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Abstract—Binary classifiers are grouped into an ensemble to
solve multi–class problems. One of proposed ensemble structure
is a directed acyclic graph. In this structure, a classifier is created
for each pair of classes. The number of classifiers can be reduced
if groups of classes will be separated instead of individual classes.
The proposed method is based on the similarity of classes defined
as a distance between classes. For near classes the structure of
DAG stays immutable. For the distant classes more than one
is separated with a single classifier. In this paper, the proposed
method is tested in variants based on various metrics. For the
tests, several datasets from UCI repository was used and the
results were compared with published works. The tests proved
that grouping of radial basis functions into such ensemble reduces
the classification cost and the recognition accuracy is not reduced
significantly.

Index Terms—Classification, Radial Basis Function, Directed
Acyclic Graph, Support Vector Machines

I. INTRODUCTION

R
ADIAL Basis Functions (RBF) can be used both as
multi–class and binary classifiers. Binary RBF classi-

fiers are useful, still improved linear models in a nonlinear
subspace [1], [2] and can be used to create an ensemble of
classifiers to solve multi–class problems. Such approach was
confirmed by research on Support Vector Machines [3]. In
fact, there is equivalence between a decision rule created by
an SVM with radial kernels and radial networks [4]. Therefore,
an ensemble of classifiers can be created for binary RBF
classifiers as well as in the case of SVM equivalents.

Although one–step solutions were proposed [5], [6] to solve
multi–class tasks by an SVM, they are not efficient [7]. An
alternative solution is creation of an ensemble. Main approach
to create an ensemble are discussed in [7], [8].

Proposed approaches are One–Against–All (one class is
compared against the rest) [9], One–Against–One (a classifier
is created for each pair of classes) [10], Error-Correcting
Output Codes (class binarisation in order to enhance gener-
alisation ability) [11], and several methods based on graph
structures [12], [13].

Among several graph ensemble fusion methods can be
used to solve multi–class problems using binary RBF clas-
sifiers [14] one of the most popular strategy is grouping SVM
classifiers into a directed acyclic graphs (DAG) [13].

In the case of an n-classes problem a tree implementation
requires n − 1 classifiers and the average decision process
uses n− 1/2 classifiers. A DAG ensemble needs n(n− 1)/2

classifiers to solve the same problem. However, only n − 1
classifiers is used in the classification process and obtained
results are usually better [15], [16].

In the work [17], the method for reduction of number of
classifiers in a DAG structure was presented. The proposed
method is based on a class similarity. Similar classes are
grouped and separated from diametrical different classes as
a whole group. In this case, a number of used classifiers is
reduced. The method was projected for linear classifiers and
verified on a single recognition task. The similarity calculated
in the work was a derivative of the Euclidean metric. The
algorithm was tested on a single recognition task.

This work is based on the algorithm proposed in [17].
However, several improvements with respect to the previously
published works have been done. The algorithm has been
tested on a wider set of classification problems. Researches
on new problems resulted in modifications of the algorithm.
The most important modification was done in limitation rules
presented in Section II-C.

The algorithm was a basis for several models based on var-
ious definitions of similarity. The following metrics are used
in modelling: the Euclidean, the Chebyshev, the Manhattan,
the Minkowski, and the Pearson.

Models are verified on various datasets from UCI repository.
Therefore, results can be compared with others works and the
results of the modified algorithm were compared with results
of RBF classifiers grouped into a DAG ensemble.

II. REDUCED DAG ENSEMBLE

A. DAG ensemble

A directed acyclic graph G, which is described by the set
of vertices V (G) and the set of edges E(G), can be declared
as an ensemble of binary classifiers.

The vertices are grouped in layers. The first layer contains a
single vertex – the root. Each subsequent layer has one more
vertex. The last layer consists of n vertices where n is the
number of recognised classes.

Each vertex from any layer except the last one has connec-
tions with two vertices from the next layer. Vertices on the
last layer are leaves. Each leaf from L(G) is connected with
a final classification decision (one of the recognised classes).
The rest of vertices V (G)\L(G) contains binary classifiers.
The decision of the classifier defines which connected vertex
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will be activated next. If a leaf is activated a final decision is
determined by a class connected with the leaf.

A vertex is also identified with a group of classes that can
be achieved from the vertex. Each vertex can be declared as
a root of sub–DAG. Such root represents a group of classes
collected on the last layer of the sub–DAG. If v ∈ V (G) is
the root of the sub–DAG Gv then L(Gv) ⊆ L(G) determines
classes identified with the vertex.

Sub-DAGs can be also used to determine classifiers. A
vertex v ∈ V (G)\L(G) has two successors vi and vj . The
successors are identified with classes connected to L(Gvi)
and L(Gvj ) respectively. Therefore, the binary classifier in the
vertex v divides dataspace between two groups of separable
classes from sets L(Gvi) and L(Gvj ).

The aim of the proposed method is to eliminate some of
vertices from layers. Then an activated vertex can lie on a layer
further than the next one. The example of reduced structure
is presented in Figure 1. The elimination of vertices shortens
the average classification time. However, not each vertex can
be eliminated without a significant reduction of the accuracy
ratio. Therefore, the selection of eliminated vertices will be
based on similarity between classes.

B. Similarity

A similarity between classes is estimated on the base of a
distance. The distance between classes d(CX , CY ) depends on
the distance between elements of those classes d(x, y) and can
be defined as the distance between nearest, furthest elements or
as the average distance between all pair of elements. However,
mentioned above distances are very time-consuming. Instead,
the distance may be approximated as the distance between
centroids (the centres of gravity for the classes)

d(CX , CY ) = d





1

nCX

∑

x∈CX

x,
1

nCY

∑

y∈CY

y



 . (1)

The equation (1) can be also used to calculate a distance
between groups of classes. If a group is an union of classes
CX =

⋃k

i=1 Ci then all members of classes Ci, where i =
1 . . . k, are treated as members of CX . The distance between
such groups can be calculated as (1).

The distance between an individual elements of the data
space d(x, y) depends on the selected metric. Usually it is the
Euclidean metric

d(x, y) =

√

√

√

√

n
∑

i=1

(xi − yi)
2
. (2)

However, if the recognised elements are described by some
specific features it is sometime better to select a different
measure.

Two potential candidates are Manhattan and Chebyshev
metrics. The Manhattan distance

d(x, y) =

n
∑

i=1

|xi − yi| (3)

should be calculated when individual features are independent,
but their sum may be treated as a rational measure of the
similarity. In the Chebyshev distance

d(x, y) = max
i∈{1,...,n}

|xi − yi| (4)

the similarity will depend on the maximal difference among
features.

In the tests, two more metrics were used.
The Minkowski metric is a parameterised metric that be-

comes the Euclidean metric for k = 2.

d(x, y) =

(

n
∑

i=1

|xi − yi|
k

)
1

k

. (5)

In this work k = 3 was used.
The Pearson metric bases on the Pearson product–moment

correlation coefficient rxy and presents inverse correlation
between data vectors

d(x, y) = 1− rxy. (6)

C. Creation of structure

The graph for the n–classes classification task has n layers
where the last layer contains leaves labelled as recognised
classes. The algorithm starts with the set V (G) of n leaves.
Therefore initially V (G) = L(G).

In each step a pair of the vertices vi and vj is selected.
The selected vertices are roots of DAGs with nearest groups
of classes on the last layers L(Gi) and L(Gj).

(vi, vj) = arg min
vi,vj∈V (G)

d(L(Gi), L(Gj)). (7)

In this and the following equations, the notation L(Gi)
means all classes from the last layer (leaves) of the DAG with
root in the vertex vi. Therefore the distance d(L(Gi), L(Gj))
can be calculated as a distance between group of classes (1).

The new vertex vk is added to the graph G. The vertices vi
and vj are now its successors. The new graph G is given by
the set of vertices

V (G) = {vk} ∪ V (G) (8)

and the set of edges

E(G) = {(vk, vi), (vk, vj))} ∪ E(G). (9)

It is easy to observe that groups L(Gi) and L(Gj)), deter-
mined by vertices vi and vj , may be still the nearest groups in
the graph G. Moreover, the created group L(Gk) is the union
of groups L(Gi) and L(Gj) and consequently the union may
be selected as the nearest with one of groups determined by the
successors. Such situations should be avoided. Therefore, the
set of vertices that are taken into consideration in the equation
(7) should be limited by the following rules.

Under the second rule, that eliminates problem with the
same pair selected again, the two vertices vi and vj can be
joined if and only if the union of classes represented by them
is not a subset represented by any existed vertex
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∀(vk ∈ V (G))L(Gi) ∪ L(Gj) * L(Gk). (10)

The rule (10) is modification of the rule presented in [18].
The previous rule assumed that L(Gi) ∪ L(Gj) 6= L(Gk),
however then the algorithm was not convergent for some
datasets.

Under the first rule, that eliminates problem of joining
successors with a predecessor, the two vertices vi and vj can
be joined if and only if the set of classes represented by one
of them is not a subset of the other

C(Gi) * C(Gj) ∧ C(Gj) * C(Gi). (11)

Both conditions (11) and (10) can be used to create a limited
set of allowed pairs of vertices

SP = {(vi, vj) : vi, vj ∈ V (G)

∧ L(Gi) * L(Gj) ∧ L(Gj) * L(Gi) (12)

∧ ∀(vk ∈ V (G))L(Gk) 6= L(Gi) ∪ L(Gj)}.

Moreover, the common part of classes is ignored when the
distance is calculated and the final form of the formula (7) is

(vi, vj) = arg min
(vi,vj)∈SP

d(L(Gi)\L(Gi∩Gj), Lj\L(Gi∩Gj)),

(13)
where

L(Gi ∩Gj) = L(Gi) ∩ L(Gj). (14)

In each step of the algorithm, the two allowed vertices vi, vj
are joined. The algorithm stops when no join can be made

∀(vi ∈ SG)∃(vj ∈ SG)L(Gi) ⊆ L(Gj) ∨ L(Gj) ⊆ L(Gi).
(15)

D. Classification

The classification process starts in the root of DAG ensem-
ble and finishes in a vertex from the last layer.

In the DAG ensemble, each classifier rejects one from the
recognised classes. Therefore, if the vertex vi is a root of a
DAG with the last layer consists of vertices L(Gi) then the
vertex vj , which is next in the classification path, is connected
with classes defined by the following rule

L(Gj) = L(Gi) \ {vk} ∧ vk ∈ L(Gi). (16)

In the reduced ensemble, the number of classification steps
can be reduced, because a classifier can reject more than one
class in one step and the rule (16) is replaced by

L(Gj) = L(Gi) \ Vk ∧ Vk ⊂ L(Gi). (17)

When a vertex v ∈ V (G)\L(G) has two successors vi and
vj , identified with classes connected to vertices L(Gi) and
L(Gj) respectively, then the binary classifier in the vertex
v divides dataspaces between two groups of separate classes
L(Gi) \ (L(Gi) ∩ L(Gj))) and L(Gj) \ (L(Gi) ∩ L(Gj).

E. Time reduction

Three main elements that describe costs of the created
classifiers are the construction time, the learning time, and
the classification time.

The first element is a construction of the ensemble. In the
case of a DAG, this element can be omitted. However, it
is an important part of the presented method (described in
Section II-C. If the cost of the ensemble creation is significant
then potential reduction of the learning time can be balanced
by a cost of the new element.

At the first glance, the learning time should be shorter in
a reduced structure. However, a reduction of classifiers in the
ensemble does not necessarily have to result in a reduction of
the learning time. All classifiers in a DAG structure present
the One–Against–One approach. Meanwhile, at least several
classifiers in the reduced structure split dataspace between a
class and a group of classes. It was proved that One–Against–
One approach can results in lower costs than One–Against–All
approach [8]. Therefore, the learning time can be longer for
the reduced structure.

Considering pessimistic assumptions on the building time
and the learning time, we should remember that the most
important cost in the classifier evaluation is the classification
time. The reduced structure has definitely lower classification
costs that DAG.

In the n–classes recognition time, a DAG structure needs
n− 1 binary classifiers to assign the analysed case to one of
recognised classes. If C is a set of analysed cases and Ci is a
subset of cases assigned to the class labelled with i then the
classification time for the set C is calculated as

n
∑

i=1

|Ci| ∗ (n− 1) ∗ t = |C|(n− 1) ∗ t, (18)

where t is the binary classification time, which should be equal
for all binary classifiers from the ensemble.

In the case of the reduced structure, the same set C is
defined as the union of cases Ĉi assigned to the class labelled
with i by the new classifier. The number of binary classifiers
used in the classification depends on the final classification
decision and can be calculated as di − 1, where di describes
number of vertices on the path from the root to the leaf
assigned to the class labelled with i. Therefore, di ≤ n.

The classification time for the set C is calculated as
n
∑

i=1

|Ĉi| ∗ (di − 1) ∗ t. (19)

From di ≤ n and
∑n

i=1 Ĉi = C =
∑n

i=1 Ci we know that

n
∑

i=1

|Ĉi|∗(di−1)∗t ≤

n
∑

i=1

|Ĉi|∗(n−1)∗t ≤ |C|(n−1)∗t. (20)

Therefore, the classification time for the reduced structure
is lower if at least one case from an analysed set belongs to
the class with a reduced classification path.
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III. RESULTS AND DISCUSSION

In this work, four sets from UCI repository were used. Let-
ter Image Recognition Data (Letter), Optical Recognition of
Handwritten Digits (Optdigits), Glass Identification Database
(Glass), and Wine recognition data (Wine).

TABLE I
DATASETS.

Number of
Dataset Training data Testing data Classes Attributes
Wine 125 53 3 16
Glass 150 64 6 16
Letter 15000 5000 26 16
Optdigits 3823 1797 10 64

In the case of Optdigits dataset and Letters relations between
the training sets and the testing sets proposed in the reference
works [15] and [16] had been used. However, in the case of
datasets Wine and Glass solutions proposed in the reference
works had been tested by the cross validation method. There-
fore, the validation performance was measured by training 70
percent of the training set and testing the other 30 percent of
the training set in these cases. Details on the sets are given in
Table I.

The computational experiments for this section were done
on an Intel Core i5–2500 with 8 GB of RAM.

All the problems were tested using RBF kernels. The
accuracy rate was estimated using different kernel parameters
γ and cost parameters C where C = {20, 21, . . . , 212} and
γ = {2−12, 2−11, . . . , 24}. The selection of parameters values
is the most time–consuming part of the process. 221 tests must
be done to check all pairs of parameters for one metric. On
the testing computer, the test series lasted from few seconds to
three hours depending on a dataset. Therefore, some proposals
should be made to reduce the computation time.

Table II presents the accuracy ratio obtained by using
different metrics. Results are very similar and any of metrics
cannot be chosen as the best one. However, it can be observed
that the Chebyshev and the Manhattan metrics gave worse
results. The Minkowski metric, which had been gotten with
k = 3, resulted in the accuracy similar as the Euclidean
metric. In fact, the calculations can be limited to Euclidean
and Pearson metrics to cover all of the best results.

The accuracy ratio obtained by the proposed method was
compared with RBF classifiers ordered in the DAG structures,
presented in works [15] and [16]. The detailed results includ-
ing used parameters are presented in Table III.

The results of three compared approaches cannot be com-
pared directly because works [15] and [16] covers different
data set. Therefore, the proposed method should be compared
with each work separately. The average accuracy ratio calcu-
lated among datasets discussed in the works is always minimal
better for the proposed method.

The results of the proposed method were compared with two
more state-of-the art algorithms: One–Against–All and One–
Against–One methods. The average accuracy calculated for all

data sets was 92.22 percent for the One–Against–One method,
91.92 percent for the One–Against–All method and 92.35 for
the proposed method. Details on results and configuration are
give in Table IV. The averages are very similar and any method
cannot be pointed as the best one.

The most important aspect in the comparison is reduction of
created vertices in the DAG structure. The number of vertices
used to solve the Optdigits and Letter problems was reduced
to 42 and 66 percent of vertices from the DAG structures. The
proposed method reduced the number of RBF classifiers that
has to be trained. Additionally, the average classification time
will be shorter, because of reduction of decision paths. Two
examples for Optdigits are shown in Figure 1.

Each graph has leaves marked with circles and vertices with
classifiers marked with diamonds. Inside the diamonds two
groups of classes are noticed. The classifier inside the vertex
divides the data space between members of both groups.

The reduction of the average classification time is clearly
visible in the case of the class zero. The class can be selected
after three classification steps instead of nine as in the case
of non–reduced DAG structure. In the proposed method, only
two classes from the last layer are classified in nine steps.

The created graphs have the same number of vertices. How-
ever, the structures are different. First, numbers of vertices on
layers are different. Moreover, different nearest classes were
selected in the first step of the algorithm. For the Chebyshev
metric, nearest classes are 1 and 8, whereas for the Euclidean
metric the nearest classes are 3 and 9. The differences in the
structure results in differences in the accuracy presented in
Table II.

The ensembles created in the Letter problem is too complex
to present a comparison between several graphs. However,
the graph created using the Euclidean metric is presented in
Figure 2. The letter ’L’ can be recognised in 9 steps. 20 steps
are needed to recognise such letters as ’K’, ’G’, ’Q’, ’R’, ’B’,
’S’, and ’Z’. Meanwhile the DAG structure needs 25 classifiers
to recognise any letter. Therefore, both average and pessimistic
costs are much lower in the proposed solution.

In the case of Glass problem, the reduction ratio is smaller.
This is connected with the smaller number of recognised
classes. In the Wine problem, a number of vertices cannot
be reduced. However the algorithm determines the order of
classifiers in the DAG. As it was shown in Table III, the
determined order allows the ensemble to obtain the best result.

The method results in reduction of the classification time. In
Table V, the learning time and the classification time obtained
by DAG classifiers are compared with the time obtained by the
proposed method. Additionally, the graph structure building
time is presented in the case of the method from this work.

The proposed method reduces the classification time for
complex tasks. Although, the classification time for various
methods given in second has only an approximate character,
the difference between methods bases on strong theoretical
bases (Section II-E).
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TABLE II
THE ACCURACY RATIO OBTAINED BY USING DIFFERENT METRICS. THE BEST RESULTS ARE EMPHASISED.

Dataset Chebyshev Euclidean Manhattan Pearson Minkowski
Wine 98.86 99.44 99.44 99.44 99.44

Glass 73.79 74.22 73.29 73.81 74.22

Letter 97.42 97.63 97.63 97.70 97.35
Optdigits 97.5 98.05 97.94 98.05 98.05

TABLE III
THE ACCURACY RATIO OBTAINED BY THE PROPOSED METHOD IS COMPARED WITH RBF CLASSIFIERS ORDERED IN THE DAG STRUCTURES, PRESENTED

IN WORKS [15] AND [16]. FOR EACH METHOD, USED PARAMETERS γ AND C ARE GIVEN. DAG VERTICES IS A NUMBER OF VERTICES CREATED BY
DAG, AND VERTICES IS A NUMBER OF VERTICES CREATED BY THE PROPOSED METHOD. THE BEST RESULTS ARE EMPHASISED.

Work [15] Work [16] Proposed method
Dataset DAG vertices C γ accuracy C γ accuracy C γ accuracy Vertices
Wine 3 2

2
2
3 99.44 2

8
2
−9 98.88 2

0
2
−2 99.44 3

Glass 21 2
12

2
1 73.49 2

12
2
−3 73.83 2

2
2
3 74.22 19

Letter 325 - - - 2
4

2
2 97.98 2

6
2
2 97.70 216

Optdigits 45 2
2

2
3 98.44 - - - 2

3
2
−5 98.05 19

TABLE IV
THE ACCURACY RATIO OBTAINED BY THE PROPOSED METHOD IS COMPARED WITH ONE AGAINST ONE AND ONE AGAINST ALL METHODS

One–Against–One One–Against–All Proposed method
Dataset C γ accuracy C γ accuracy C γ accuracy
Wine 2

1
2
2 99.44 2

1
2
2 98.89 2

0
2
−2 99.44

Glass 2
12

2
1 73.01 2

12
2
−3 72.20 2

12
2
2 74.22

Letter 2
4

2
2 97.98 2

3
2
2 97.88 2

6
2
2 97.70

Optdigits 2
2

2
3 98.44 2

1
2
3 98.72 2

3
2
−5 98.05

TABLE V
THE LEARNING TIME AND THE CLASSIFICATION TIME FOR THE REFERENCE WORKS [15] AND [16]. THE BUILDING TIME, THE LEARNING TIME, AND THE

CLASSIFICATION TIME FOR THE PROPOSED METHOD.

Works [15], [16] Proposed method
Dataset Learning [s] Classification [s] Building [s] Learning [s] Classification [s]
Wine 0.01 0.00 0.01 0.03 0.00
Glass 2.85 0.00 0.03 0.15 0.01
Letter 298.62 92.80 0.05 214.00 37.02
Optdigits 15.47 1.81 0.00 1.75 1.06

IV. CONCLUSION

In this work, the algorithm based on primary works [17],
[18] was modified and used to create several models of RBF
ensembles. The structures of created ensemble are reduced
directed acyclic graphs. The method reduces a number of
created classifiers. The classifiers, which discriminate distant
classes, are replaced by the classifiers, which separate groups
of classes. A theoretical estimation shows that the new struc-
ture should reduce the classification time in comparison to the
DAG structure.

The algorithm was tested on four sets from UCI repository.
The obtained results were compared with published results.
The accuracy ratio obtained by proposed method is similar
to presented in works [15] and [16]. Also results obtained
by two state-of-the art algorithms One–Against–All and One–
Against–One are nearly identical. The proposed algorithm
should be also compared with other methods such as ECOC
and Decision Template tested in [19], [20], but its main

advantages is not the highest accuracy, but the significant
reduction of the number of classifiers in the DAG structure.

The number of created classifiers was reduced to 42 and 66
percent of classifier from the DAG structure in some complex
recognition tasks. The reduction of classifiers results in the
reduction of the classification time.
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Fig. 2. Created reduced DAG for the Letters recognition task. The ensemble was created using the Euclidean metrics.
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