


Abstract—This paper presents an approach for underdeter-
mined blind source separation that can be applied even if the
number  of  sources  is  unknown.  Moreover, the  proposed ap-
proach is applicable in the case of separating I+3 sources from I
mixtures without  additive  noise.  This  situation is  more chal-
lenging and suitable to practical real world problems. Also, the
sparsity conditions are not imposed unlike to those employed
by some conventional approaches. Firstly, the number of source
signals are estimated followed by the estimation of the mixing
matrix based on the use of short time Fourier transform and
rough-fuzzy  clustering.  Then,  source  signals  are  normalized
and recovered using  modified  Lin's  projected  gradient  algo-
rithm with modified Armijo rule. The simulation results show
that  the  proposed  approach  can  separate  I+3  source  signals
from I mixed signals,  and it  has  superior evaluation perfor-
mance compared to conventional approaches.

Keywords—Underdetermined  Blind  Source  Separation;
Rough Fuzzy clustering; Short Time Fourier transform; Lin's
Projected Gradient; Armijo rule

I. INTRODUCTION

LIND Signal Separation (or Blind Source Separation,

BSS) has received a great deal of attention in the fields

of digital communication systems, speech processing, medi-

cal  imaging,  water  marking,  biomedical  engineering,  and

data mining [3]-[7] in recent years in combination with arti-

ficial neural networks, information theory, and computer sci-

ence applications. Blindness or blind separation means that

no or very little information is known about the source sig-

nals or the mixing system [1].

B

The objective of BSS is to extract original source signals

using only the information gathered from observed signals

with no or very limited knowledge about the source signals

or  the  mixing  system.  The  approaches  developed  by  re-

searchers  in  the last  few years  can  be  classified  into two

methodologies, namely over-determined BSS and underde-

termined BSS,  according to  the number of  source  signals

and observable mixed signals [20]. BSS that has fewer sen-

sors  or  observable  mixed  signals  than  source  signals  is
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called underdetermined BSS while a BSS that has more sen-

sors than sources is called over-determined BSS, Underde-

termined BSS is challenging and is more realistic in practi-

cal situations. However, most approaches for BSS rarely in-

volve  underdetermined BSS cases.  The  classical  indepen-

dent component analysis (ICA) approach fails to solve un-

derdetermined BSS problems [10]. Moreover in many prac-

tical problems, there are a large number of source signals but

a few numbers of sensors that means the underdetermined

case. Another major difficulty of ICA is that the mixing ma-

trix and the magnitude of original source signals cannot be

estimated due to its ambiguities and that the order, sign, and

the variances of the independent components cannot be de-

termined [2].

Most of the current traditional BSS methods assume that

the source signals are as statistically independent as possible

given the observed data and that the mixing matrix is of full

column rank. In  many real-world situations,  however, this

hypothesis is not valid. Consequently, recovering the source

signals by multiplying the observable data mixtures by the

pseudo inverse of the mixing matrix cannot be used. This

makes recovering the source signals a very challenging task

[8]. In practical terms, the over-determined mixture assump-

tion does not always hold (e.g., in radio communications the

probability of receiving more sources than sensors increases

with increase of reception bandwidth), thus it is necessary to

solve the problem of underdetermined blind source separa-

tion (UBSS) [9].

Nonnegative Matrix Factorization (NMF) has been widely

applied to  BSS problems.  However, the separation results

are  sensitive  to  the  initialization  of  parameters,  also  the

additive  parts  by NMF are  not  necessarily  localized,  and

consequently  the  solution  is  not  unique.  Avoiding  the

subjectivity of choosing parameters, we use general matrix

factorization  (GMF),  which  completely  relaxes  the

non-negativity constraints  from its  factors  with  the  Alter-

native Least Squares (ALS) method as an initialization to the
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source signals instead of random initial values. GMF is a 

generalization of the well-known NMF where the NMF is 

constrained by non-negativity on all its factors, is not 

necessarily localize, has low convergence and, does not 

provide a unique solution in some cases without additive 

constraints and parameters. However, GMF has no 

constraints of non-negativity and is fast convergent with the 

ALS method used for initialization and improvement.  

The motivation of this research is to separate sparse, and 

super and sub-Gaussian signals in the underdetermined case 

with an unknown number of source signals without resorting 

to any sparsity conditions, and to increase the performance 

of the separation. 

The rest of the paper is organized as follows. Section II 

formulates the problem. In Section III, we introduce an 

overview, background, and the basic concepts of Projected 

Gradient and GMF, alternative least square, and rough fuzzy 

clustering. In Section IV, we present the details of the 

proposed approach. In section V, we show the analysis of 

typical experiments and the results obtained by different 

BSS methods, where the simulation results show the 

effectiveness and high performance of the proposed 

algorithm. Finally, a short conclusion and future work are 

presented in Section 6. 

II. PROBLEM STATEMENT 

The problem considered in this paper is an 

underdetermined instantaneous BSS with an unknown 

number of source signals but without background noise, 

which can be mathematically formulated as follows: 

 

Assume that for I unobservable 

components
1 2( ) [ ( ), ( ),...., ( )]JX t tr X t X t X t , where J is 

the number of source signals, and X(t) is a zero-mean vector. 

The available sensor vector 1 2( ) [ ( ), ( ),...., ( )]IY t tr Y t Y t Y t , 

where I is the number of sensors and tr is the transpose of 

the vector, is given by 

( ) ( ).Y t AX t  

Here I JA R  is a non-singular and unobservable matrix 

and has a non-zero determinant, and the rank of A is I. 
J TX R  , 

I TY R  . t=0,….,T-1 are the sampling instant 

time points. 

III. PRELIMINARY TOPICS 

This section provides a brief explanation of the basic 

technologies used in this paper including projected gradient 

and GMF, alternative least squares, and rough fuzzy 

clustering. 

A. Projected Gradient and General Matrix Factorization  

GMF is a generalization of NMF where there are no 

nonnegative constraints on all of the factors [12] and is the 

focus of a great deal of attention in Mathematics and 

Computer Science. NMF has been widely used in many 

areas including BSS [11], [13], [14]. However, the solution 

is not unique since NMF is non-convex programming, and 

in most algorithms it frequently converges to local optima. 

Unlike NMF, GMF is convergent and has good local optima 

avoidance when initialized with ALS. In this paper, GMF is 

regarded as a good tool for solving the problem of UBSS. 

The novelty in this paper is that GMF is to solve the UBSS 

problem for the first time. 

The basic GMF decomposition model for BSS is as 

follows: 

Y A X         (1) 

where, I TY R  represents the observable mixtures, 

I JA R  is the mixing matrix, and J TX R  is the source 

signals matrix. Hence, Y, A, and X have both signs unlike 

NMF where Y, A, and X are non-negative. For BSS, I is the 

number of mixtures or sensors, T is the number of sample 

time points, and J is the number of sources. With only the 

data observable mixtures (Y) as the only known variable, the 

mixing matrix A and the source signals X are estimated 

using Equation (2). 

We will use the projected gradient based update rules in 

GMF. These updates take the following generalized form of 

iterative rules [11]:  
( 1) ( )n n

X XX X P       (2) 

                  
( 1) ( )n n

A AA A P            (3) 

where PA and PX are the descent directions, and A and 

x are the learning rates, of A and X respectively. 

The projected gradient algorithms for GMF are based on 

the alternating minimization technique which can be written 

in the matrix form as follows: 

 
21

min ( || ) || ||
2ij

F
x

Cost Y AX Y AX                      (4) 

 
21

min ( || ) || ||
2ij

T T T T T T

F
a

Cost Y X A Y X A        (5) 

Basically, the matrix A is assumed to be full rank. 

Consequently, this provides the existence of a unique 

solution * J TX R  . The gradient matrix for A and X is 

given by the following equations: 

 ( ) ( || ) ( )T

X XGrad X Cost Y AX A AX Y           (6) 

    ( ) ( || ) ( )T T T T

A AGrad A Cost Y X A AX Y X     (7) 

One of the projected gradients based approaches, and will 

be applied in this paper in a modified version, is Lin's 

projected gradient algorithm [15]. Lin's projected gradient 

(LPG) algorithm can be induced by the iterative formulas 

(2) and (3) with AP and XP expressed by the equations (6) 

and (7). Moreover, the projection on the subspace of non-

negative real numbers is not considered. 
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B. Alternative least squares (ALS) 

The minimization of cost function in equations (4) and (5) 

which represent the standard squared Euclidean distance can 

be formulated as follows: 

21
( || ) || ||

2

1
( ) ( )

2

FCost Y AX Y AX

tr Y AX Y AX

 
  

  (8) 

where tr stands for the transpose of the matrix. The above 

cost function can be alternately minimized with respect to 

the two factors A and X [11]. Moreover, each time during 

the optimization process of one factor while keeping the 

other one fixed [18],[19] and finding the stationary or 

critical points, which are obtained by equating the gradients 

to zero. This corresponds to the following two minimization 

problems: 

( 1) ( ) 2

( 1) ( 1) 2

min || ||

min || [ ] ||

k k
A F

k T T k T
X F

A Y AX and

X Y X A


 

  
      (9) 

The gradients after equating them by zero according to the 

Karush-Kuhn-Tucker (KKT) optimality conditions are: 

|| )
[ ] 0

D (Y AX
T TF Y X AXX

ija
ij

     , 

( || )
[ ] .T TF

ij

ij

D Y AX
A Y A AX ij

x

         (10) 

Consequently, 

1( )T TA Y X XX   and, 1( ) .T TX A A A Y     (11) 

This method will be used as an initialization in our proposed 

system.  

C. Rough fuzzy clustering 

In fuzzy c-means (FCM) algorithm developed by Dunn in 

1973, improved by Bezdek in 1981, and is the best known 

method for fuzzy clustering, based on optimizing objective 

function, the concept of traditional k-means clustering 

algorithm is extended which for each data point a degree of 

membership or membership function [0,1]ij  of clusters is 

calculated. 

2/ 1

1

1
ij

c ik

j

jk

d

d

 


     
                                               (12) 

, where  is the degree of fuzziness. 

In contrast to fuzzy clustering, in rough c-means (RCM), 

the concept of k-means is extended by considering each 

cluster as an interval or rough set Y [16]. It is characterized 

by the lower approximation BY and the upper 

approximations BY with the following properties: (i) an 

object or a sample yk can be part of at most one lower 

approximation; (ii) if ky BY of cluster X, then 

simultaneously ky BY ; and (iii) if ky is not a part of any 

lower approximation, then it belongs to two or more upper 

approximations. This permits overlaps between clusters. 

A rough–fuzzy c-means algorithm which involves the 

integration of fuzzy and rough sets has been developed [17]. 

This allows incorporating the fuzzy membership value ij of 

a sample yk to cluster center i . Moreover, instead of 

absolute individual distance dik from the centroid, the 

membership to the cluster center i  is relative to the other 

centers j i j   . Consequently, the robustness of the 

clustering will be enhanced with respect to different choices 

of the parameters. The centroid i of cluster Ui can be 

determined by the following equation: 

( )

( )

, ,

, ,
| |

.
| |

k i i

k

i i i

k
y BU BU

i i i i

i i

ky BY

i

Z if BU BU BU

y

if BU BU BU
BU BU

y
otherwise

BU

  



                    




 

                                                                               (13)  

where,  

( ) ( )

| || |

k i i k i

k k
y BU BU y BU

upper lower

ii i

y y

Z W W
BUBU BU

   
 

 

The algorithm of rough fuzzy c-means is stated below in 

Algorithm 1. 

 
Algorithm 1 Rough fuzzy c-means clustering  

Step1: Assign initial means βi for c clusters. 

Step 2: Compute the fuzzy membership ij for c clusters and N data 

objects according to equation (12) and Normalize the distances 

used for fuzzy membership in [0,1]. 

Step 3: Assign each data object yk to the lower or upper 

approximation of cluster pair Ui and Uj.  

Step 4: Compute the difference ik jk  to cluster centroids 

i and j  

Step 5: Let ik be maximum and jk be the next to maximum 

Step 6: If ( )ik jkabs    is less than some threshold 

            Then,
 

k iy BU and k iy BU and yk cannot be a member of any lower 

approximation, 

            Else, 
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 k iy BU such that the membership ik is the maximum over c 

clusters 

Step 7: Compute the new centroid for each cluster using equation 

(13) 

Step 8: Repeat Steps 2–7 until convergence or until there are no 

new assignments. 

 

IV. PROPOSED UBSS ALGORITHM 

In this section, the proposed approach is presented briefly 

starting with estimating the mixing matrix knowing only the 

observable mixtures matrix. Also, a method for GMF 

gradient-based update rules initialized with ALS is 

introduced. 

A. Mixing matrix estimation based on short time Fourier 

transform and rough fuzzy clustering 

Conventional algorithms estimate the mixing matrix 

based on clustering algorithms such as the k-means 

algorithm require that the source signals to be very sparse in 

the time domain and this is unavailable in many practical 

real world problems. Other algorithms are based on an 

assumption that there exist many TF points of single source 

occupancy (SSO), or require that there exists at least one 

small region in the TF plain with only a single source and 

such a TF region must exist for each source. All 

aforementioned approaches require that for each source 

there exist many TF points of SSO. However, single source 

detection (SSD) requires that there exists at least one TF 

point of SSO and is hence less restrictive than the other 

approaches [20]. 

The short time Fourier transform (STFT) of the ith 

observed signal is defined by the following equation: 

0( , ) ( ) ( )Fourier jrl

li iY t r h l t X l e                     (14) 

at frame t and frequency bin r where h(l) is a window 

sequence. In equation (14), i=1,2,…,I; t=0,1,…,T-1 are the 

sampling points over the time domain and r=0,1,…,T-1 are 

the sampling points over the frequency domain. The SSD is 

based on the ratio of the TF transforms and finds a set of TF 

points where a single source is active for each source. 

Therefore, for a given  > 0, a set  

1

1

( , )
( , ) | || Im || , ( , ) 0

( , )

S
S

F FS

Y t r
t r Y t r

Y t r
               (15) 

where, Im[ ] denotes the imaginary part. We can choose 

any of the mixture instead of Y1.   

During clustering the observable mixtures after 

incorporating STFT, we need to determine the number of 

source signals. Since there is an overlap between the data 

objects, estimating the number of sources require an 

efficient validity index [21] and can be given by the 

following equation: 

max

( )
( , ) ( )

( )

Sep c
V c Scat c

Sep C
                            (16) 

where,  is the cluster centers, c is the number of 

clusters, and Cmax is the chosen maximum number of 

clusters. Here, 

1

1
|| ( ) ||

( )
|| ( ) ||

c

iicScat c
Y

 

 

                                      (17) 

Also, the value of Scat(c) varies from 0 to 1. The term 

that represents the separation between clusters is defined by 
12

2max

2
1 1min

( ) || ||
c c

i j
i j

D
sep c

D
 



 
                           (18) 

where, 

min max ,min || ||, max || ||i j i j i j i jD D        

After clustering, and determining the number of source 

signals, the ith column vector of A, denoted as îa , is 

estimated as 

( , )

1
ˆ Re [ ( , )].

| | Cii

F

i
t rC

a Y t r
 

                                 (19) 

Here | |
iC represents the number of TF points in cluster 

Ci for i=1,2,…,J. 

 

Algorithm 2 Mixing matrix estimation and determining the 

number of source signals  

Input: the observable mixtures Y= [Y1, Y2,……..,Yt] 

Output:  number of source signals, the mixing matrix A 

Step1: Calculate STFT Y using equations (14) 

Step 2: Calculate F using equation (15) 

Step 3: Cluster S using rough fuzzy c-means clustering stated in 

Algorithm 1 for different number of clusters by choosing Cmin, Cmax 

(i.e. min and max chosen number of clusters, respectively) using 

equations (16)-(18) and the cluster number that minimizes V is 

considered to be the optimal value for number  of source signals. 

Step 4: Determine the TF points and their quantity in each cluster. 

Step 5: Calculate the columns of the mixing matrix A using 

equation (19) 

 

B. Lin's Projected Gradient (LPG) with Armijo rule based 

GMF 

In Lin's projected gradient algorithm the learning rates 

A and x are not fixed diagonal matrices in the inner 

iterations but are scalars. These learning rates are computing 

by inexact estimation techniques. Lin considered two 

options to estimate the learning rates. The first option is the 

Armijo rule along the projective arc of the algorithm 

proposed by Bertsekas [23]. The value of the learning 

rate x , for every iterative step of the algorithm, is given by: 

( ) kmk

x  ,                                                            (20) 

where km is the first non-negative integer m for which 

  ( 1) ( )

( ) ( 1) ( )

( || ) ( || )

( || )

k k

k T k k

X

Cost Y AX Cost Y AX

tr Cost Y AX X X





   (21) 
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with (0,1) (0,1)and   . The value of the learning 

rate A is computed in a similar way. 

The second option is the modified Armijo rule. Lin and 

More [24] noticed that A and x might be very similar, and 

they proposed to start from ( 1)k

x   and to increase or 

decrease the learning rate according to condition (20). Here 

in this paper LPG algorithm with Armijo rule is extended, 

different from [11], for general matrix factorization relaxing 

the non-negativity constraints. Moreover the value of  and 

 are changed to be ( 1,1) ( 1,1)and     . The algorithm 

of the modified LPG algorithm with Armijo rule is listed 

below in Algorithm 3. 

Algorithm 3 Modified LPG based GMF  

Input: the observable mixtures Y= [Y1, Y2,……..,Yt], 

number of components (source signals) J, Maximum number 

of iterations N, the mixing matrix A estimated from 

algorithm 2 

Output: the estimated source signals X 

Step 1: Initialize the matrix X by ALS according to equation 

(11)  

Step 2: set x =1 

Step 3: Assign ( 1) ( )n n
X XX X P    

Step 4: Repeat 4-10 until the stopping criteria is met 

Step 5: If condition in (21) is met, then 

Step 6: Repeat steps 5,6 until condition (21) does not hold  

Step 7: Assign x
x

   

Step 8: Update ( 1) ( )n n
X XX X P    

Step 9: Else 

                  Repeat steps 8,9 until condition (21) is met 

Step 10: Set x x     

Step 11: Update ( 1) ( )n n
X XX X P      

The source signals are then rescaled and normalized 

V. EXPERIMENTS AND SIMULATION 

In this section, the effectiveness of the proposed approach 

will be discussed by comparing results of experiments and 

stimulations. Experiments and simulations were performed 

on synthetically generated signals using the proposed 

approach and other conventional approaches. In the 

simulations, sparse, super- and sub-Gaussian signals were 

separated from the underdetermined mixtures in the 

challenging case where the true number of source signals is 

unknown.  

The parameter inputs of the modified LPG algorithm are 

the observable mixtures matrix Y, and the mixing matrix A 

obtained from algorithm 2. We choose the maximum 

number of iterations to be only 25 iterations. We investigate 

the performance of the proposed UBSS approach in the 

above mentioned cases by comparing its results with the 

results of approaches in Khor (2006) [22], Kim and Yoo 

(2009) [20], Xiang and Peng (2010) [8]. Here, the 

simulation of the separation of sparse and Gaussian signals 

is provided followed by some discussion. Then, the cases of 

a variety of sparse, non-sparse, and super- and sub-Gaussian 

signals are stated. 

A. Sparse and Gaussian signals 

The separation of J synthetic Gaussian and sparse signals 

from I=3 mixtures was performed in the time domain for 

J=4, 5, and 6 source signals. In this simulation, the mixing 

matrix was estimated using algorithm 2. The proposed 

approach was compared to the abovementioned algorithms. 

The simulation settings were as follows. Synthetic sparse 

signals were generated by generating 5000 Gaussian 

samples using the randn command of Matlab and 

substituting 80% of the samples chosen randomly by zeros 

for each source. The results show that the proposed 

approach can separate I+3 source signals from I mixtures, 

unlike the previous approaches. This is confirmed in the 

next simulations. The analysis aims at comparing mainly the 

reconstruction index Signal-to-Interference Ratio (SIR) to 

evaluate the performance of the proposed approach. Given 

original source signals X and its estimations X̂ obtained by 

the proposed approach, SIR in decibels is defined as 
2

2

ˆ|| ||
10 log( ), 1, 2,....,

|| ||

i i F

i F

X X
SIR i J

X

      (15) 

Fig. 1 illustrates the averaged SIRs when the number of 

the sources increases from 4 to 6 signals. 
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Fig. 1. performance estimation of the source signals according to the 

number of sources from 3 observable mixtures (in case of Sparse and 

Gaussian sources). 
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B. Synthetic signals 

We investigated the effectiveness of the proposed UBSS 

approach by comparing with the methods mentioned above. 

We chose the number of mixtures to be only 2 and the 

number of sources to be 5 in order to prove that the 

proposed algorithm can separate I+3 source signals from I 

mixtures. The mixture signals that we perform our 

experiments on are mixed by the following randomly 

generated mixing matrix: 

0.5377   -2.2588    0.3188   -0.4336    3.5784

1.8339     0.8622   -1.3077    0.3426    2.7694

     
The mixing matrix was once again estimated using 

algorithm 2. The true and estimated values of A are shown 

in Table 1. The six source signals, two observable mixtures, 

and estimated source signals are plotted in Fig. 2. The 

number of sampling time points is 10,000. The simulation 

results of the proposed approach in addition to those of the 

five different UBSS methods are shown in Fig.4. The 

performance of the source recovery method can be evaluated 

by Eqs. (15) and (16). 

2

2

|| ||1
10log

ˆ|| ||

i F

i
i i F

X
SNR

J X X

            (16) 

Where J is the number of sources and 2|| . ||F is the 

Frobenius norm. The efficiency of the separation results is 

good when 25SNR  [10]. 
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            Fig. 2. (a) Source signals 

 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-100

-50

0

50

 

  0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-40

-20

0

20

40
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       Fig. 2. (c) Estimated source signals 
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Fig. 3. Performance estimation of the source signals from 2 observable 

mixtures. 
 

We note from Fig. 3 that the proposed approach achieves 

about 5.7 dB higher SIR for J=5 sources with only two 

mixtures than the highest performance algorithm among the 

other three approaches. Another comparison of the proposed 

approach with the other five approaches is presented using 
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the following examples with 2 observable mixtures where Xi

is the chosen source signal shown in Fig. 4.

Example 1.X={X1, X2, X5}

Example2. X={X1, X2, X3, X5} 

Example 3. X={X1, X2, X3, X4, X5}

Fig. 4. Performance estimation of Examples 1–3 from 2 observable mix-
tures.

From the results in Figs. 3and 4, we can conclude that the
separation  performance  of  the  proposed  approach  is  very
high, has faster  convergence, and can separate I+3 source
signals from I mixed signals.

II.CONCLUSION

In  this  paper, we addressed the problem of underdeter-

mined blind source separation with the challenging case that

the  true  number  of  source  signals  is  unknown.  A  new

two-step approach for optimum estimation of the source sig-

nals without additive noise. In this approach, STFT is com-

bined with rough fuzzy c-means clustering to estimate the

mixing matrix and determine the number of source signals.

Then the source signals are estimated by a modified LPG al-

gorithm with Armijo rule based general matrix factorization.

Simulation experiments demonstrated the validity and supe-

rior performance of the proposed approach.
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