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Abstract—Design patterns codify general solutions to fre-
quently encountered design problems. They also facilitate writing
robust and readable code. Their usage happens to be particularly
profitable if the documentation of the resulting system is lost,
inaccurate or out of date. In reverse engineering, detection of in-
stances of design patterns is extremely helpful as it aids grasping
high level design ideas. However, the actual instances of design
patterns can diverge from their canonical textbook templates.
Useful pattern detection tools should thus be able to identify not
only orthodox implementations but also their disparate variants.
In this paper, we present a method to generate queries to
detect canonical instances of design patters. We formulate these
queries so that they are language-agnostic. They precisely reflect
the intents of the canonical implementations of design patterns.
However, they abstract from any peculiarities of programming
languages. Next, we show a systematic technique to relax these
queries so that they also cover variant implementations of
patterns. We discuss our proof-of-concept implementation of this
approach in our prototype tool D-CUBED. Finally, we report the
results of an experimental comparison of D-CUBED and state-
of-the-art detectors.

I. INTRODUCTION

A
DESIGN pattern [1] is a general reusable solution

to a commonly occurring problem in software design.

Design patterns facilitate forming quality designs. As well as

being useful in the construction of software systems (forward

engineering), they also aid analysing existing systems (reverse

engineering).

Detection of design patterns is an important part of reverse

engineering. There are a significant number of large software

systems without proper documentation that nevertheless need

to be maintained, extended, or modified. In such cases, reverse

engineering is necessary. However, the process is usually time-

consuming and error-prone, as most of the core analysis must

be performed manually and some important aspects can be

omitted. Detection of design patterns automates extraction

of high-level design concepts, which helps gaining a better

understanding of code and makes analysis more efficient in

terms of time and cost. Moreover, detection of design patterns

can aid documenting code (e.g., generating or verifying doc-

umentation) or assessing its quality (e.g., using metrics based

on design patterns).

In recent years, we have observed a continual improvement

in the field of automatic detection of design patterns in

source code. Existing approaches [2]–[13] can detect a fairly

broad range of design patterns, targeting structural as well as

behavioural aspects of patterns. Until recently, the research in

the field of pattern detection has focused on novel approaches.

However, the papers [14], [15] highlight the importance of the

accuracy (precision and recall) of detection methods.
To achieve high recall, we need to reduce the number of

false negative results. For a design pattern detection method,

this minimization of false negatives means that the method

should be capable of detection of numerous implementation

variants that preserve the meaning of a design pattern, even

though the details of their implementations do not follow

the canonical implementation. Therefore, following the advice

of [14] that emphasises the importance of ’a common set of

patterns, both structural as well as behavioural, with well-

defined implementation variants’, we focus on a systematic

approach to detect variants of design pattern.
The analysis of implementation variants revealed highly

diverse ecosystem of possibilities. For a simple design pattern

like the Singleton, we have identified 7 elemental variants

as presented in [16]. For another design pattern like the

Visitor, we have also identified several significantly different

implementations as presented in [17]. Considering further

combinations of those elemental variants, it seemed infeasible

to enumerate all available variants of design patterns, thus we

sought an automated way to generate them. As a starting point

we assumed the canonical implementation of design patterns

as described in [1]. In [18], we introduced pattern-preserving

transformations that enable transforming an implementation

variant of a design pattern into a new one while preserving

the design pattern.
In this paper, we extend our method of detecting design pat-

terns (based on first-order logic formulae as described in [13])

to include a systematic approach to relaxing queries capable

of detecting implementation variants of design patterns.
Contributions of this paper are as follows:

1) We present a systematic approach to the construction

of queries to detect implementation variants of design

patterns. The approach is based on the application of

specific and generic pattern-preserving transformations of

a Prolog query representing the canonical variant of a

design pattern.

2) As a proof-of-concept for Contribution 1, we present

queries capable of detecting variants of the Singleton
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design pattern.

3) We evaluate our prototype tool (D-CUBED) with relaxed

variant queries and compare it with two state-of-the-art

pattern detectors (PINOT, DPD Tool).

II. METHOD

Our method of detecting variants of design patterns consists

of the following steps (see Figure 1):

1) A transformation of the UML class diagram of the

canonical implementation of a design pattern to a logic

query;

2) An application of specific pattern-preserving query trans-

formations;

3) An application of generic pattern-preserving query trans-

formations;

The starting point of the method is the UML class diagram

of the canonical implementation of a design pattern. We define

a canonical implementation as the original implementation

provided by the authors of a design pattern (e.g., Gang of Four

in their book [1]). Through a set of transformations applied

to the UML diagram of the canonical implementation of a

design pattern, we obtain a disjunction query used to detect

the variants of this pattern.

In [18], we introduced the concept of pattern-preserving

code transformations, i.e., code transformations that preserve

the intent of a design pattern. They were used to generate the

implementation variants of design patterns in order to create

test cases for pattern detectors. Here, we introduce a corre-

sponding concept of pattern-preserving query transformations,

which relax queries to extend their capabilities of detecting

more implementation variants of design patterns.

In Step 1: Direct Transformation of UML to Logic, we

transform the class diagram of the canonical implementation

of a design pattern represented in UML to a formula using

our custom metamodel (see Section II-A) expressed in logic.

The output formula is a conjunction of predicates from our

metamodel, describing such features as classes along with

their fields and methods. Occasionally, we may need to add

additional clauses to a conjunction query in order to represent

important implementation details of a design pattern which are

described in UML comments, other UML diagrams, or in the

description of the pattern.

In Step 2: Specific Pattern-Preserving Query Transforma-

tions, we apply specific pattern-preserving query transforma-

tions to the query constructed in Step 1. Specific pattern-

preserving query transformations are based on the concept

of specific pattern-preserving transformations introduced in

[18]. Each of them is a code transformations characteristic to

a particular design pattern that preserves its intent. If such a

transformation is applied to a correct implementation variant

of a design pattern, it will produce a new correct variant.

Exemplary specific pattern-preserving query transformations

can be found in Section III.

In Step 3: Generic Pattern-Preserving Query Transforma-

tions, we apply generic pattern-preserving query transfor-

mations to the queries obtained in Step 2. Similarly to a

Fig. 1. The overview of the construction of the queries to detect the variants
of a design pattern.

specific pattern-preserving transformation, a generic pattern-

preserving query transformation is based on the concept of a

generic pattern-preserving transformation introduced in [18].

It is a code transformation referring to generic programming

(e.g., abstractness, invocation, access modifiers) that preserves

the design intent. The detailed description of generic pattern-

preserving query transformations can be found in Section II-D.

The final query to detect the variants of a given design

pattern is the disjunction of the relaxed queries constructed in

Step 3.

A. Program Metamodel

The program metamodel used in our detection method

has been introduced in [13]. It consists of a set of core

elements and a set of relationships among those elements,

both structural and behavioural. The metamodel has been

designed to be “as simple as possible, but not simpler”, yet

it is powerful enough to model a large set of object-oriented

languages.

The program metamodel consists of the following core

elements (Figure 2): types, fields-or-variables, operations, and

instances. Most of them have their obvious object-oriented

meaning. A type denotes either a class, an interface or any

other language-specific data type construct (like Java enum).

A field-or-variable includes two cases: (1) an instance field

or static field of a class or an interface, and (2) a variable

that is not a field e.g. a global variable (irrelevant to Java

but not to C++). Similar to the field-or-variable element, an

operation also covers two cases: (1) a method declared in a

type, and (2) a function e.g., a global function. An instance has

been defined as an equivalence class of the relation “objects
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Fig. 2. The core elements of the program metamodel

constructed by the same new”. All objects instantiated by the

same new statement are treated as a single instance.

The extensional Prolog predicates describing core elements

include: isClass , isInterface , isEnum , isPrimitive , isType ,

isInstance , isField , isVariable , isFunction , isMethod ,

isParameter , and others.

The elemental structural relations describe the re-

lationships among core elements of a program, in-

cluding memberships (i.e., fields and methods), modi-

fiers (e.g., static, abstract, and access modifiers), and

type system. The extensional Prolog predicates represent-

ing the elemental structural relations include: isFieldOf ,

isMethodOf , hasParameter , hasReturnType , hasModifier ,

isTypeOf , isSubtypeOf , and others. The intensional predi-

cates isTypeOf ∗ and isSubtypeOf ∗ are the transitive closures

of isTypeOf and isSubtypeOf respectively.

The elemental behavioural relations mostly refer to a data-

flow and a call-flow, including instantiation as a specific call

to a new operator. The extensional Prolog predicates repre-

senting the elemental behavioural relations include: invokes ,

instantiates , hasInput , hasOutput , and others. The inten-

sional predicates invokes∗ and instantiates∗ are the transitive

closures of invokes and instantiates respectively.

In order to illustrate the semantics of the predicates repre-

senting relations, here we present the definitions of hasInput

and hasOutput , two exemplary predicates related to the call-

flow of a program:

hasInput

hasInput(F, I), if and only if there is a potential

execution path where the instance I is passed as

one of the input parameters or as a part of an input

parameter to the operation F .

hasInput(F, T ), if and only if hasInput(F, I) and

isTypeOf ∗(I, T ).
hasOutput

hasOutput(F, I), if and only if there is a potential

execution path where the instance I is the output

value or a part of the output value of the call to the

operation F . The output means a return value as well

as an output parameter.

hasOutput(F, T ), if and only if hasOutput(F, I)
and isTypeOf ∗(I, T ).

B. UML to Logic Transformation

By a logic query we understand a set of Horn [19] clauses

as used in logic programming. These logic queries operate

on the program metamodel from Section II-A. We treat UML

class diagrams of design patterns as inquires to a codebase.

Therefore, we translate the codebase queries in the form of

the UML class diagrams to the logic queries operating on the

metamodel.

The algorithm to transform a class diagram to a logic query

is as follows:

1) For each class and interface in a class diagram, we

produce a conjunction of predicates, describing the type

(isClass or isInterface), its supertypes (isSubtypeOf ),

and its modifiers (hasModifier ).

2) For each method in a class or interface, we produce a

conjunction of predicates, describing its enclosing type

(isMethodOf ), its signature (numberOfParameters ,

hasParameter , hasReturnType), and its modifiers

(hasModifier ).

3) For each field in a class or interface, we produce

a conjunction of predicates, describing its enclosing

type (isFieldOf ), its type (isTypeOf ), and its modifiers

(hasModifier ).

4) We model additional information (e.g., comments) con-

tained in a class diagram on per-case basis.

5) The output query is the conjunction of previously gen-

erated queries (i.e., class queries, method queries, field

queries, additional information queries).

Optionally, we may need to transform to a logic query other

UML diagrams (e.g., a sequence diagram) of a design pattern

or encode features described purely textually.

C. Specific Query Transformations

A specific pattern-preserving query transformation is char-

acteristic to a particular design pattern. It deals with, so-called,

query logical fragments (i.e. parts of a query representing

logical fragments of a pattern) transforming them into queries

corresponding to different implementations valid in the context

of a pattern.

A pattern logical fragment is a robust fragment of a design

pattern which can be implemented using various programming

techniques, e.g. the instantiation of a singleton instance (lazy

or eager implementation). It is possible for a design pattern to

have only one logical fragment (itself).

The identification of logical fragments of a design pattern

as well as the transformations of these fragments are a

purely manual process because they require understanding and

abstraction of the semantics of a design pattern.
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The application of the specific query transformations is an

automated process, once we have query logical fragments and

their transformations. Let us assume that we identified N

logical fragments Fi : 1 ≤ i ≤ N and for each fragment Fi we

found a set of query transformations TFi
= T i

j : 1 ≤ j ≤ Ki.

Then our algorithm to apply specific pattern-preserving query

transformations is as follows:

1) We produce a Cartesian product of transformations over

logical fragments, eliminating impossible combinations.

As the result we obtain a set of possible transformation

tuples T = (t1, ..., tN ) : ti ∈ TFi
∪NONE.

2) We apply the transformations tuples to the query obtained

in Step 1.

D. Generic Query Transformations

Generic pattern-preserving query transformations are based

on generic pattern-preserving code transformations. Figure 3

presents the generic pattern-preserving transformations as

identified in [18]: (1) abstractness transformations, (2) in-

vocation transformations, (3) inheritance transformations, (4)

aggregation transformations, (5) method signature transforma-

tions, and (6) access transformations.

Fig. 3. The generic pattern-preserving code transformations.

a) Abstractness Transformations: These transformations

refer to the property of being abstract for a class or a method.

There is a two-sided transformation between interface and

pure abstract class. This transformation is obvious since there

exists a direct correspondence between these two constructs.

They are often used interchangeably. The next transformation

converts an abstract method to a concrete method. In our

opinion this also is a natural transformation. It often happens

that in the real world development programmers provide a

default implementation instead of leaving a method abstract.

By combining these transformations, we can transform an

interface into a concrete class. Summing up, as long as we

can take advantage of polymorphic calls, abstractness and

concreteness do not impact the intent of a pattern code.
In terms of logic queries, the abstractness transformations

lead to the following rewrite rules:

1) isClass(Type) → isClassOrInterface(Type)
2) isInterface(Type) → isClassOrInterface(Type)
3) hasModifier(Class, ′abstract ′) → true

4) hasModifier(Method , ′abstract ′) → true

b) Inheritance Transformations: The inheritance trans-

formation introduces an intermediary level of inheritance, i.e.

a direct subclassing is transformed into indirect. In real world

software code such a construct can be the effect of a particular

functional requirement or the complexity of a design problem.

The length of an inheritance chain does not impact the intent

of a pattern.
In terms of logic queries, the inheritance transformations

lead to the following rewrite rule:

1) isSubtypeOf (Type1 ,Type2 ) →

isSubtypeOf ∗(Type1 ,Type2 )

c) Invocation Transformations: This group refers to

transformations of invocation and instantiation statements. It is

a popular refactoring. When a piece of code becomes complex,

it is extracted into a separate method or class. This means

that an invocation (or an instantiation), which remained direct

until refactoring, is transformed into indirect. Depending on

whether a new method or a new class is introduced, we

call this indirect invocation internal or external respectively.

Similarly to the length of an inheritance chain, the length of

an invocation chain does not influence the logic of a pattern

variant.
In terms of logic queries, the invocation transformations lead

to the following rewrite rules:

1) invokes(Method1 ,Method2 ) ∧

isMethodOf (Method1 ,Class) ∧

isMethodOf (Method2 ,Class) →

invokes∗(Type1 ,Type2 ) ∧

isMethodOf (Method1 ,Class)
2) invokes(Method1 ,Method2 ) →

invokes∗(Type1 ,Type2 )

d) Aggregation Transformations: These transformations

follow the reasoning presented for invocations. Replacing a

direct aggregation of an attribute (or a group of attributes)

with an indirect aggregation does not influence the overall

intent of a pattern implementation. Here is the example of

such a transformation applied to the observers attribute:

c l a s s O b s e r v a b l e {

L i s t < Observer > o b s e r v e r s ;

. . .

}
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c l a s s O b s e r v a b l e {

O b s e r v e r L i s t o b s e r v e r L i s t ;

. . .

}

c l a s s O b s e r v e r L i s t {

L i s t < Observer > o b s e r v e r s ;

. . .

}

In terms of logic queries, the aggregation transformations

lead to the following rewrite rule:

1) isFieldOf (Field ,Type) →

isFieldOfField∗(Field ,Type)

e) Method Signature Transformations: Here we present

the transformations of method signatures. We have identified

three such transformations:

• addition of a new (input) parameter,

• replacing the return value with an output parameter,

• passing an input value to a method via an object state

instead of passing a parameter.

In terms of logic queries, the method signature transforma-

tions lead to the following rewrite rules:

1) numberOfParameters(Method , N) → true

2) isParameter(Param,Type) ∧

isParameterOf (Param,Method) →

hasInput(Method ,Type)
3) hasReturnType(Method ,Type) →

hasOutput(Method ,Type)

f) Access Transformations: These transformations relate

to access modifiers of fields, methods, and classes. Basically, it

means that access modifiers are not core elements of patterns

and can be ignored during pattern detection. First of all,

access modifiers are language-dependent feature. There are

programming languages (e.g., JavaScript) that do not support

access modifiers. Also, the semantics of the access modifiers

may differ from one language to another (e.g., protected access

in Java and C++). Therefore, we cannot rely on access modi-

fiers and their semantics in a language-independent detection

method. Moreover, there might be software requirements that

limit the visibility of a field, method, or class (e.g., a Singleton

class that is visible and accessible only in a package).

In terms of logic queries, the access transformations lead to

the following rewrite rule:

1) hasModifier(Element ,Access) → true

III. EXAMPLES

This section describes the application of our method of

query relaxation to the Singleton pattern.

The Singleton pattern is the most popular pattern detected

by the existing detection approaches. Its canonical imple-

mentation is simple, and the intent seems straightforward.

However, by carefully analyzing the structure of this pattern,

we can identify some corner cases among its implementation

variants as well as in the usage context. The standard variant

of the Singleton is shown in Figure 4.

Fig. 4. The standard variant of the Singleton pattern.

A. Step 1: UML to Logic Query Transformation

Below we present the query that reflects the canonical

implementation of the Singleton. As such, it can be used to

detect orthodox implementations of this design pattern.

A singleton class:

isClass(S) ∧ hasModifier(S, ′public′)
A singleton constructor:

isConstructor(SCtr) ∧ isConstructorOf (S) ∧

numberOfParameters(SCtr , 0) ∧

hasModifier(SCtr , ′private ′)
A singleton getter (access point):

isMethod(Get) ∧ isMethodOf (Get , S) ∧

numberOfParameters(Get , 0) ∧

hasReturnType(Get , S) ∧

hasModifier(Get , ′static′) ∧

hasModifier(Get , ′public′)
A singleton field:

isField(Field) ∧ isFieldOf (Field , S) ∧

isTypeOf (Field , S)∧hasModifier(Field , ′static′)∧
hasModifier(Field , ′private ′)

An approximation of a lazy instantiation block:

isCodeBlock(Code) ∧ isCodeBlockOf (Get) ∧

instantiatesOptionally(Code, Instance) ∧

isTypeOf (Instance, S) ∧

writesOptionally(Code,Field , Instance)

B. Step 2: Specific Query Transformations

In [18], we presented the logical fragments of the Singleton

pattern along with the Singleton specific pattern-preserving

code transformations. Here, we present the corresponding

Singleton-preserving query transformations:

1) Instantiation: To Eager (A) – the lazy instantiation is

replaced with an eager instantiation. The rewrite rule is

as follows:

isCodeBlock(Code) ∧ isCodeBlockOf (Get) ∧

instantiatesOptionally(Code, Instance) ∧

isTypeOf (Instance, S) ∧

writesOptionally(Code,Field , Instance) →

isInitBlock(Code) ∧ instantiates(Code, Instance) ∧

isTypeOf (Instance, S)∧writes(Code,Field , Instance)
2) Placeholder: Inner Class (B) – the singleton instance is

held as a static attribute of an inner class. The rewrite

rule is as follows:

isFieldOf (Field , S) → isFieldOf (Field , Inner) ∧

isClass(Inner) ∧ isMemberOf (Inner , S)
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3) Placeholder: External Class (C) – the singleton instance

is held as a static attribute of a class from within the same

package. The rewrite rule is as follows:

isFieldOf (Field , S) → isFieldOf (Field ,Outer) ∧

isClass(Outer) ∧ inPackage(S, P ) ∧

inPackage(Outer , P )
4) Access Point: Inner Class (D) – the public static method

is moved to an inner class of a singleton. The rewrite rule

is as follows:

isMethodOf (Get , S) → isMethodOf (Get , Inner) ∧

isClass(Inner) ∧ isMemberOf (Inner , S)
5) Access Point: External Class (E) – the public static

method is added to a newly created class in the same

package. The rewrite rule is as follows:

isMethodOf (Get , S) → isMethodOf (Get ,Outer) ∧

isClass(Outer) ∧ inPackage(S, P ) ∧

inPackage(Outer , P )
6) Access Point: Attribute (F) – the static singleton instance

is made public (eagerly instantiated, with the access

method removed). The rewrite rule is as follows:

isMethod(Get) ∧ isMethodOf (Get , S) ∧

numberOfParameters(Get , 0) ∧

hasReturnType(Get , S) ∧ hasModifier(Get , ′static′) ∧
hasModifier(Get , ′public′) →

hasModifier(Field , ′public′)
7) Access Point: Protected (G) – the visibility of the access

method is changed to protected. The rewrite rule is as

follows:

hasModifier(Get , ′public′) →

hasModifier(Get , ′protected ′)
8) Finality: Abstractness with Subclassing (H) – the Sin-

gleton class is made abstract and a concrete subclass is

provided (the visibility of the Singleton constructor is

changed to protected). The rewrite rule is as follows:

isTypeOf (Instance, S) → isTypeOf (Instance,CS ) ∧
isClass(CS ) ∧ isSubtypeOf (CS , S) ∧

hasModifier(S, ′abstract ′)

C. Step 3: Generic Query Transformations

As in this paper it is infeasible to list all generated queries,

we present the resulting query obtained after the application

of the generic query transformations to the query being the

result of the application of the specific query transforma-

tions (A,NONE,NONE,NONE) (i.e., lazy instantiation

changed to eager instantiation):

A singleton class:

isClass(S)
A singleton constructor:

isConstructor(SCtr) ∧ isConstructorOf (S)
A singleton getter (access point):

isMethod(Get) ∧ isMethodOf (Get , S) ∧

hasOutput(Get , S) ∧ hasModifier(Get , ′static′)
A singleton field:

isField(Field) ∧ isFieldOf (Field , S) ∧

isTypeOf (Field , S) ∧ hasModifier(Field , ′static′)

An approximation of an eager instantiation block:

isInitBlock(Code)∧instantiates(Code, Instance)∧
isTypeOf (Instance, S) ∧

writes(Code,Field , Instance)

IV. EVALUATION

We compared our prototype tool D-CUBED [20] with

two state-of-the-art pattern detection tools: PINOT [21] and

FUJABA 4.3.1 [2].

PINOT is a command-line tool written in C++ and based

on jikes (the IBM Java compiler). PINOT is available as

open source for custom compilation. PINOT ran smoothly,

offering high performance in pattern detection tasks. The

detection algorithms are hard-coded in PINOT, thus it is hard

to experiment by modifying the detection approach. PINOT

produces a useful, verbose report summarizing detected pattern

instances.

FUJABA is a visually appealing graphic tool suite that

provides pattern inference facilities as a plug-in (Inference

Engine). There was no problem in launching FUJABA. It

provides a UML-like language for user-defined patterns, and

presents detected pattern instances as oval annotations on class

diagrams. Even though this visual presentation helps in better

understanding of diagrams, a summary report might be useful

as well.

Similarly to PINOT, D-CUBED is a command line tool

written in Java. However, contrary to PINOT, its detection

queries are not hard-coded. Instead, we use XSB Prolog,

a deductive database, as the data store for our program

metamodel and Prolog as the query language. To generate

a program metamodel from source code, we use Recoder

(a front-end Java compiler) and a set of custom analyses to

inspect in detail the call-flow and data-flow of a program.

We have tested these three tools against the source code

of JHotDraw60b1 [22]. JHotDraw is a Java GUI framework

for technical and structured graphics. It has originally been

developed as a design exercise by Erich Gamma and Thomas

Eggenschwiler.

Table I presents the results of the tests against JHotDraw.

Unfortunately, FUJABA threw an exception during its static

analysis. PINOT and D-CUBED performed their detection

without any problems, however they produced significantly

different results. PINOT did not report any Singleton instances,

whereas D-CUBED recognized seven Singleton candidates:

1) Clipboard — a true positive; a singleton documented in

source code.

2) DisposableResourceManager — a true positive; a single-

ton documented in source code; different placeholder;

3) ResourceDisposabilityStrategy — a true positive; anal-

ogous to DisposableResourceManager; different place-

holder;

4) CollectionsFactory — a true positive; a singleton with

subclassing and delegated construction;

5) Alignment — a true positive; a singleton with 6 instances;

6) FigureEnumerator — a false positive; there is a sin-

gle static enumerator representing an empty enumerator,
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though other instances are created as well;

7) HandleEnumerator — a false positive; there is a sin-

gle static enumerator representing an empty enumerator,

though other instances are created as well;

PINOT did not detect any singleton instance because its

detection algorithm relies on the presence of the standard

structure and a lazy instantiation block. Clipboard uses eager

initialization (variant A), whereas two next singletons repre-

sent a different placeholder variant (variant C). Collections-

Factory represents a singleton with subclassing (variant H). As

we did not impose an exactly one instance constraint, we also

found the variant with several instances available (Alignment).

Unfortunately, query relaxation lead to two false positives.

Therefore, the current method turned out to be too flexible.

Our current goal, i.e. improving recall, decreased precision

of the method. To achieve high precision, we need to filter

out false positives. For a design pattern detection method, this

minimization of false positives translates into understanding

code constructs that violate the principles of a design patterns,

even though the overall structure of a given piece of code

resembles that of the design pattern. This is part of our

undergoing research.

TABLE I
THE RESULTS OF SINGLETON DETECTION ON JHOTDRAW

PINOT FUJABA D-CUBED

Singleton 0 × 7 (5 true positives)
× the tool raised an exception

V. RELATED WORK

There exists a number of proposed approaches to design

pattern recognition, yet these approaches often lack in terms

of accuracy, flexibility, or performance. A large number of

approaches uses only structural information in order to detect

design pattern instances (e.g. [23], [24]), but there also exist

several approaches that exploit behavioural information con-

tained in source code (e.g. FUJABA [2]–[4], Hedgehog [5],

PINOT [6], [7]). We compare the existing detection methods

to ours in terms of the concept of an approach, the architecture

of a solution, and the mechanisms used to search for patterns.

A metamodel-based approach is not new. There exist several

approaches that make use of a metamodel. Ptidej [10] is based

on the PADL metamodel (the ancestor of PDL). However, a

pattern in PADL is defined as a list of the required entities (a

simple conjunction). Thus, it is hard to express more complex

logic conditions. Moreover, it does not provide any support to

data flow. SPQR [9] uses denotational semantics known as the

ρ-calculus together with the set of elemental design patterns

that capture call flow information. Similarly to PADL, there

is no support to data flow. Hedgehog [5] utilises a Prolog-

like language (Spine) to construct a pattern definition. Again,

Spine’s support to data flow is limited, but additional rules can

be introduced. Also MAISA uses a metamodel. Its metamodel

is UML and with its help it defines the structural patterns.

Current detection approaches utilise significantly different

techniques to identify the instances of design patterns in

source code. The most popular technique is the use of a logic

inference system. This idea has been applied in Pat [25], where

each structural pattern has been associated with a separated

set of rules and Prolog interpreter has been used to search for

patterns. Also [8] utilises a logic inference system to detect

patterns in Java and Smalltalk based on a language-specific

naming and coding conventions. SPQR and FUJABA also

employ a logic inference engine to reason about the pattern

instances.

Ptidej [10] uses a constraints solver with automatic con-

straint relaxation to detect sets of entities similar to a design

pattern. A related work of Ptidej [26] utilises program met-

rics and a machine learning algorithm to fingerprint design

motifs roles. One more approach that uses machine learning

techniques is [27]. It enhances a pattern-matching system [11],

[12] by filtering out false positives.

Numerous approaches simply navigate over a program

abstract syntax tree to find the instances of patterns. They

perform static or dynamic analyses to capture the behaviour

of a program. Usually their detection algorithms are hard

coded and tailored to a particular programming language.

PINOT [6] performs static analysis to identify pattern-specific

code-blocks. It is a lightweight solution performing recogni-

tion in an efficient manner. The approach described in [7] has

two phases. In the first phase (the static analysis of the code

structure) the abstract syntax tree is analysed in order to select

the set of candidates to be pattern instances. In the second

phase (the dynamic analysis of a program run) the messages

passed are examined to check whether a candidate instance

from the first phase is rejected or accepted.

Our approach and the prototype D-CUBED utilises struc-

tural information, but it extends the structure-driven ap-

proaches by targeting behaviour of the patterns. D-CUBED

seems similar to the database driven approaches like

DP++ [28] or SPOOL [29], but while these approaches ad-

dress only the structural patterns, D-CUBED addresses the

creational and behavioural patterns utilising the elemental

relations to capture code intent.

A completely different approach is taken by the authors of

DPJF [30]. They run a number of detection tools and the fuse

their results. Such an approach may boost both precision and

recall depending on the tuning of parameters. In this paper

we focus on our specific method that can improve DPJF when

their maintainers upload new version of D-CUBED.

VI. CONCLUSION

In this paper we proposed a general method to generate

queries (logic programs) that detect disparate implementation

variants of design patterns. First, we produce a strict query

that reflect only the canonical textbook version of a design

pattern. Then, we relax this query in order to allow multiple

variants.

We implemented this approach in our prototype tool D-

CUBED. We experimentally verified it with respect to state-of-
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the-art detectors. The results are promising, since D-CUBED

has detected several non-trivial variants of the Singleton that

have not been revealed by other tools.

Apparently, our approach increases the recall of the de-

tection process. However, higher recall may possibly imply

lower precision. As the next step in our research, we plan

to limit the number of false positives, i.e. detected instances

that are not real incarnations of the design patterns. We will

attempt tightening the detection queries by adding conditions

that detect features that actually violate the intent of the given

design pattern.
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