from the root. Figure 1 contains data on an

example hierarchy recorded in the table emp. Figure 2 shows

the schema of this table. The standard SQL:1999 query that

retrieves all records from the subtree spanned by a particular

record is presented on Figure 3.

A. Unrolling

There are database management systems that do not execute

recursive queries with MySQL as the most famous example.

!"#
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Fig. 2. The schema of the table Emp.

WITH RECURSIVE rcte (

SELECT eid, fname, sname, bid,

0 as level

FROM Emp WHERE sname = ’Travolta’

UNION

SELECT e.eid, e.fname, e.sname, bid,

level +1 as level

FROM Emp e JOIN rcte r

ON (e.bid = r.eid)

WHERE r.level<4

)

SELECT e.eid, e.fname, e.sname, bid

FROM rcte

Fig. 3. This query retrieves all subordinates of Travolta.

The wide adoption of the LAMP paradigm of web devel-

opment make us convinced that numerous web enterprises

have to write extra code that queries recursive data. Most of

such projects have similar data, e.g. nested categories of stock

items, posts in discussion forums or revenue sharing chains in

multi-level marketing. In order to address such applications,

we have created a number of methods to run queries to such

data even against database management systems that lack this

feature [15]. Since the resulting solutions are non-trivial, we

have prepared appropriate extensions to Hibernate. Our intent

has been to hide the details from applications programmers and

offer them a uniform API regardless of the chosen backend

storage. Both methods considered in [15] have been integrated

with API as presented on Figure 6. The first method, called

horizontal unrolling, joins the subject table maxlevel times.

Figure 4 shows the horizontal unrolling up to the 3rd level.

SELECT *
FROM Emp l0

LEFT JOIN Emp l1

ON (l0.eid = l1.bid)

LEFT JOIN Emp l2

ON (l1.eid = l2.bid)

LEFT JOIN Emp l3

ON (l2.eid = l3.bid)

WHERE l0.sname = ’Travolta’

Fig. 4. The horizontal unrolling of the query from Figure 3 up to the third
level.

The other method, called vertical unrolling, uses temporary

tables. It sends a number of queries and constructs the answer
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from partial results. Both unrolling methods are notably more

efficient than the potential naïve method that loops over nodes

of the graphs and poses a separate query for each encountered

node. Our experiments indicate that the horizontal variant is

faster.

An application programmer/designer/architect chooses

the required method of unrolling using the annotation

@unrolling. Its parameter method can have two values:

"horizontal" or "vertical". The second (vertical)

variant is the default since this method yields the same

form of result as standard recursive queries. The result of

horizontally unrolled query is slightly different.

B. Redundant data

If an application frequently queries hierarchical data, the

abovementioned unrolling methods will not be efficient. How-

ever, in such cases designers can impose using redundant

materialized data. As mentioned in Section I a number of

such methods has been proposed [16]. Here we consider three

of them. The first method called nested sets and the second

method called materialized paths change the definition of

base tables. They require adding a new column. The third

method called full paths leaves the base table intact and puts

materialized data into an additional table. In the following

subsections we analyze their details.

1) Nested Sets : If the nested sets are used, two columns

will be added to the base table. These are the columns left

and right. The values of these columns satisfy the following

constraints:

• e.left < e.right for every tuple e,

• If a tuple e is in the subtree spanned by a tuple b, then it

is true that e.left > b.left and e.right < b.right.

Figure 5 shows the values of these two columns for the

sample data from Figure 1. Arrows present how the values

grow.
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Fig. 5. Values of the redundant columns left and right in the method
nested set computed for sample data.

The most significant advantage of this method is the possi-

bility to query for descendants by means of a plan vanilla join.

In order to find subordinates of Travolta we just execute

the following query:

SELECT e.eid, e.name

FROM emp e, emp b

WHERE b.name = ’Travolta’

AND e.left BETWEEN b.left AND b.right

AND e.right BETWEEN b.left AND b.right

2) Materialized Paths: The method of materialized paths

stores the whole path from the node to its root in the additional

column paths as shown below:

eid | fname | sname | bid | paths

-----+-------+-----------+-----+------

6 | Hugh | Grant | 3 | [4,3]

7 | Colin | Firth | 3 | [3]

8 | Keira | Knightley | 6 | [6,4,3]

This methods has proven to be noteworthy more universal that

nested sets as discussed in Section V. Unfortunately, such

materialization of paths breaks the first normal form. The

following query enumerates all subordinates of Travolta

when the method materialized paths is applied.

SELECT *
FROM emp

WHERE path_string LIKE (

SELECT concat(path_string,’%’)

FROM emp

WHERE sname = ’Travolta’

3) Full Paths : The method of full paths has been studied

in [17]. That paper contains also a comparison of effectiveness

of the full paths approach against unrolling methods. The

full paths are similar to the materialized paths. However, the

method of full paths stores redundant data in an extra table. We

assume the name of this table to be fullpaths. It contains

a distinct row for every step in any path towards the root. For

Keira Knightley and Colin Firth the table fullpaths

will contains the following rows.

eid | bid | pl

-----+-----+----

7 | 3 | 1

8 | 6 | 1

8 | 4 | 2

8 | 3 | 3

The column pl (path length) contains the number of steps in

the path.

This method is particularly universal. However, if the struc-

ture is deep, the size of the table fullpath can even be square

with respect to the size of the base tables.

If the method of full paths is used, the query for Travolta

subordinates will have the following form.

SELECT e.eid, e.name

FROM emp e JOIN fullpaths fp USING (eid)

JOIN emp b ON (fp.bid = b.eid)

WHERE b.name = ’Travolta’
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III. ORM CAN HIDE RECURSIVE PECULIARITIES

The layer of object-relational mapping [6], [7] facilitates

cleaning the architecture and reducing the complexity of a sys-

tem. However, an additional overhead between the application

logic and the storage layers can hindrance the performance.

In our research we assume that it is not the case. In our

opinion an additional mapping layer can help optimizing the

system. We can put there disparate algorithms and redundant

data structures that aid improving the communication with

the backend storage. The ORM layer also hides most of the

peculiarities of such features from application programmers.

A. Hibernate interface for recursive queries

In our research we have presented the integration of recur-

sive queries with object-relational mapping systems [10], [11],

[12], [18]. In particular, our API for Hibernate allows defining

recursive queries by XML annotations to Java entity classes

[12]. Figure 6 shows a sample annotated entity class. For this

class, ORM produces the table Emp presented in Figure 2.

package sample.recursive.mapping;

import org.ncu.hibernate.annotations.*;

@RecursiveQuery (maxLevel = 4)

@Tables (name = "Emp")

@RecursiveCondition (on = "Emp.bid",

to = "Emp.eid")

@Filter (seed = "Emp.sname = $Param(sname)")

public class Suboridnates {

@Column(name = "Emp.eid")

public String id;

...

}

Fig. 6. This annotation of an entity class causes generation of recursive
facilities.

Consider the following scenario. The class from Figure 6

is registered in Hibernate. If the backend database connected

to Hibernate implements recursive queries, the programmer

can call the API function getRecursive(String). This

function sends the recursive query to the storage layer. If

PostgreSQL is the backend, it will process the query from

Figure 3.

B. Setting the support for recursive queries

If a programmer wants to use some of the above-

mentioned methods to query recursive structures, e.g. un-

rolling or materialization, he/she just adds the anno-

tation @unrolling(method = "method name"). The

name of available methods are: horizontal unrolling,

vertical unrolling, full paths, nested sets,

materialized paths and logarithmic paths. The

method of logarithmic paths is described in Section IV.

If no unrolling is specified and the database does not support

recursive queries, the vertical unrolling will be used by default.

More details of horizontal and vertical unrolling can be found

in [15].

If a method based on materialization is chosen, the ORM

layer will build the required redundant data at the first re-

cursive access to the data. Depending on the method chosen,

the main table will be altered (for nested sets or materialized

paths) or an additional table will be created (for full paths

and logarithmic paths). Then, redundant data get populated.

Eventually, ORM automatically creates all necessary triggers.

Thus, a programmer does nothing but chooses the method and

specifies it in the @unrolling annotation.

IV. LOGARITHMIC PATHS

Section II-B presents three methods to build redundant

materializations that facilitate querying recursive structures

efficiently. In this Section we describe another such material-

ization method, called logarithmic paths or shortly log paths.

This method is a kind of a compromise between full paths and

vertical unrolling [15].

The idea of logarithmic paths is to store only those paths

whose length is a power o 2. We assume that the data on

such paths is stored in the redundant table logpaths. For

Keira Knightley and Colin Firth the table logpaths

will contains the following rows.

eid | bid | pl

-----+-----+----

7 | 3 | 1

8 | 6 | 1

8 | 4 | 2

If the data contains n tuples stored in trees of depth m,

then the table logpaths will contain O(n logm) tuples.

Therefore, we keep only O(logm) tuples for each arbitrary

tuple of the base table, while full paths store O(m) redundant

tuples for each base tuple. For a user query the method of

log paths issues O(logm) database queries for O(1) columns,

while the horizontal unrolling sends O(1) queries for O(m)
columns.

A. Building the table logpaths

In order to populate the table logpaths, the paths of

length 1 are copied from base table:

INSERT INTO logpaths

SELECT eid, bid, 1 AS pl

FROM emp

Next for n = 1, 2, 4, 8, . . . (powers of 2) the following query

is executed as long as it adds new tuples. The population

process will certainly finish since at each step strictly longer

paths are created. Finite hierarchical data can contain only

finite paths. In fact the number of those executions is O(logm)
where m is the maximum depth of the hierarchy.

INSERT INTO powpath

SELECT e.eid, b.bid, 2n AS pl

FROM powpath e

JOIN powpath b ON (e.bid = b.eid)

WHERE e.pl = n and b.pl = n
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B. Querying

At the query time, we have to reconstruct the information

on all paths (as in full paths). We use the following auxiliary

query:

SELECT lp1.eid, lpk.bid,

lp1.pl + lp2.pl + ... + lpk.pl AS pl

FROM logpaths lp1

JOIN logpaths lp2

ON (lp1.bid = lp2.eid)

...

JOIN logpaths lpk

ON (lp(k-1).bid = lpk.eid)

WHERE lp1.pl < lp2.pl

AND ...

AND lp(k-1).pl < lpk.pl

This query reconstructs data on paths whose length (p1)

has exactly k ones in its binary representation. Therefore, we

have to run this query for k = 1, 2, ..., logm and merge their

results using set union. Obviously, it will generate all paths

and no path will be repeated. The resulting union query will

be a part of the eventual user query. If it contains selections,

the optimizer should push them down the query tree. Thus,

with logarithmic paths only a fraction of the potential content

of the table fullpaths will be actually computed.

C. Using ORM

This method has also been integrated into the Hiber-

nate framework. If the annotation @unrolling(method =

"logarithmic paths") is present, the table logpath

will be automatically created and populated at the first recur-

sive query. All necessary triggers are also created automati-

cally.

V. PERFORMACE

The methods discussed in this paper has been tested on

a computer with AMD Phenom II 3,4GHz, 8GB RAM and

2 Caviar Black 7400rpm 500 GB HDDs. The test has been

run against Hibernate with a standard installation of MySQL

as the backend database. We used six data sets of various sizes.

Three of them contain 100 000 records organized in trees of

depths 10, 15 and 20. The other three contain 1000000 records

organized in trees with the same depths, i.e. 10, 15 and 20.

We have tested seven usage scenarios.

The tables that report the results are organized as follows.

Each table is divided into two parts. The first part presents

results for data sets of 100 000 records, while the second part

corresponds to data sets composed of 1 000 000 records. The

first column of each table shows the depths of the trees. The

second column presents times of evaluation for the presented

methods. The names of two methods, namely nested sets and

materialized paths are abbreviated to ns and mp respectively.

A. Building redundant materialization

In the first test we examine the time required to build

redundant data structures that accelerate perspective recursive

queries. We assume that the base table contains appropriate

data and the derived table is empty. The results are presented

in Table I.

TABLE I
TIME NECESSARY TO BUILD MATERIALIZED DATA

100 000 rec
full path logpath ns mp

10 00:00:47,94 00:00:15,90 00:00:29,41 00:00:12,59
15 00:01:26,20 00:00:17,67 00:00:29,26 00:00:13,23
20 00:02:54,21 00:00:21,82 00:00:29,55 00:00:13,54

1 000 000 rec
full path logpath ns mp

10 00:22:13,21 00:04:53,27 00:34:59,03 00:05:16,97
15 01:00:24,07 00:05:30,94 00:39:47,73 00:05:10,29
20 02:03:50,40 00:06:24,73 00:39:25,69 00:05:31,39

B. Finding subordinates of root

We assume that we have an object representing a root in

the hierarchy. We want to enumerate all nodes in the subtree

below this root. The results are presented in Table II.

TABLE II
TIME NECESSARY TO FIND SUBORDINATES OF A ROOT

100 000 rec
full path logpath ns mp

10 00:00:01,57 00:00:07,99 00:00:00,51 00:00:00,56
15 00:00:01,91 00:00:08,90 00:00:00,51 00:00:00,60
20 00:00:03,64 00:00:05,27 00:00:00,51 00:00:00,64

1 000 000 rec
full path logpath ns mp

10 00:00:30,16 00:04:32,97 00:00:10,27 00:00:09,70
15 00:00:40,09 00:07:08,23 00:00:10,96 00:00:10,09
20 00:00:49,72 00:07:44,32 00:00:10,94 00:00:10,08

C. Finding a subordinate of an arbitrary node

We assume that we have an arbitrary object in the hierarchy.

We want to find an example node in the subtree below this

node. The results are presented in Table III.

TABLE III
TIME NECESSARY TO FIND SUBORDINATES OF AN ARBITRARY NODE

100 000 rec
full path logpath ns mp

10 00:00:00,01 00:00:00,02 00:00:00,02 00:00:00,02
15 00:00:00,02 00:00:00,02 00:00:00,01 00:00:00,02
20 00:00:00,07 00:00:00,01 00:00:00,01 00:00:00,02

1 000 000 rec
full path logpath ns mp

10 00:00:00,27 00:00:00,06 00:00:00,03 00:00:00,48
15 00:00:00,40 00:00:00,12 00:00:00,03 00:00:00,44
20 00:00:00,36 00:00:00,12 00:00:00,03 00:00:00,42

D. Finding the root for an arbitrary node

We assume that we have an arbitrary object in the hierarchy.

We want to find the root of the tree that contains the given

object. The results are presented in Table IV.
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TABLE IV
TIME NECESSARY TO FIND THE ROOT FOR AN ARBITRARY NODE

100 000 rec
full path logpath ns mp

10 00:00:00,00 00:00:00,01 00:00:00,01 00:00:00,01
15 00:00:00,00 00:00:00,05 00:00:00,01 00:00:00,01
20 00:00:00,01 00:00:00,05 00:00:00,01 00:00:00,01

1 000 000 rec
full path logpath ns mp

10 00:00:00,01 00:00:00,01 00:00:00,01 00:00:00,01
15 00:00:00,01 00:00:00,07 00:00:00,01 00:00:00,01
20 00:00:00,01 00:00:00,08 00:00:00,01 00:00:00,01

E. Inserting new nodes

The next three tests are devoted to the assessment of the

overhead imposed by all four methods when updates of the

structure occur. Table V presents efficiency measures for the

operation of inserting new rows into an existing base table. In

this test we only added leaves to the hierarchy.

TABLE V
TIME NECESSARY TO INSERT NEW NODES TO THE HIERARCHY

100 000 rec
full path logpath ns mp

10 00:00:00,14 00:00:00,08 00:00:05,22 00:00:00,06
15 00:00:00,20 00:00:00,09 00:00:04,35 00:00:00,06
20 00:00:00,20 00:00:00,08 00:00:16,54 00:00:00,05

1 000 000 rec
full path logpath ns mp

10 00:00:00,15 00:00:00,11 00:07:47,67 00:00:00,05
15 00:00:00,17 00:00:00,12 00:08:27,64 00:00:00,05
20 00:00:00,16 00:00:00,12 00:08:16,85 00:00:00,05

F. Deleting nodes

In this test we examine the time needed to complete the

delete operation. As in the previous test, we deleted leaves

only. Deleting rows from the structure. The results are pre-

sented in Table VI.

TABLE VI
TIME NECESSARY TO DELETE A NODE FROM THE HIERARCHY

100 000 rec
full path logpath ns mp

10 00:00:00,05 00:00:00,08 00:00:05,57 00:00:00,06
15 00:00:00,05 00:00:00,08 00:00:06,67 00:00:00,05
20 00:00:00,04 00:00:00,09 00:00:16,92 00:00:00,04

1 000 000 rec
full path logpath ns mp

10 00:00:00,04 00:00:00,07 00:09:53,84 00:00:00,05
15 00:00:00,04 00:00:00,08 00:09:37,94 00:00:00,04
20 00:00:00,04 00:00:00,09 00:08:59,66 00:00:00,04

G. Updating nodes

In this test we measure the time needed to move a subtree

to some other place. The results are presented in Table VII.

VI. ANALYSIS

In this Section we analyze the results of performance tests

presented in Section V. We also formulate recommendations

TABLE VII
TIME NECESSARY TO MOVE A SUBTREE

100 000 rec
full path logpath ns mp

10 00:00:08,53 0:00:26,60 00:00:19,28 00:00:00,61
15 00:00:16,01 00:00:51,14 00:00:08,70 00:00:00,64
20 00:00:52,75 00:01:28,36 00:00:24,15 00:00:01,19

1 000 000 rec
full path logpath ns mp

10 00:04:30,89 00:13:37,25 00:00:22,51 00:00:00,47
15 00:07:49,17 00:35:06,68 00:01:20,40 00:00:00,08
20 00:13:38,99 00:57:39,43 00:00:28,07 00:00:00,92

for which usage scenarios each of the analyzed methods

is the most suitable. We presented four methods to build

redundant data for efficient recursive queries. We divide them

into two groups of two methods each. The first group contains

methods that store data in additional tables, i.e. full paths

and logarithmic paths. Since they do not require altering the

original database schema, it will be easier to introduce them

into an existing installation. The size of redundant data for

full paths is O(nm) where n the size of the data and m is the

maximum depth of the hierarchy. In case of logarithmic paths

this size is only O(n logm). Thus the method is feasible also

in case of deep trees, i.e. when m = O(n).

47.94sfull path

15.9slog path

29.41sns

12.59smp

0s 10s 20s 30s 40s 50s

100 000 records deep of tree 10

3624sfull path

330.9s log path

2387.7sns

310.3smp

0s 1000s 2000s 3000s 4000s

1 000 000 records deep of tree 15

7430sfull path

385s log path

2365sns

331s mp

0s 2000s 4000s 6000s 8000s

1000 000 records deep of tree 20

Fig. 7. The comparison of times necessary to build materialized data.

A significant advantage of logaritmic paths is the time

necessary to construct the redundant data structure. For each

analyzed size of data this method has proven to be fast and

1444 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013



comparable only to materilized paths. Figure 7 shows this

comparison. Unfortunately, the efficiency of queries with this

methods is notably lower. It is caused by multiple equijoins

that are required to assemble all paths. For depth 20, logarith-

mic paths execute four subqueries combined by the set union.

The most complex component of this union is a 4-way self

join of the table logpath. The tests have shown that if the

depth of the hierarchy grows, so does the execution time of

queries. Figure 8 presents the comparison of times necessary

to run the query that retrieves subtrees.

1.57s full path

79.9slog path

5.1s ns

5.6s mp

0s 20s 40s 60s 80s

100 000 records deep of tree 10

49.72s full path

464.3slog path

10.94s ns

10.08s mp

0s 100s 200s 300s 400s 500s

1000 000 records deep of tree 20

Fig. 8. The comparison of times necessary to retrieve whole subtrees.

On the other hand, full paths are useful when the data is

collected incrementally as presented on Figure 9. Both creation

and synchronization of redundant data is reasonably fast.

However, in presence of deletes and updates that thoroughly

change the structure of the tree, full paths are too inert and

such operations are exceptionally costly.

The second group of methods modifies the base table by

adding extra columns. Such an intervention into the schema

may be too severe in existing deployments and probably

will never be accepted in such circumstances. This group

of methods contains nested sets and materialized paths. The

first of them is optimized for retrieving whole subtrees. It

requires careful allocation of identifiers. Furthermore, it is

definitely the most expensive for maintenance in case of

updates. The operations that modify the structure are two

orders of magnitude slower than in case of other methods.

On the other hand, nested sets are extremely fast for queries

that search subtrees.

However, also for such scenarios materialized paths are

slightly faster. This method is usually more efficient than all

other methods. Unfortunately, it is also the only one that

uses semistructured columns, i.e. non first normal form. If

we accept this drawback, we will get the fastest querying

method. Its disadvantages show at updates changing the logical

structure of the tree.

200ms full path

90ms log path

4350msns

60ms mp

0ms 1000ms 2000ms 3000ms 4000ms 5000ms

Insert in dataset 100 000 records deep of tree 15

50ms full path

80ms log path

6670msns

50ms mp

0ms 2000ms 4000ms 6000ms 8000ms

Delete in dataset 100 000 records deep of tree 15

Fig. 9. The comparison of times necessary to insert and delete leaves.

271sfull path

817slog path

22s ns

0.47s mp

0s 200s 400s 600s 800s 1000s

1 000 000 records deep of tree 10

818msfull path

3459mslog path

28ms ns

0.92ms mp

0ms 800ms 1600ms 2400ms 3200ms 4000ms

1 000 000 records deep of tree 20

Fig. 10. The comparison of times necessary to move subtrees.

VII. CONCLUSIONS

In this paper we discussed four materialized data structures

that accelerate recursive queries to hierarchical data. One of

them called logarithmic paths is an original contribution of

this paper. Logarithmic paths is the place where other methods

meet halfway. Its efficiency is worse by a logarithmic factor

than other methods that consume square space. However,

logarithmic paths consume only linearithmic space.

We reported the results of experimental evaluation of all

the four methods. None of them proved to be always worse

or better than another tested method. For each of them, there

are scenarios where it is the recommended materialization. We

summarized our advises when to use each of the methods.

All these methods have been prototypically implemented as

part of Hibernate, i.e. the most popular Java object-relational

mapping system. This allows (1) hiding all the peculiarities of
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these solutions from application programmers and (2) offering

architects and tuners an easy choice of the materialization that

is the most suitable for the application at hand.
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