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Abstract—The article discusses abstract spaces of concepts and
features. Concepts correspond to real-world objects. Concepts are
described by their features. The study is devoted to relations in
the space of concepts and in the space of features. Of greatest
interest is similarity of structures in the concepts and features
spaces. There is a direct link between features and concepts.
Therefore, similarity may be analyzed through structures of both
concepts and features. Authors propose generalized similarity
relation, applicable to the developed framework. In addition,
similarity of nested sets of the space of features and concepts
is discussed. Authors introduce an algorithm, which calculates
similarity of two structures of nested structures. Developed
semantics leads to the set-theoretic model, which allows to flexibly
describe abstract information.

I. INTRODUCTION

S
IMILARITY is one of the most important dependencies

in our environment. In this article developed framework

for constructing generalized similarity relations is presented.

Similarity estimation has to involve narrowing the focus

on chosen aspects of compared objects. In our nomenclature

object is called concept, object’s attribute is a feature. We

chose these names intentionally, to highlight that our model

may be applicable to modeling in various areas of science.

In sections II-A and III the core of developed framework of

phenomena description is depicted. We start from the space of

features - pieces of information, that describe concepts. In sec-

tion III-B our own approach to similarity relations modeling

in the fuzzified space of concepts and features is introduced.

Similarity relations for features vectors are discussed. We

introduce also an algorithm for computing similarity of linear

orders in the space of features.

The goal of the paper is to present the research on concepts

and features spaces descriptions and similarity modeling.

Valuation mappings and similarity relations able to process

fuzzified descriptions of real-world objects are introduced.

II. PRELIMINARIES

In our approach a start point are features - descriptions of

concepts. Features are gathered in vectors. We operate in the

namespace of features and in the space of their evaluations

rather than on the concepts (objects) themselves. We are in-

terested in similarity of descriptions of concepts, i.e. in vectors

of features’ evaluations. We assume, that each hypothetical or

real concept can be described with qualitatively the same set

of features, but evaluated differently.

Due to space limitations we do not present literature review

on this topic. Interesting research on similarity can be found

not only, but also in: [2], [5], [6], [8] and [9]. It is important to

mention, that approaches present in the literature are suitable

for similarity based on features. Our model is concepts’

oriented in its nature. Therefore, it is necessary to include

relations between concepts and features.

We have developed a framework for describing the space

of concepts and the space of features. We have also proposed

similarity measures dedicated for this model, which we present

in the next paragraphs.

A. The space of concepts and the space of features

1) The space of features: A concept corresponds to a real-

world object. Usually, due to various constraints and complex-

ity of real-world phenomena, we do not operate directly on

concepts. Instead, we describe them with their features. In the

developed model the space of features is defined as follows:

D = {(µ1, . . . , µn) : µi ∈ [0, 1], i = 1, . . . , n, n ∈ N} (1)

Under our assumptions features are imprecise. Concepts

correspond to real-world objects. One of many imprecise

information representation models known in literature may

be applied, for example: [1] or [3]. Authors treat imprecise

information analogically to the uncertainty in the sense of

Zadeh. We are aware that there are other frameworks (i.e.

probability theory) that are able to describe uncertainty, which

we are not recalling here.

Features evaluations are expressed through their degree

of membership as a single numerical value from the [0, 1]
interval. Features vectors belong to the namespace of features.

There is unlimited amount of features vectors evaluations, but

in our application there is finite amount of features. Of interest

is possibility of features space structuring by introducing

certain relations, like inclusion, exclusion and overlapping.

2) The space of concepts: C is the set of all concepts

fulfilling some logical conditions, e.g. consumers from a city,

pixels from certain images, musical symbols of some score.

C = {c1, c2, . . . , cr} (2)
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such that r ∈ N is the number of concepts in the space C.

The source of information about concepts may be for example

measurement devices or questionnaire surveys.

The space of concepts is limited. We are interested in

structuring the space of concepts through the space of features,

the space of their evaluations and dependencies in these spaces

as well as in their subsets. Concepts’ space analysis will be

performed using relations of similarity, inclusion, exclusion

and others.

In the next section similarity relations customized for the

developed model are proposed. Presented technique aims at

mimicking human way of how similarity is estimated. Con-

cepts are described with their features, comparison happens

in a feature-wise fashion. The strength of belongingness of a

particular feature to the concept (corresponding to the degree

of membership) influences similarity measure.

III. SIMILARITY IN THE SPACE OF CONCEPTS

AND IN THE SPACE OF FEATURES

In this section we introduce similarity measures adjusted for

spaces of concepts and features.

A. The valuation mapping

Firstly, let us discuss the valuation mapping. It is a relation,

that for every vector of features assigns a set of concepts.

V : D → 2 C (3)

For instance, the simplest valuation assigns all concepts with

a given features’ vector (µ1, . . . , µn) to this vector of features:

V (µ1, µ2, . . . , µn) = {c ∈ C : d(c) = (µ1, µ2, . . . , µn)} (4)

where the mapping d : C → D defines features for concepts.

Valuation mapping V generates a subset of the space of

concepts, such that each i-th feature of selected concepts was

evaluated exactly the same, as the respective i-th feature from

analyzed vector (µ1, µ2, . . . , µn). Valuation mapping defined

in formula 4 is called pointwise valuation mapping.

Alternatively, we propose generalized approach to valuation

mappings called filling up valuation mapping defined as fol-

lows:

VI(µ1, . . . , µn) =
{

c ∈ C : d(c) = (µc1, . . . , µcn) and

µci 6 µi for i = 1, . . . , n
}

(5)

Filling up valuation mapping generates a subset of the

space of concepts, that groups objects, which each i-th feature

was not evaluated as greater than respective feature in given

features vector. In other words, filling up approach is a gener-

alization of pointwise valuation mapping V , which translates

features vectors into groups of concepts. As a result, we extract

objects, which description satisfy certain conditions to some

point, but not beyond that point. In this study conditions are

between 0 and 1, but they may be different if we assume other

information representation model (for example: balanced fuzzy

sets defined in [3] utilize [−1, 1] interval, intuitionistic fuzzy

sets defined [1] employs doubled unit interval [0, 1]).

Valuation mappings V and VI are semantic mappings. They

allow transformation from the namespace of features and the

space of their evaluations to subsets of the space of concepts.

In practice, we use valuation mappings to generate subsets of

the space of concepts, in which we are interested in. The key,

by which subsets are generated, are features - and that was

our initial goal, to describe concepts and groups of concepts

by their features.

B. Similarity relations

In this section we introduce similarity relation for features’

vectors. Let us assume that we have two vectors of features:

µA = (µA1, µA2, . . . , µAn)

µB = (µB1, µB2, . . . , µBn)

Below we introduce a generalized similarity measure

sG(eneralized) of two vectors of features.

sG(µA, µB) =

∣

∣VI(µA) ∩ VI(µB)
∣

∣

∣

∣VI(µA) ∩ VI(µB)
∣

∣+ VA\B + VB\A

(6)

where:

VA\B =

∫ ρmax

0

α(x) · VA\B(x) dx

VB\A =

∫ λmax

0

β(x) · VB\A(x) dx (7)

and

α and β are real nonnegative functions

and

VA\B(x) =
∣

∣

∣

{

c ∈ VI(µA) \ VI(µB) :
n

max
i=1

{µAi − µci}=x
}

∣

∣

∣

VB\A(x) =
∣

∣

∣

{

c ∈ VI(µB) \ VI(µA) :
n

max
i=1

{µBi − µci}=x
}

∣

∣

∣

and

ρmax = min
{

ρ > 0 : (∀ i = 1, 2, . . . , n) µBi + ρ > µAi

}

λmax = min
{

λ > 0 : (∀ i = 1, 2, . . . , n) µAi + λ > µBi

}

and

µc =
(

µc1, µc2, . . . , µcn

)

is the vector of features of the concept c.

Valuation mapping VI transforms vectors of features into

subsets of the space of concepts satisfying certain conditions

(as in formula 5). Generalized similarity sG is calculated as

a fraction. Similarity is enlarged as the size of intersection of

compared subsets of the space of concepts grows. Similarity

becomes smaller as the number of elements that do not belong

to sets’ intersection grow. The decreasing effect of features,

which are not shared, is conditioned on the difference between

these features and vectors µA and µB . We integrate on the

space of features. Integration is done separately for concepts

in VI(µA) \ VI(µB) and in VI(µB) \ VI(µA). The domain of

integration spans from 0 to ρmax or to λmax respectively for

these two cases. Functions α and β allow to introduce more
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punishing effect of VI(µA) \ VI(µB) and VI(µB) \ VI(µA)
on the similarity value. α and β may be also used to enhance

nonsymmetry of relation sG.

Let us also introduce a discretized version of similarity

relation sG (named sD(iscretized)). For any 0 < ρ and 0 < λ

the value of similarity is based on estimations of integrals from

the formula 6 in a following manner:

VA\B(x) =

ρmax
∑

j=1

(

α(j) · VAj

)

VB\A(x) =

λmax
∑

j=1

(

β(j) · VBj

)

(8)

where:

VAj =

∣

∣

∣

∣

{

c ∈ VI(µA) \ VI(µB) : τρj
( n
max
i=1

{µAi − µci}
)

}

∣

∣

∣

∣

VBj =

∣

∣

∣

∣

{

c ∈ VI(µB) \ VI(µA) : τλj
( n
max
i=1

{µBi − µci}
)

}

∣

∣

∣

∣

and

τρj(exp) ≡ ρ · (j − 1) < exp 6 ρ · j

τλj(exp) ≡ λ · (j − 1) < exp 6 λ · j

and

ρmax = min
{

j=1, . . . : (∀ i=1, . . . , n) µBi + ρ · j > µAi

}

λmax = min
{

j=1, . . . : (∀ i=1, . . . , n) µAi + ρ · j > µBi

}

Analogously to the formula 6, we use filling up valuation

mapping VI . It produces a subset of the space of concepts,

that satisfies given conditions to the extent not greater than

the conditions stated in the input features vector. By anal-

ogy, in the sD compared sets intersection and outlying parts

(VI(µA) \VI(µB) and VI(µB) \VI(µA)) are accounted. Con-

cepts not present in sets’ intersection are lying in one of the

two remaining parts. They decrease the value of similarity in

a nonsymmetrical fashion (through functions α(j) and β(j)).
The decreasing impact of concepts lying in sets’ differences is

conditioned on the difference between the particular concept

µc and µA or µB . We may visualize such ,,outlying” con-

cepts as crescent-shaped hulls around sets’ intersection. These

crescent-shaped hulls are divided into up to ρmax and λmax

segments. The greater amount of concepts fall to the furthest

part of such crescent, the more decreasing effect there is on

the similarity value.

We may simplify formula sD further on. Instead of func-

tions α and β under the sum in formulas 8, we may multiply

coefficients by parameter λ or ρ and by j in a following way:

VA\B(x) =

ρmax
∑

j=1

(

ρ · j · VAj

)

VB\A(x) =

λmax
∑

j=1

(

λ · j · VBj

)

(9)

The proposed idea relies on relation built around sets’ inter-

section and concepts lying beyond this intersection. Alignment

of the outlying concepts influences similarity value. Similarity

relation’s codomain is [0, 1]. Note, that it is reflexive. The

relation sG was also intentionally constructed to be nonsym-

metric, but they can be adjusted to be symmetric. Asymmetry

of similarity relation is a highly desirable property from the

applicational point of view. Due to space limitations we do

not elaborate on similarity relation properties.

In given definition of valuation mapping VI , what strikes

immediately, is that the similarity relation induced by this

mapping may also create linear orders (chains) in the space of

subsets of D. In this article we discuss linear orders only.

Of interest is similarity of such nested structures. In the

next section we present this nontrivial modeling problem to

a greater extent.

C. Similarity of linear orders in the space of concepts

In this paragraph we investigate such subsets of the space of

features D, that this mapping computes the same value for all

features’ vectors included in such subset, i.e. A ∈ D is such

subset if (∀µ1, µ2 ∈ A)VI(µ1) = VI(µ2). The structures of

such subsets can be formally described as linear orders. Let

us recall that linear order is a pair (X,6), where X is a set

of elements and 6 is a binary relation satisfying axioms of:

antisymmetry, transitivity and totality.

Let us introduce a similarity relation able to compare subsets

of the space of features nested in the sense explained above,

i.e. (∀B,A ∈ D) B 6 A ≡ VI(B) ⊂ VI(A). Also, whenever

µA = (µA1, . . . , µAn) ∈ A and µB = (µB1, . . . , µBn) ∈ B
and µBi 6 µAi, i = 1, . . . , n, then B 6 A.

Comparing nested subsets of the space of features requires

taking into account not only cardinality of compared subsets,

but also actual elements lying inside. Therefore, measures of

similarity operating only on cardinalities are not satisfactory

to describe such structures. We need to compare actual content

of each subset.

In order to compare nested subsets of the space of features

we have developed an algorithm, which we describe here.

Features nesting is understood in a following way: given

features vector µA = (µA1, µA2, . . . , µAn) nests features

vector µB = (µB1, µB2, . . . , µBn) if:

µBi 6 µAi, i = 1, 2, . . . , n (10)

The space of features (see formula 1) and subsets of the

space of concepts (see formula 2) generated with valuation

mapping VI (defined in formula 5) are recalled here. Nested

features, through filling up type of transformation enforced by

the valuation mapping, generate nested subsets of the space

of concepts. Structure of nested sets in the space of concepts

corresponds to features’ nesting.

If sets of concepts are nested, then each bigger set contains

each concept from each smaller set and optionally several more

concepts. Let us analyze an exemplar order Eo, which contains

following 3 subsets of some space of concepts:
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P1 = {c1, c2}

P2 = {c1, c2, c4}

P3 = {c1, c2, c4, c7, c8}

where P1 is a subset generated with VI(µP1
), P2 is a subset

generated with VI(µP2
) and P3 is a subset generated with

VI(µP3
). µP1

, µP2
and µP3

are particular features vectors

evaluations. For clarity of algorithm description, nomenclature

used later refers only to subsets of the space of concepts

named as Pm. The method of obtaining these subsets, through

valuation mapping VI , is assumed by default. In the given

example of Eo following structure is observed: P1 ⊆ P2 ⊆ P3.

In the developed algorithm, written to compare two nested

structures of the space of concepts, as input data we have two

such structures (denoted as E1 and E2):

E1 = Pi1 , . . . , Pik

E2 = Pj1 , . . . , Pjl

where Pi1 , . . . , Pik , Pj1 , . . . , Pjl are subsets of the space of

concepts. E1 and E2 are linear orders, so Pi1 ⊆ . . . ⊆ Pik and

Pj1 ⊆ . . . ⊆ Pjl . We do not make any assumptions about the

length of orders E1 and E2. Pi1 , . . . , Pik , Pj1 , . . . , Pjl contain

concepts. Pi1 , . . . , Pik , Pj1 , . . . , Pjl are sets, so the order of

appearance of concepts in each set can be omitted. Hence,

we always use alphabetical order, to improve efficiency of

our algorithm. Each order E can be written as a sequence of

concepts, starting from the ,,deepest” of the nested sets.

The input data to our algorithm are two linear orders E1
and E2 written as sets in a form (convention) described above.

1) Start with order E, which has last set smaller. If cardi-

nalities of last sets of both orders are equal, choose one

order at random. Denote this order as Ef(irst) and its

last subset as Pfu (it is either Pik or Pjl ).

2) Denote the second order as Es(econd). Denote last

(biggest) set of order Es as Psv . Search for such set

in the order Es, which shares the biggest number of the

same elements (concepts) with Pfu and is the largest.

We assumed inclusion (see formula 10), so the last set

of Es, which is Psv will be always chosen. It is either

Pik or Pjl , the one not chosen in the above point.

3) Collate Ef and Es in a following way: set Pfu corre-

sponds to set Psv , set Pfu−1
corresponds to set Psv−1

and so on. If sets from one order run out, assume ∅.

4) For each pair of sets Pfi and Psi compute sD(Pfi , Psi).
The formula for sD is given in 6 with redefined nonover-

lapping parts defined by formulas 8 (see section III-B).

5) Similarity of linear orders Ef and Es is equal

to aggregated similarities computed as in point 4,

i.e. aggr{sD(Pfi , Psi), i = 1, 2, . . . ,max{fu, sv}}, with

some aggregation operator aggr. Note that for linear

orders, as in discussed case, collated are simply Pik and

Pjl , Pik−1 and Pjl−1 etc.

Properties of the developed algorithm depend on assumed

information representation model, on the similarity relation

applied in step 4 and on the aggregating operator calculated

in step 5. Due to space constraints we do not compare here

various possibilities, which may be chosen in steps 4 and 5. In

our first attempt as aggregating function we took mean, as it is

very intuitive and normalized measure of dependency between

real numbers (and the sum of all sD(Pfi , Psi) gives us a

real number). To maintain comparability, aggregating function

should produce normalized values of similarity.

IV. CONCLUSIONS

The article discusses developed model of features and

concepts spaces. Of interest is similarity between descriptions

of real-world objects, which we call concepts. Such descrip-

tions (features vectors evaluations) through valuation mapping

generate subsets of the space of concepts. Valuation mapping

from the namespace of features into subsets of the space of

concepts can be performed in a point-wise fashion or in an

filling up way. All concepts form the universe of discourse,

on which we do not directly operate. Instead, we use features,

which describe concepts.

Two similarity relations developed for this model are intro-

duced. First one is a generalized similarity relation between

features vectors. Second one is a discretized version of the

generalized similarity relation. Presented measures take into

account fuzziness of analyzed information.

In this paper an algorithm of evaluating similarity between

structures of nested features vectors based on generalized

similarity relation and valuation mapping is introduced.
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