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Abstract—In this paper we address a mining operation prob-
lem that is a special case of Quadratic Assignment Problem
and which belongs to the class of facility layout problems.
The considered problem is static and discrete, but the set of
possible locations is larger than the set of facilities. We distinguish
multiple types of equal-area facilities (mines, processing and
auxiliary facilities). Mines can be placed only on selected locations
(deposits of various resources), and the production volume of
each type of facility depends on the adjacency of other facilities.
We examine two situations: when the number of each type of
facility is given, and when only the total number of facilities is
specified. The goal is to maximize the production. This problem
is multi-objective and we use advanced aggregation operators
(OWA/WOWA) to achieve fair solutions. A comparison of results
obtained with list-based threshold accepting meta-heuristic and
simulated annealing algorithm is presented.

I. INTRODUCTION

T
HE facility layout is a broad class of problems that

has been a subject of interest for researches around the

world due to many real-life applications as well as significant

scientific value. Layout problems are generally NP-Hard [1],

which makes them perfect test ground for various optimization

algorithms and heuristic approaches. Because of different

assumptions and vast variety of considerations, it is difficult

to arrive at one, common definition that would encompass all

possible kinds of problems associated with finding an optimal

placement of facilities in some predefined area.
In terms of layout evolution, the problem can be static, i.e.

the key information about the problem (e.g. parameters and

relationship between facilities) are constant, or dynamic, when

possible changes over subsequent time periods additionally

have to be taken into account (see [2] for both formulations).
By analyzing the layout formulations, we can classify the

problems as continuous, in which the facilities can be placed

anywhere within the designated area [3], or discrete, when

the facilities can be placed only in specified locations [4].

The discrete formulation can be considered as a Quadratic

Assignment Problem (QAP) [5], in which the assignment

function is a bijection, i.e. the number of facilities is equal

to the number of possible locations. Moreover, in QAP for

each pair of locations a distance is specified and for each pair

of facilities a weight is given.
In the literature we can find many different models with

single criterion, e.g. total material handling cost, travel time of

parts, travel distance, and problems with multiple criteria, for

which at the same time different objectives are minimized, e.g.

material handling, tools and information flow. For the latter

problems, most researchers use a simple aggregation function,

e.g. a weighted sum ([6], [7]).

In a great number of articles about the facility layout

problems a meta-heuristic is chosen to solve the underlaying

optimization problem. The evolutionary algorithms, and most

notably genetic algorithms, are the most popular choice [3],

[4], [8], [9], [10], [11]. The other group of approximated

approaches that attract the interest of researchers are the ran-

dom search methods - tabu search ([12], [13]) and simulated

annealing ([14], [15]).

In this paper we address a layout problem that is static and

discrete, but contrary to QAP the considered assignment func-

tion is not a bijection. Moreover, we define the relationship

between the facilities and their location in a more complex

way.

The goal of the facility layout problem considered in this

paper is to find a non-overlapping planar arrangement of

n rectangular facilities within a given rectangular site that

maximizes the production of facilities, and unlike [11], [13]

we assume equal-area facilities.

Furthermore, we distinguish multiple types of facilities (and

therefore multiple types of products), hence the problem is

multicriterial. We show that the application of the ordered

weighted averaging (OWA) aggregation introduced by [16] is

a consistent, reasonable and fairness-preserving approach to

model a multicriteria facility layout problem.

To solve the problem, we propose a novel (not men-

tioned in the recent reviews and surveys on facility layout

problems [17], [18]) heuristic approach based on the thresh-

old accepting algorithm – a list-based threshold accepting

meta-heuristic, that was successfully applied in a job-shop

scheduling problem [19]. We compare the effectiveness of this

algorithm with our design of simulated annealing ([20], [27]).

The paper is organized as follows. In Section 2, we present

the definition of the multicriteria facility layout problem that

we discuss in this article. Sections 3 briefly portrays the fair

aggregation operators. In Section 4, we describe list-based

threshold accepting and simulated annealing algorithms, and

explain the implementation details for the problem at hand.
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The results of the experiments are shown in Section 5, and

the concluding remarks are presented in Section 6.

II. PROBLEM DEFINITION

A. Basic notation and definitions

The facility layout problem that we discuss in this paper

can be simply described as a problem of choosing a location

l ∈ L for each facility f ∈ F so that the objective function

(that will be defined later on) is maximized.

Remark 2.1: We assume equal-area facilities which are

placed within a rectangular n×m grid. Each location is thus

a cell in the grid and the considered problem is combinatorial

in nature.

Remark 2.2: We assume |L| > |F| so that the problem

does not boil down to simply finding a correct permutation of

facility locations. In consequence, the assignment function is

not a bijection, as in QAP formulation.

We distinguish three main classes of facilities : F = P∪A∪
M, where P =

⋃

t∈T Pt is the set of |T | types of processing

facilities, A =
⋃

v∈V Av is the set of |V| types of auxiliary

facilities, andM =
⋃

u∈UMu denotes the set of |U| types of

mines.

Remark 2.3: We assume |T | > 1 and |U| > 1, i.e. there

are at least one processing facility and at least one mine.

Corollary 1: The problem is multicriterial in nature.

Remark 2.4: Throughout this paper we will commonly de-

note C = T ∪ U as the set of all the facility types that are

responsible for production, and D = T ∪ V ∪ U as the set of

all possible facility types.

The set of locations is divided into two subsets L = S ∪ E ,

respectively locations S for processing/auxiliary facilities, and

extraction sites E =
⋃

r∈R Er where deposits of |U| types

of resources R =
⋃

u∈U Ru are located, and where the

corresponding types of mines can be placed.

Remark 2.5: We assume that S ∩ E = ∅ (i.e. a process-

ing/auxiliary facility cannot be placed on an extraction site and

a mine can be located only at one of the resource deposits).

In our facility layout problem the objective is to maximize

the production output of processing facilities and mines.

Definition 1 (Basic production output): The basic produc-

tion output denoted by OB
c , c ∈ C is a production volume

of a specified type of facility (processing facility or mine)

regardless of its location and the locations of other facilities.

The auxiliary facilities by definition are not producing

anything themselves, nevertheless they play an important role

by affecting production of other facilities. Moreover, we

assume that resource deposits have an impact on the facilities

production as well and that in general the facilities themselves

can positively affect each other.

Definition 2 (Distance function): The relationship between

facilities is based on a binary distance function d : L × L →
{0, 1}, i.e. either a pair of locations is adjacent or not. The

facilities are placed in cells of a rectangular grid, and thus we

assume that a relationship exists only between two adjacent

facilities and facilities adjacent to resource deposits.

Definition 3 (Adjacent location): The set of all locations

adjacent to a location l ∈ L will be denoted by δl(l) ⊂ L.

Definition 4 (Adjacent facility): The set of all facilities of

type d ∈ D adjacent to a facility placed on location l will be

denoted by δFd (l) ⊂ F .

Definition 5 (Adjacent resource deposit): The set of all re-

source deposits of type u ∈ U adjacent to a facility f placed

on location l will be denoted by δRu (l) ⊂ R.

Definition 6 (Extra production output - facility): The extra

production output denoted by OF
cd : N → R is an additional

production volume of a processing facility/mine c ∈ C pro-

portional to the number of surrounding (adjacent) facilities

d ∈ D.

Definition 7 (Extra production output - resource deposit):

The extra production output denoted by OR
cu : N → R is an

additional production volume of a processing facility/mine

c ∈ C proportional to the number of surrounding (adjacent)

resource deposits u ∈ U .

Definition 8 (Processing facility production output): The

(final) production output of a processing facility is defined as

follows:

oc(l) = OB
c

(

∑

d∈D

OF
cd(δ

F
d (l)) +

∑

u∈U

OR
cu(δ

R
u (l))

)

c ∈ C

(1)

B. Optimization model

The mining operation problem considered in this article can

be formulated as follows:

max
x

[o1, o2, . . . , o|C|] (2)

oBc =
∑

l∈L

OB
c xlc c ∈ C (3)

oFc =
∑

l∈L

∑

i∈δ(l)

∑

j∈D

OF
cjxij c ∈ C (4)

oRc =
∑

l∈L

∑

i∈δ(l)

∑

j∈U

OR
cjxij c ∈ C (5)

oc = oBc (o
F
c + oRc ) c ∈ C (6)

∑

c∈C

xcl = 1 l ∈ L (7)

∑

l∈L

∑

c∈C

xcl = |F| (8)

∑

l∈L

xcl = αc c ∈ C (9)

xcl ∈ {0, 1} c ∈ C, l ∈ L (10)

where αc is a parameter that denotes the designated number

of each facility type (the constraint (9) is optional).

III. ORDERED WEIGHTED AVERAGING

In the ordered weighted averaging aggregation of outcomes

(OWA) y = (y1, . . . , ym) the weights w = (w1, w2, . . . , wm)
are assigned to the ordered values (i.e., to the smallest value,
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the second smallest and so on) rather than to the specific

criteria:

Aw =

m
∑

i=1

wiθi(y) (11)

where (θ1(y), θ2(y), . . . , θm(y) = Θ(y) is the ordering map

Rm → Rm with θ1(y) ≤ θ2(y) ≤ . . . ≤ θm(y) and there

exists a permutation τ of set I such that θi(y) = yτ(i) for

i = 1, 2, . . . ,m. The OWA operator provides a parameterized

family of aggregation operators, which include many of the

well-known operators such as the maximum, the minimum,

the k-order statistics (including Conditional Value at Risk),

the median and the arithmetic mean. The OWA satisfies the

properties of strict monotonicity, impartiality and, in the case

of monotonic increasing weights w1 > w2 > . . . > wm−1 >
wm, the property of equitability [21] (satisfies the principle

of transfers – equitable transfer of an arbitrary small amount

from the larger outcome to a smaller outcome results in a more

preferred achievement vector). Every solution maximizing

the OWA function is then an equitably efficient solution to

the original multiple criteria problem. Moreover, for linear

multiple criteria problems every equitably efficient solution

can be found as an optimal solution to the OWA aggregation

with appropriate weights. Thus the OWA-based optimization

generates the so-called equitably efficient solutions (cf. [22]

for the formal axiomatic definition). According to [22] and

[23], equitable efficiency expresses the concept of fairness,

in which all system entities have to be treated equally and

in the stochastic problems equitability corresponds to the risk

aversion [24].

For the facility layout problem (2)–(10) the final OWA

aggregation of the outcomes pi for all types of production

facilities i ∈ C can be stated as the following LP model:

max

|C|
∑

k=1

kw′
ktk −

|C|
∑

k=1

∑

c∈C

w′
kdck (12)

subject to

dck ≥ tk − oc, dck ≥ 0 k = 1, 2, . . . , |C|, c ∈ C (13)

o ∈ O (14)

where coefficients w′
i are defined as w′

m = wm and w′
i =

wi − wi+1 for i = 1, 2, . . . ,m − 1, o = [oc]c∈C and O is a

feasible set of production output vectors defined by (3)–(10).

The weighted ordered weighted averaging (WOWA) aggre-

gation is a generalization of the OWA aggregation, that allows

assigning importance weights to specific criteria [25]. Those

weights could express, for example, relative importance of

different facility types. The weights assigned to ordered values

will be further called preferential weights.

Let p = (p1, . . . , pm) be an m-dimensional vector of

importance weights such that pi ≥ 0 for i = 1, . . . ,m and
∑m

i=1 pi = 1. The corresponding Weighted OWA aggregation

of vector y is defined [11] as follows:

Aw,p =
m
∑

i=1

ωiθi(y) (15)

with

ωi = w∗(
∑

k≤i

pτ(k))− w∗(
∑

k<i

pτ(k)), (16)

where w∗ is an increasing function interpolating points

(i/m,
∑

k≤i wk) together with the point (0, 0) and τ repre-

senting the ordering permutation for y (i.e. yτ(i) = θ(y)).
Moreover, function w∗ is required to be a straight line when

the points can be interpolated in this way. We assume the

piecewise linear interpolation function w∗ which is the sim-

plest form of the required interpolation.

Note, that the piecewise linear functions may be built

with various number of breakpoints, not necessarily equal

to number of criteria m [25]. Thus, any nonlinear function

can be well approximated by a piecewise linear function

with appropriate number of breakpoints. Therefore, we will

consider weights vectors w of dimension n not necessarily

equal to m. It is even possible to define a generalized WOWA

aggregation where the preferential weights wk are allocated

to an arbitrarily defined grid of ordered outcomes defined by

quantile breakpoints (see [25] and references therein).

As shown in [25], maximization of an equitable WOWA

aggregation with decreasing preferential weights w1 ≥ w2 ≥
. . . ≥ wn may be implemented as the LP expansion of the

original problem. In the case of the facility layout problem (2)–

(10), this can be stated as follows:

max
n
∑

k=1

w′
k

[

k

n
tk −

∑

c∈C

pcdck

]

(17)

subject to

dck ≥ tk − oc, dck ≥ 0 k = 1, 2, . . . , n, c ∈ C (18)

o ∈ O (19)

If the importance weights are equal pc = 1/|C|, the model

reduces to the OWA aggregation.

IV. ALGORITHMS

A. List-based threshold accepting

List-based threshold accepting algorithm (LBTA) [19] is an

extent of threshold accepting meta-heuristic, which belongs

to the randomized search class of algorithms. The search

trajectory crosses the solution space by moving from one

solution to a random neighbor of that solution, and so on.

Unlike the greedy local search methods which consist of

choosing a better solution from the neighborhood of the

current solution until such can be found (hill climbing),

the threshold accepting allows choosing a worse candidate

solution based on a threshold value. In the general concept of

the threshold accepting algorithm it is assumed that a set of

decreasing threshold values is given before the computation or

an initial threshold value and a decrease schedule is specified.
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Algorithm 1 Creating the list of threshold values

Require: Initial solution s1, list size S, set of move operators

m ∈M
1: i← 0
2: while i < N do

3: m← random(M)
4: s2 ← m(s1)
5: if C(s1) ≤ C(s2) then

6: ∆← (C(s2)− C(s1))/C(s1)
7: list← list ∪ {∆}
8: i← i+ 1
9: else

10: s1 ← s2
11: end if

12: end while

13: return list

The rate at which the values decrease controls the trade-off

between diversification (associated with large threshold values)

and intensification (small threshold values) of the search.

It is immensely difficult to predict how the algorithm will

behave when a certain decrease rate is applied for a given

problem without running the actual computation. It is also very

common that the algorithm with the same parameters works

better for some problem instances and significantly worse

for others. These reflections led to the list-based threshold

accepting branch of threshold accepting meta-heuristic.

In the list-based threshold accepting approach, instead of a

predefined set of values, a list is dynamically created during

a presolve phase of the algorithm. The list, which in a way

contains knowledge about the search space of the underlying

problem, is then used to solve it.

1) Creating the list of threshold values: The first phase

of the algorithm consists of gathering information about the

search space of the problem that is to be solved. From an initial

solution a neighbor solution is created using a move function

(perturbation operator) chosen at random from a predefined

set of functions. If the candidate solution is better than the

current one, it is accepted and becomes the current solution.

Otherwise, a threshold value is calculated as a relative change

between the two solutions:

∆ = (C(s2)− C(s1))/C(s1) (20)

and added to the list, where C(si) is the objective function

value of the solution si ∈ S, and S is a set of all feasible

solutions. For this formula to work, it is silently assumed that

C : S → R+ ∪ {0}. This procedure is repeated until the

specified size of the list is reached. For the algorithm overview

see Algorithm 1.

2) Optimization procedure: The second phase of the algo-

rithm is the main optimization routine, in which a solution to

the problem is found. The algorithm itself is very similar to

that of the previous phase. We start from an initial solution,

create new solution from the neighborhood of current one

using one of the move function, and compare both solutions.

Algorithm 2 LBTA optimization procedure

Require: Initial solution s1, thresholds list L, set of move

operators m ∈M
1: i← 0
2: s∗ ← s1
3: while i ≤ N do

4: m← random(M)
5: s2 ← m(s1)
6: i← i+ 1
7: if C(s2) ≤ C(s1) then

8: if C(s2) ≤ C(s∗) then

9: s∗ ← s2
10: end if

11: s1 ← s2
12: i = 0
13: else

14: ∆new ← (C(s2)− C(s1))/C(s1)
15: if ∆new < max(list) then

16: list← list \ {max(list)}
17: list← list ∪ {∆new}
18: s1 ← s2
19: i = 0
20: end if

21: end if

22: end while

23: return list

If the candidate solution is better, it becomes the current

one. Otherwise a relative change is calculated. To this point

algorithms in both phases are identical. The difference in the

optimization procedure is that we compare the threshold value

with the largest value from the list. If the new threshold value

is larger, then the new solution is discarded. Otherwise, the

new threshold value replaces the value from the list, and

the candidate solution is accepted to next iteration. The best

solution found during the optimization process is considered

final.

The list-based threshold accepting algorithm also incorpo-

rates early termination mechanism: after a (specified) number

of candidate solutions is subsequently discarded, the optimiza-

tion is stopped, and the best solution found so far is returned.

The optimization procedure of the list-based threshold ac-

cepting algorithm is shown in Algorithm 2.

B. Simulated annealing

The optimization process of the simulated annealing algo-

rithm can be described in the following steps. At the start,

an initial solution is required. Then, repeatedly, a candidate

solution is randomly chosen from the neighborhood of the

current solution. If the candidate solution is the same or better

than the current one, it is accepted and replaces the current

solution. Even if the generated solution is worse than the

current one, it still has a chance to be accepted with, so

called, acceptance probability. This probability is a function

of difference between objective value of the current and
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Algorithm 3 Simulated Annealing

Require: Initial solution s1
1: s∗ ← s1
2: for i = 1 to N do

3: for t = 1 to Nconst do

4: s2 ← perturbate(s1)
5: δ ← C(s2)− C(s1)
6: if δ ≤ 0 or e−δ/kτ > random(0, 1) then

7: s1 ← s2
8: end if

9: if C(s2) < C(s∗) then

10: s∗ ← s2
11: end if

12: end for

13: τ ← τ ∗ α
14: end for

15: return s∗

the candidate solution and depends on a control parameter

taken from the thermodynamics, called temperature. The tem-

perature is decreased after a number of iterations, and the

process continues as described above. The optimization is

stopped either after a maximum number of iterations or when

a minimum temperature is reached. The best solution found

during the annealing process is considered final.

For the algorithm overview see Algorithm 3.

In order to apply the simulated annealing algorithm to

the facility layout problems, the annealing process must be

adapted and the parameters adjusted appropriately. Similarly to

the threshold decrease rate in LBTA, the temperature decrease

(also known as the cooling process) in simulated annealing

consists of decreasing the temperature by a so called reduce

factor. The parameters associated with this mechanism are:

1) Initial temperature.

2) Function of temperature decrease in consecutive itera-

tions.

3) The number of iterations at each temperature (Metropo-

lis equilibrium).

4) Minimum temperature at which the algorithm terminates

or alternatively the maximum number of iterations as the

stopping criterion.

Let τ be the temperature and α be the reduce factor. Then

the annealing scheme can be represented as the following

recursive function:

τ i+1 = α ∗ τ i, (21)

where i is the number of current iteration in which the cooling

schedule takes place.

Second building block of SA that has to be customized is

the acceptance probability function, which determines whether

to accept or reject candidate solution that is worse than the

current one. The most widely used function is:

p (δ, τ) = e−δ/kτ , (22)

TABLE I
SIMULATED ANNEALING PARAMETERS

Parameter Description Value

α Reduce factor 1− 5

N

τ0 Initial temperature 0.99
δ0 Minimal difference between solutions 1
p0 Initial acceptance probability 1
Nconst Number at each constant temperature 10
N Number of SA iterations 100000

where δ = E(s2) − E(s1) is the difference between the

objective value (denoted by E) of the candidate (s2) and the

current solution (s1), and k is the Boltzmann constant found

by:

k =
δ0

log p0

τ0

, (23)

where δ0 is an estimated difference between objective values

of two solutions, p0 is the initial value of the acceptance

probability and τ0 is the initial temperature. Notice that we use

decimal logarithm rather than natural, which is most widely

seen in the literature and, rather than average, we use minimal

difference between solutions.

For the overview of the parameters applied in the facility

layout problem, see Table I.

C. Neighborhood function

The most problem-specific mechanism of both the SA and

the LBTA algorithm that always needs a different approach

and implementation is the procedure of generating a candidate

solution from the neighborhood of the current one, which is

called a perturbation scheme, transition operation/operator or

a move function. Although there are many ways to accomplish

this task, we have examined the following techniques:

1) Interchange two adjacent processing facilities.

2) Interchange two processing facilities at random loca-

tions.

3) Move a single processing facility to an adjacent, empty

location.

4) Change type of the facility.

5) Move a mine from current resource deposit to another

deposit that is not occupied.

In order to generate a new solution, the LBTA algorithm

applies one of the aforementioned operators chosen at random

to the current solution. SA on the other hand uses only

one, compound operator (a combination of operators which

together allow to make a transition from initial to any feasible

solution) during the whole optimization procedure.

D. Implementation details

1) Zero elements: In the first phase of the list-based thresh-

old accepting algorithm the list is populated with values of

relative change between two solutions ∆ ≥ 0. After careful

consideration, we believe that including zeros in the list is a

misconception. In the actual optimization procedure, i.e. the

second phase, the threshold value is computed only if the new

solution is worse than the current one, which means that the
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calculated relative change will always have a positive value

(∆new > 0). The new threshold value is compared with the

largest value from the list (Thmax). Thus, we can distinguish

three cases:

1) Thmax = 0: since thresholds are non-negative from

definition, in this case the list contains all zero elements

and it will not change throughout the whole procedure

(Thmax is constant). Comparing a positive threshold

value ∆new against zero yields in discarding the can-

didate solution. The conclusions are as follows:

a) it does not matter how many zeros are in the list,

the effective size of the list is equal to one,

b) the algorithm is reduced to hill climbing algorithm

that accepts candidate solutions which are at least

as good as the current one.

2) Thmax > 0 and ∆new < Thmax: the largest (positive)

threshold value from the list Thmax is replaced by a

smaller (positive) threshold value ∆new. The number of

zero elements in the list remains the same throughout the

whole procedure and therefore is completely irrelevant

to the optimization process. The effective list size is

equal to the number of positive elements.

3) Thmax > 0 and ∆new ≥ Thmax: the new solution is

discarded and the list remains unchanged.

The main idea behind the list is to control the diversification

and intensification of the search process. In the early stage

of the search the algorithm should allow to cover as much

solution space as possible, which means that the thresholds in

the list are expected to be large enough to make that happen. In

the middle stage, the algorithm should slowly stop fostering

the diversification and begin to foster the intensification of

the search. In the end stage, the intensification should be

the strongest, i.e. the list is supposed to contain smaller

and smaller threshold values, which induces discarding of

worse solution candidates. In consequence, the algorithm is

converging to a local or possibly even a global optimum.

2) Stopping criterion: Even though equipped with an early-

termination mechanism, the LBTA algorithm does not have a

solution space independent stopping criterion. If the number

of subsequently discarded worse solutions is set too high, the

algorithm will run for an unacceptable long time (it has been

observed during preliminary tests). Hence, we propose to use

a global counter of iterations so that when a limit is reached,

the algorithm will terminate gracefully.

V. NUMERICAL EXPERIMENTS

The numerical experiments were performed on a number

of randomly generated different size problems. Each instance

is defined by the number of locations |L|, which in turn

determines the number of facilities: |F| = |L|/2, and the

number of resource deposits: |R| = |L|/5 (the number of

resource deposits of each type are equal or differ by one).

However, the following settings were the same for every

instance, regardless of the problem size:

1) the number of types of processing facilities |T | = 2,

Algorithm 4 Random distribution algorithm

Require: Number of elements N , value to distribute v
1: list← v
2: for i = 1 to N do

3: x0 ← max(list)
4: list← list \ {x0}
5: x1 ← random(x0)
6: x2 ← x0 − x1

7: list← list ∪ {x1} ∪ {x2}
8: end for

9: list← shuffle(list)
10: return list

2) the number of types of auxiliary facilities |V| = 2,

3) the number of types of mines/resources |U| = 2,

4) the extra production output depending on adjacent fa-

cilities is defined for pairs of processing facility type ti
and auxiliary facility type vi: O

F
tivi

= 0.4, i = 1, 2 and

for one pair of processing facility types: OF
t1t2 = 0.2

(the relationship is not symmetrical),

5) the extra production output depending on adjacent re-

source deposits is defined for pairs of processing facility

type ti and resource deposit type ui: O
R
tiui

= 0.5, i =
1, 2,

6) the total basic production output is constant, and is ran-

domly distributed among the (basic) production output

of processing facilities and mines.

The algorithm of random distribution of total number of

facilities among the facilities of each type, and distribution

of total basic production output among the basic production

output of different types of processing facilities and mines has

been based on bisecting technique described in [26]. For the

overview see Algorithm 4.

For the WOWA aggregation operator we have chosen al-

ready examined weights generation methodology ([27]): all

the weights, except two, are strictly decreasing numbers with

the step 0.1, while the two selected weights (k = ⌊n/3⌋ and

k = ⌊2n/3⌋) differ from the previous ones by 0.5.

After preliminary tests, based on the objective value and

iteration number at which the best solution was found, we

have arrived at the list size of 2000, for which the LBTA

algorithm works at peak performance.

The algorithms were implemented in Java, and all the

experiments were performed on a 3.1 GHz processor. The

results are the average of 30 tries for each instance.

We have examined two situations: when the number of each

type of facility is given (constraint (9)) – see Table II, and

when only the total number of facilities is specified – the

results are presented in Table III.

Both algorithms produced similar results in terms of both

the solution quality (mean value and standard deviation) and

computation time. For instances with fixed number of each

facility type, SA has smaller standard deviation, but when it

comes to instances with fixed total number of facilities, it is

the other way around.
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TABLE II
LAYOUT PROBLEMS WITH THE NUMBER OF EACH TYPE OF FACILITY GIVEN

|L| |F| |R|
LBTA SA

LBTA/SA
mean objective value standard deviation time[s] mean objective value standard deviation time[s]

100 50 20 18719 19.1 1.745 18713 26.9 1.810 1.0004
100 50 20 11150 84.8 1.288 11205 76.8 1.824 0.9952
100 50 20 15406 6.4 1.688 15404 10.1 1.872 1.0001
100 50 20 11426 223.3 1.977 11612 142.3 2.039 0.9840
100 50 20 17599 48.6 1.700 17605 15.7 1.925 0.9997
144 72 29 27889 74.8 2.039 27882 80.7 2.261 1.0002
144 72 29 23739 139.4 2.008 23747 122.1 2.220 0.9997
144 72 29 27050 73.8 2.249 27055 72.0 2.438 0.9998
144 72 29 28103 49.8 2.114 28116 47.4 2.139 0.9995
144 72 29 19224 214.9 1.881 19626 205.5 2.405 0.9795
196 98 39 32146 237.0 2.572 32325 101.0 2.601 0.9945
196 98 39 23012 97.6 2.908 22993 70.0 3.281 1.0008
196 98 39 36957 81.6 2.346 36913 112.2 2.393 1.0012
196 98 39 34567 51.0 2.285 34563 51.2 2.690 1.0001
196 98 39 39903 90.7 2.943 39921 80.3 3.005 0.9995
256 128 51 57569 93.9 3.483 57629 46.8 4.155 0.9990
256 128 51 50916 167.1 3.763 51006 117.8 3.839 0.9982
256 128 51 59488 264.7 3.267 59658 189.7 3.565 0.9971
256 128 51 40648 141.4 2.061 40740 80.1 2.855 0.9977
256 128 51 33602 252.1 2.851 33744 189.2 3.022 0.9958
324 162 65 71843 122.3 4.149 71756 217.2 4.187 1.0012
324 162 65 26893 316.5 1.169 27174 148.2 2.455 0.9896
324 162 65 49630 126.3 3.617 49672 105.7 3.618 0.9992
324 162 65 43264 240.4 2.658 43347 144.9 2.908 0.9981
324 162 65 57886 401.5 3.583 58280 256.7 3.616 0.9933
400 200 80 92696 438.0 4.571 93413 267.3 5.027 0.9923
400 200 80 48824 288.3 3.068 49195 141.7 3.619 0.9925
400 200 80 66068 148.0 3.828 66403 172.8 3.874 0.9950
400 200 80 51355 382.8 3.612 51800 259.4 4.240 0.9914
400 200 80 72824 185.5 4.824 72848 168.5 5.159 0.9997

VI. CONCLUSION

We are not convinced that one algorithm supersedes the

other, which only means that both heuristics are equally good

and can be successfully applied to difficult, combinatorial

problems, like the one considered in this paper.
By considering only the idea behind the algorithm, we find

the LBTA meta-heuristic a little bit more appealing than SA

because of the concept of the list. The list holds the key

to control the optimization process. The larger the list, the

longer the diversification stage will last, because there will be

more threshold values to replace and higher probability of that

happening. On the other hand, the smaller the list, the stronger

the intensification, which in some cases can be more desired

(e.g. when the algorithm cannot find a good solution within the

given number of iterations). This gives the unique possibility

to the algorithm designer to control the whole optimization

process with just one parameter.
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