
Concern-oriented Source Code Projections
Matej Nosál’, Jaroslav Porubän and Milan Nosál’

Department of Computers and Informatics
Technical University of Košice

Letná 9, 042 00 Košice, Slovakia
Email: matej.nosal@gmail.com, {jaroslav.poruban,milan.nosal}@tuke.sk

Abstract—The quality of the source code structure is a matter
of the point of view, one programmer might consider one
structure the best, the other not. A concrete structure can help in
certain situations with the program understanding. Therefore we
propose using dynamic structuring that allows assigning multiple
structures to one source code to aid program comprehension.
Concern-oriented source code projections facilitate this dynamic
structuring expressed by custom metadata and provide multiple
views of the source code that reflect logical structures provided
by the dynamic structuring. This way in a specific situation a
programmer can get a structure (by a view) that meets his/her
current needs the best.

I. INTRODUCTION

P
ROGRAM comprehension is a process of retrieving in-
formation and knowledge about a software system by

studying its source code. Software system maintenance and
evolution consumes up to 80 percent of system’s lifetime [8].
Program comprehension tries to reduce this time. However, a
more radical solutions, like for example literate programming
[7] or elucidative programming [9], were not adapted in the
industry, probably because they were too distant from the
industrial practice.

We recognized that good design and source code structure
are properties of the point of view. We believe that one static
structure that is prevalent nowadays is not sufficient. Concern-
oriented source code projections (or shortly code projections)
contribute to the field of program comprehension by providing
means to simultaneously express and use multiple structures
of the source code.

II. MOTIVATION

OOP uses classes and techniques such as dynamic binding
to increase modularity, but on the other hand it also tears
the source code structure to smaller parts (to submit it to
single responsibility principle). AOP goes even further; it tears
the structure even more according to concerns. It may help
with modularity, but since the code as a whole (and thus the
sequence of instructions) is scattered in more files, it is harder
to follow the program logic. Considering which approach is
better depends on the qualities taken into account – it is a
matter of the point of view.

The same way it is difficult to find the best design, the
best structure in a given paradigm. The quality of a design
is a matter of point of view too. Let us consider a simple
explanatory example from the AOP. An OOP method from

listing 1 does some work and afterwards logs the process to
the standard output.

Listing 1. Simple doSomething() method that is logged to standard
output
public void doSomething() {

...

// logging to standard output

System.out.println

("Something was done!");

}

The AOP divides the source code into concerns that are
implemented by aspects. Here a programmer Jack will identify
a concern of logging in the system and will create a new
aspect that will implement the logging concern. However,
a programmer Jill will identify a concern of printing to
standard output (for example to ensure that she will be able
to easily switch from standard output to some other interface).
So she would want to put the same line of code to the
standard output aspect. So in this example Jack is interested
in the logging concerns, while Jill in printing to standard
output concern. However, these two concerns do not have to
cover the same source code. Printing to standard output does
not necessarily be logging. In this scenario Jack would say
that creating logging aspect is better structuring that creating
printing to standard output aspect, while Jill would say exactly
the opposite.

Currently the source code has to have exactly one design,
one structure. The concerns cannot overlap. The classes cannot
either. Multiple design decisions can have good reasoning, but
none of them tackles all the problems – e.g., sometimes the
OO structuring is more useful, other times AOP structuring
is advantageous. Usually it depends on whether the target of
interest is a feature (OOP) or a concern (AOP).

The problem is based on the observation that the "best"
structuring of the source code depends on the point of view.
There are three main factors that influence the current best
structuring:

• Person – each person has his/her own experience and
opinion. Therefore each person has his/her own point of
view.

• Time – even one person changes his/her opinion in time
and in consequence his/her point of view. Usually the
early structuring of the program evolves over the time to
the required one even when there is only one programmer
that authors it.

Proceedings of the 2013 Federated Conference on
Computer Science and Information Systems pp. 1529–1532

978-1-4673-4471-5/$25.00 c© 2013, IEEE 1529

• Character of the problem/solution – of course the struc-
turing also closely depends on the character of the
problem or the solution. Not only the people involved
in the software development do evolve in time, but also
the character of the problem.

III. CONCERN-ORIENTED SOURCE CODE PROJECTIONS

In our work we recognize that the problem of multiple
points of view is a consequence of static structuring of the
source code. The problem of current approaches such as the
AOP or OOP is that they allow the structure to meet some
concrete needs, but does not support easy adaptation to new
needs. Metaphorically speaking, using AOP instead of OOP is
analogical to tearing down a house and building it again rotated
in 90 degrees just to provide a view from side. Wouldn’t it be
more effective if the house would stay untouched and instead a
programmer would walk around the corner? The same way as
in the analogy, we don’t want to change the building process,
we just want to provide a programmer with a view that he/she
wants.

A. Static vs. Dynamic Structuring

The problem is current technologies support merely one
structure of the source code. This structure has to fully
describe the system and does not allow any duplication of
code. If current structure of the source code is not viable for
current needs, the programmer has just bad luck. He/she has to
work with the current structure, or refactor it and hope that the
original structure won’t be needed later. Or after refactoring
the code1 he/she has to hope that there will not be a need of
the original aspect.

To deal with these problems we propose to use dynamic

structuring. By dynamic source code structuring in this context
we mean a case when a source code of one system has multiple
different structures at the same time. In a particular situation
the programmer would be able to choose the structure that
currently the most relevant. This concept of dynamic structur-
ing changes the role of refactoring. Instead of refactoring in
sense of dropping the old structure and building a new one,
with dynamic structuring a programmer is able to arbitrarily
add a new structure to the source code or remove an existing
one.

The usual representation of the structure is the source code
itself. This will not suffice in case of dynamic structuring.
It would be too difficult and cumbersome to write multiple
versions of system source code and to keep them consis-
tent through the time. Instead of this "physical" structures’
representation dynamic structuring should use logical repre-
sentation. Source code itself would be written (and stored)
only once using some base structure. Adding new structures
should be done by adding metainformation about their new
relationships and properties.

1That is not an easy task even with current tool support for code refactoring.
Tools support automation of merely trivial tasks such as changing a name of
a variable, etc. However here we talk about structure on higher abstraction
level, like the choice of using inheritance instead of composition.

The idea of dynamic structuring that allows having multiple
different source code structures at the same time is the core
of the concern-oriented source code projections method. We
consider this idea the main contribution of our work.

B. Views

Code projections are based on dynamic structuring of
program’s source code. These structures have to be properly
presented to programmer; otherwise they would be useless for
program comprehension. Code projections map a set of base
source code structures to a set of views. A view is an abstract
structure of source code that is presentable to programmer. A
view does not have to fully describe the system and multiple
views can overlap (one code fragment can be a part of multiple
views). The Identity projection defines a view that is identical
to base source code structure; therefore it has to fully describe
the system.

A single view consists of source code fragments that are
somehow related. We will call these fragments view members.
Relations between view members may be explicitly expressed
in the view – a view can be graphical.

A code projection is specified by a sentence in a program
query language2. Practically any PQL can be used; however,
it has to support querying custom metadata too.

A programmer creates a projection query that specifies
which concerns are relevant to his/her current situation. Pro-
jection queries can be shared and stored for later reuse, or
modified if their current user is not satisfied with their current
state. The concept of the code projections is outlined in
figure 1.

Fig. 1. The concept of the concern-oriented source projections

Our hypothesis in this work is that current tools don’t

support flexible creating of views for viable price by using

custom metadata.

C. The Role of the Metadata

We will use term software system metadata (from now
on only metadata) for the total sum (the set) of what one

2There are already programming query languages (PQL) in the world, this
is not a new idea. However, PQLs are usually used to do source code checking
(e.g., [4]). Our method uses PQL to provide a code projection.

1530 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

can say about any program element, in a machine or human
understandable representation.

Current IDEs provide programmers with code projections
that operate on intrinsic metadata3. Navigator view uses the
class intrinsic metadata to present the class members. Nav-
igating to implementation through Ctrl and left mouse click
uses the program element identifier. IDEs can use inheritance
hierarchy to show implementations of interfaces or classes.
Find Usages view uses also program element identifier to bind
the implementation to its usages and provides a very useful
projection of the source code.

In an example with Jack and Jill (listing 1) Jill would get
desired result merely using intrinsic metadata. She can just
query for any System.out.println call.

However, a situation would change if the logging was
encapsulated in a Logger class (listing 2) that would provide
a PrintStream that should be used for logging.

Listing 2. Logger implementation
public class Logger {

private static PrintStream stream

= System.out;

public static getStream() {

return stream;

}

}

Listing 3 shows a modified doSomething() method with
obscured printing to standard output. In this case it would be
much more difficult to create a query that could find all the
lines printing to standard output.

Listing 3. Obscured usage of standard output for logging
public void doSomething() {

...

// logging to standard output

Logger.getStream().println

("Something was done!");

}

Therefore we propose the utilization of the custom metadata
to provide more information about program elements and to
use that as a basis for different source code projections. Cus-
tom metadata are a tool that can be used to enrich the source
code with metainformation about the semantic or design in-
tents of the program elements at a higher abstraction level than
the GPL is itself. In this way projections can use this metadata
to present code to a programmer at a higher abstraction level
too. A projection maps concern-enriched source code to a
view. For listing 3 one could use for example simple marker
annotations @Log and @WritesToStandardOutput.

D. The Role of the IDE

To provide code projections there has to be a tool that
would be able to create a view while managing the source
code in its base structure. In case of code projections we

3Intrinsic metadata are standard metadata that define a program element.
For example, for a class it is its name, its superclass, its interfaces, its methods
and its attributes.

see as a best option utilization of the Integrated Development

Environment (IDE) thanks to its approach to handle language
in its infrastructure (considering IDE is an integrated set of
language tools).

IDE infrastructure usually works with three language repre-
sentations shown in figure 2, Notation, Model and View level.
We want to utilize the editor to dynamically modify a view of
the language.

Fig. 2. Language representations in IDE infrastructure

If we will return to the analogy from the introduction to
section III, concern-oriented source code projections provide
a cheaper alternative to tearing down a house and building it in
another angle. Instead of this invasive and inflexible solution
code projections propose to change the view of an architect
(analogy of programmer). Instead of moving the building
merely the architect is moved to see what he/she needs to
see.

IV. RELATED WORK

We have applied a similar approach to reduce the syntactic

noise in internal domain-specific languages in our previous
work [6]. We were able to remove some undesired syntactic
constructs (such as import section, class declaration, etc.) from
the internal DSL based on Java language.

In modern IDEs there are many standard projections like
the Navigator, TODOs, and others that we mentioned in
section III-C. All these use projections to provide different
views on the source code to provide a better orientation in the
code.

Similar approach is used by Desmond et al. [1] in so called
Fluid source code views. They allow viewing method bodies
in place of their calls, thus reducing the need of browsing
the source files. It is kind of similar to Go To Declaration
projection of current IDEs, however using fluid source code
views the body is shown directly in place of call using a
tooltip.

Intentional source code views [5] are sets of related program
elements that share some intention. In this sense they are

MATEJ NOSÁL’, JAROSLAV PORUBÄN, MILAN NOSÁL’: CONCERN-ORIENTED SOURCE CODE PROJECTIONS 1531

very similar to concern-oriented code projections. In Inten-
tional views the intentions of the source code are specified
using logic metaprogramming. Although they are close to
our approach by providing means of defining architectural
and conceptual information about source code, they differ
in few rather important aspects. Intentional views require
knowledge of logic metaprogramming. It is hard to expect
every programmer to be a logic programmer. In our code
projections we want to utilize common programmer’s natural
environment – code projections are to be made integral part
of a modern IDE. Intentional views use code conventions that
tend to be fragile (see [3]). And our projections can be used
to edit the code, while Intentional views are read-only.

Source code annotations are used in [2], where Eisenberg
et al. propose simple edit-time metaobject protocol that uses
annotations as extensibility point of language. The editor is
composed of multiple figures that have knowledge of what
and how can be edited in them. These figures are configured
by annotations.

V. CONCLUSION AND FUTURE WORK

In this paper we argue that only one static structuring is
not sufficient for software system source code. The quality of
the source code structure is a matter of view, one programmer
might consider one structure the best, the other not. A concrete
structure can however play a significant role in program
comprehension, since the point of view of looking at a code
depends on the goal the programmer needs to achieve.

We presented the idea of so called dynamic structuring that
allows assigning multiple structures to one source code. Our
idea builds upon using logical structures that are expressed
by metadata. When a new structuring is needed, it can be
simply added to source code instead of overriding the existing
one. Code projections utilize the view level of the language
representation in the IDE infrastructure to reduce the price of
their implementation and to still provide a modern professional
IDE.

The code projections and dynamic structuring are the main
contributions of the paper. Their purpose is to aid program
comprehension. They can play significant role in documenting
the source code, system maintenance and evolution.

Although we believe that dynamic structuring along with
code projections may be a significant contribution to software
engineering, we are aware of some problems with it. These
problems we see as a space for our future work.

Dynamic structuring allows multiple, possibly uncountable,
structures of the one source code. As we already argued, a
good structure is a matter of the point of view. Therefore they
may be just as many "good" structures as there are people
working on the system. The Babel effect4 is a consequence
of the freedom in specifying the structure. Everybody has
his/her own opinion and then it is hard to communicate. If
two people are looking at two different views, it may be hard

4Named after famous story about building the Tower of Babel from the
Bible.

if not impossible to unambiguously talk about a specific source
code fragment.

The second problem is the price of creating a projection.
The source code annotations, or in general concern metadata
only hardly can be created automatically. The source code
has to be annotated explicitly either by it author or another
programmer that recognize a need for a new structure. In this
case a programmer has to consider the price annotating the
source code to provide the space for code projections and the
chance that the annotations will be reused later. If there is no
real chance that the projection will be used, there is no good
reason to create it. This is mainly a problem of development
phase of software lifecycle, since the design decisions are
made and the intended semantic properties are clearest in this
phase.

ACKNOWLEDGMENT

This work was supported by VEGA Grant No. 1/0305/11
Co-evolution of the Artifacts Written in Domain-specific Lan-
guages Driven by Language Evolution.

REFERENCES

[1] Michael Desmond, Margaret-Anne Storey, and Chris Exton. Fluid source
code views. In Proceedings of the 14th IEEE International Conference

on Program Comprehension, ICPC ’06, pages 260–263, Washington, DC,
USA, 2006. IEEE Computer Society.

[2] Andrew D. Eisenberg and Gregor Kiczales. A simple edit-time metaobject
protocol: controlling the display of metadata in programs. In Companion

to the 21st ACM SIGPLAN symposium on Object-oriented programming

systems, languages, and applications, OOPSLA ’06, pages 696–697, New
York, NY, USA, 2006. ACM.

[3] Gregor Kiczales and Mira Mezini. Separation of concerns with pro-
cedures, annotations, advice and pointcuts. In Proceedings of the

19th European conference on Object-Oriented Programming, ECOOP’05,
pages 195–213, Berlin, Heidelberg, 2005. Springer-Verlag.

[4] Michael Martin, Benjamin Livshits, and Monica S. Lam. Finding
application errors and security flaws using pql: a program query language.
SIGPLAN Not., 40(10):365–383, October 2005.

[5] Kim Mens, Bernard Poll, and Sebastián González. Using intentional
source-code views to aid software maintenance. In Proceedings of the

International Conference on Software Maintenance, ICSM ’03, pages
169–, Washington, DC, USA, 2003. IEEE Computer Society.

[6] Milan Nosál’, Jaroslav Porubän, and Matej Nosál’. Reducing syntactic
noise in internal domain-specific languages. In Proceedings of CSE

2012: International Scientific Conference on Computer Science and

Engineering, CSE 2012, pages 111–118, 2012.
[7] James Dean Palmer and Eddie Hillenbrand. Reimagining literate pro-

gramming. In Proceedings of the 24th ACM SIGPLAN conference

companion on Object oriented programming systems languages and

applications, OOPSLA ’09, pages 1007–1014, New York, NY, USA,
2009. ACM.

[8] Michal Vagač and Ján Kollár. Improving program comprehension by
automatic metamodel abstraction. Computer Science and Information

Systems, 9(1):235–247, 2012.
[9] Thomas Vestdam. Elucidative programming in open integrated devel-

opment environments for java. In Proceedings of the 2nd international

conference on Principles and practice of programming in Java, PPPJ ’03,
pages 49–54, New York, NY, USA, 2003. Computer Science Press, Inc.

1532 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

