
Rapid Application Prototyping for Functional
Languages

Martin Podloucký
Department of Software Engineering,

Faculty of Information Technology,

Czech Technical University,

Prague, Czech Republic

Email: martin.podloucky@fit.cvut.cz

Abstract—This work addresses the problem of automated
graphical user interface generation for functional programs
in relation to rapid application prototyping. First an analysis
of current state in the field of automated GUI generation is
performed. Based on the analysis, the concept of functionally
structured user interface (FSUI) is introduced. Meta-data system
for code annotation is then specified for the Clojure programming
language and a transformation from this system to FSUI data
model is implemented. Finally, a graphical layer for displaying
the actual interface is implemented in Clojure.

I. GOAL

T
HE focus of this work is to investigate the idea of

automated GUI generation for functional programs for

application in software prototyping. The main goals are:

1) Analyse the current state in the field of automated GUI

generation.

2) Based on the analysis, explore possible approaches to

GUI generation for functional languages.

3) Design and implement an automated GUI generator for

functional programs.

4) The generator should create the GUI from annotated

source code of the program.

5) Both the generator and the GUI should be implemented

in functional language.

II. PAPER STRUCTURE

Firstly, the basic concepts, such as application prototyping

and functional programming along with the motivation for

this work, are explained in section III. Then, the Clojure

programming language is introduced in section IV. Analysis

of current state in the field of GUI generation is performed

in section V. Some possible approaches to a solution of the

stated problem, based on results of the analysis, are described

in section VI. Finally, the concept of functionally structured

user interface is presented in section VII.

III. INTRODUCTION

Software engineering industry is evolving and expanding

rapidly, constantly searching for better techniques and tech-

nologies allowing software to be created faster with lower cost

and better resulting quality [1]. Great desire for innovations

can be observed in the field of business applications where

the cost of the development is a key factor [2]. In this

domain, the advantageous fact is that business applications

have many common characteristics. They are based on similar

principles, work with similar data and they have to deal with

alike limitations [2]. This situation creates a good opportunity

to use techniques such as prototyping [3] and generative

programming [4].

A. Prototyping and generative programming

Application prototyping focuses on creating incomplete

versions of the software being developed [3]. The purpose

of such prototypes may be to explore possible solutions or

to provide a piece of working software to the customer for

evaluation in early stages of development [3]. There are several

approaches to prototyping [5]: some prototypes are developed

only to be discarded after they served their purpose. Such

approach is called throwaway prototyping or sometimes rapid

prototyping. Another approach is to incrementally evolve the

prototype to fully functional product. This approach is often

called evolutionary prototyping.

The main concern of either approach is being able to

create prototypes as fast as possible [3]. Some techniques

that can be used to shorten the prototype development time

may be those of generative programming [4] and model driven

development [6]. When significant parts of prototypes can be

generated from conceptual models or from annotated source

code, developers may focus more on implementing application

logic rather then, for instance, implementing graphical user

interface.

Graphical user interface (GUI) seems like a good candidate

for a functionality to be generated out of annotated source

code. GUIs used in prototypes do not need to meet too strict

requirements on user friendliness since their aim is primarily

to be suitable for presentation to the customer or for quick

testing of basic functionality of the demanded software [3].

Furthermore, generating the GUI from source code may help

to shorten the development time since there is minimum ad-

ditional and external information needed to generate the GUI.

According to [7] the source code already contains enough

information to create properly working GUI.

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 963–969

978-1-4673-4471-5/$25.00 c© 2013, IEEE 963

B. Functional languages

The family of Lisp languages such as Common Lisp [8],

Scheme [9], Clojure [10] and others are hereby taken as

functional languages. This work is focused on generating GUI

from source code written in such a functional language. There

are several reasons for choosing functional languages rather

than imperative ones as focus of this work.

1) Code in functional languages has simpler structure then

a code written imperatively [11], [12]. Since thorough

analysis of source code is needed this decision simplifies

algorithms used in GUI generation.

2) Functional languages are growing in popularity even for

writing business applications [13].

3) There is a number of similar tools for object-oriented

languages such as Java or Smalltalk (discussed in section

V). It is interesting to investigate which of its function-

alities and approaches could be used in the functional

world.

IV. THE CLOJURE LANGUAGE

Clojure is a relatively new functional language based on

Lisp [10]. It was created by Rich Hickey whose goal was

to create mainstream functional language which can com-

pete and complement present mainstream object oriented

languages [10]. Basic features and characteristics of Clojure

according to Rich Hickey [10] are

Functional programming

The philosophy behind Clojure is that most parts

of most programs should be functional, and that

programs that are more functional are more robust

compared to programs written imperatively. Clo-

jure provides the common functional tools, however,

doesn’t force the program to be referentially trans-

parent.

Lisp

Clojure is a member of the Lisp family of languages,

extending the code-as-data system beyond parenthe-

sized lists (s-expressions) to vectors and maps.

Dynamic Development

Programming in Clojure is interactive. It is not

a language abstraction, but an environment, where

almost all of the language constructs are reified, and

thus can be examined and changed.

Hosted on the JVM

Clojure is designed to be a hosted language, sharing

the Java virtual machine (JVM) type system, garbage

collector, threads etc. It compiles all functions to

JVM bytecode. Clojure has simple syntax to refer-

ence and create Java classes therefore it can easily

interoperate with Java and its libraries.

Runtime Polymorphism

Clojure supports polymorphism at 3 levels. First,

almost all of the core infrastructure data structures

in the Clojure runtime are defined by Java interfaces.

Second, Clojure supports the generation of imple-

mentations of Java interfaces. The final and primary

language construct for polymorphism is the Clojure

multimethod.

Concurrent Programming

Since the core data structures are immutable, they

can be shared readily between threads. However,

it is often necessary to have state change in a

program. Clojure allows state to change but provides

mechanism to ensure that, when it does so, it remains

consistent, while alleviating developers from having

to avoid conflicts manually using locks etc. This is

achieved by using the software transactional memory

system (STM) [14].

Clojure is chosen here to represent a Lisp-like functional

language. This work therefore focuses on generating GUI

from source code written in Clojure. Clojure was chosen as a

representative language for several reasons

1) Clojure can easily interoperate with Java and so the GUI

can be created using standard Java GUI libraries such

as Swing [15].

2) Clojure has very robust mechanism for state manipu-

lation which allows to write the code for the GUI in

Clojure itself.

3) Clojure is more suitable for writing business applica-

tions than other commonly used Lisps [13]. Therefore,

it makes more sense to create rapid prototypes with

graphical interfaces especially in Clojure.

V. CURRENT METHODS FOR GUI GENERATION

This section analyses current state in the field of auto-

matic GUI generation. The author of this work did not find

any current implementation of automated GUI generation for

functional languages. Several implementations exist for object

oriented languages such as Java, C# or Smalltalk. There is

also work [7] which explores automated GUI derivation from

programs written in term rewriting systems [16]. Let’s first

focus on object oriented frameworks.

Most of the object oriented GUI generators share a similar

paradigm which is based on annotating domain data model

using some kind of meta-data. This annotated model is then

used as an input to the generator which then generates not

only a graphical interface but often also application logic,

database scheme and other components. This is essentially the

whole application. In some cases a static generator isn’t even

necessary and the application’s GUI accesses the annotated

classes dynamically using reflection. Reflection is an ability of

a programming language to change properties and behaviour

of objects at runtime.

A. OpenXava

OpenXava [17] was hereby chosen as the main represen-

tative of the formerly described approach to object oriented

GUI generation and a business application generation. This

framework is capable of generating web applications in Java

programming language with GUI based on AJAX technology.

Input for the generator is a domain data model written in

Java, annotated with combination of JPA annotations and

964 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

Fig. 1. Example of graphical user interface generated using OpenXava (taken
from [17]).

OpenXava’s own annotations. The output is a complete web

application which uses Hibernate or JPA to store its data. An

example of generated GUI is shown in figure 1.

OpenXava is a powerful technology which allows total

separation of development of application’s business logic and

its user interface. Its advantages and disadvantages are more

or less common to all hereby mentioned OO frameworks:

1) Independence of particular UI technology. It is possible

to implement generators that produce code for different

GUI libraries ranging from desktop UI to web or mobile

interfaces.

2) Developers are freed from time consuming changes of

the graphical interface when the model changes or when

migrating to another platform.

However, the formerly described technology has some dis-

advantages as well:

1) Source code of the data model is often overloaded with

meta-data which complicates orientation in the code and

potential changes.

2) The user interface should better be derived from user

behaviour and adapt to his intuition and habits rather

than following the logic of the code underneath the

UI [18].

B. Other OO frameworks

The OpenXava framework was used here as a representative

of many others that function on similar principles. Some

of them are listed along with their brief characteristics and

differences.

NakedObjects [19]

is a framework based on .NET platform. It works

with domain model as well, however, the model

is now written in languages for CLR – Common

Language Runtime. In contrast to the OpenXava,

NakedObjects uses reflection instead of code anno-

tations and the resulting UI is created dynamically.

RomaFramework [20]

works with domain model in Java. Besides code

annotations, it makes it possible to use separated

XML files to provide meta-data. Both annotation

and XML approaches can be used together which

can significantly reduce the amount of annotations

in source code.

Magritte [21]

is targeted at dynamic web application written in

Smalltalk. Domain classes are annotated with so

called description objects which add additional infor-

mation using naming conventions. Such information

is then used to generate GUI, database schemas etc.

There are other OO frameworks based on paradigm de-

scribed above such as Tynamo [22] (previously named

Trails [23]), JMatter [24], Apache Isis [25] and others. The

nature of all frameworks mentioned so far is very close to

the term of model driven software development (MDSD) [6]

where the whole application is generated from some kind

of model. As shown above, for decorating the model with

additional UI information, a rich annotation language is often

required. Even though, according to [7] a source code already

contains enough UI information even without using expressive

annotations. This idea is demonstrated in [7] by writing a

small application computing an average of entered numbers.

The application is written in term rewriting language [16].

Generating GUIs using this approach for functional languages

is discussed in the next section.

VI. POSSIBLE APPROACHES

Several possible approaches for generation of graphical

interfaces from functional code were investigated during this

work. Here are the main criteria according to which the final

solution was assessed.

Practicality

Useful and practical solution are favourized. For

instance, code heavily burdened with vast amount of

annotations is not considered practical since it cor-

rupts readability and maintainability. These factors

are key in prototyping since prototypes should be

developed rapidly [3].

Separation

The generated GUI should be separated from the

application logic so that those two parts can be

developed independently.

Generator extendability

The solution should be extendable enough to allow

creation of generators for other platforms such as

mobile platforms or web.

A. IO oriented approach

The input/output (IO) oriented approach is based on the

idea in [7]. It is hereby named IO oriented since its primary

focus is on inputs entered by the user and outputs returned

by the program in response. Term rewriting is in its nature

close enough to the functional paradigm and thus the technique

MARTIN PODLOUCKÝ: RAPID APPLICATION PROTOTYPING 965

described in [7] can be easily adapted for Clojure. The original

tree rewriting program is shown in figure 2 and its Clojure

implementation is shown by listing 1. This solution, however,

has some serious disadvantages.

Listing 1 Program for computing an average rewritten to

Clojure.

(defn add-number [average size]

(do

(label "Add:Result"

(str "Average of " size " = " average))

(action

"Add:Add"

(add-number

(/ (+ (* average size) (number 0))

(inc size))

(inc size))

"Add:Finish"

(alert "Done" "Completed"))))

(defn compute []

(add-number (number 0)

(number 1 1 100)))

1) The code in Clojure is difficult to read since the GUI

directives are heavily intertwined with the code for

application logic. This violates our practicality require-

ment.

2) The GUI is tightly coupled with the application. It is not

even possible to run the application without some kind of

GUI. Moreover, the GUI directives cannot be easily re-

moved from the program. Even the computational nature

of the program has to take the GUI into consideration.

This goes against the requirement of separation.

3) Another problem, which is more technical in nature, is

interrupting the program. When the program is expecting

some input from the user, it is blocking other possible

actions such as termination.

Problems described above arise from the very nature of the

idea used in [7] thus they cannot be easily overcome.

B. Action oriented approach

All problems described above have essentially the same

cause. That is that functions contain directives for graphical

interface inside their bodies. From certain point of view we

can say that functions are actions that a user can execute.

Such an action expects some inputs, produce some output,

and as a an implicit side effect, it enables or disables some

other actions. This information can be explicitly captured be

annotating those functions before or inside their bodies.

The only GUI directive used inside bodies of functions

would be a directive for enabling or disabling actions. The

GUI generator could, by some kind of source code analysis,

identify actions that belong together in the sense of their

inputs. Graphical representation such as buttons and input

fields belonging to those actions could then be grouped into

graphical forms and windows.

According to the solution eventually presented in this article

the above approach goes in the right direction. Even though,

it is still rejected because serious difficulties are connected to

it. The main issue is that the graph representing how actions

are enabled and disabled through the flow of the program

may heavily depend on the input of the program since we

do not impose any restrictions on how the function should

determine which actions will be enabled or disabled. Thus,

constructing such a graph is in general an undecidable problem

(explained in [26]). On the other hand, imposing restrictions

that would make this problem decidable would seriously

limit expressiveness of the functional language (further details

in [26]).

VII. FUNCTIONALLY STRUCTURED USER INTERFACE

The above approaches to generating GUI from source code

are not very useful still. The IO oriented approach has serious

disadvantages and the action oriented approach forces us to

overcome undecidability issues. This pushes us to look at the

problem from another point of view. An interesting idea is to

make the GUI less static and adjust its behaviour according

to how functional programs actually work.

The question is how is the functional program essentially

different from object oriented program from the user’s point

of view. By user is hereby meant the end user of the graphical

interface of the program. One way to look at this is that when

using graphical interface of OO program, the user creates and

manipulates objects as primary entities. Functional program,

on the other hand, is more about using functions as primary

entities. These functions only then create, manipulate and

transform objects. Thus, to reflect the different nature of

functional programs, the GUI should be somehow function or

operation (here we say action) centric. This is how we arrive

at the term functionally structured user interface (FSUI).

A. FSUI specification

The main idea of the FSUI concept is that the UI has

the same structure for all Clojure functional programs. Only

the description of actions and their inputs and outputs is

generated. GUI directives for enabling and disabling actions

are not annotations. Instead, they are executable functions

which then call the FSUI throw registered callbacks. Thus

then, the program may be executed without any generated GUI

just from a command line. In such a case, no callbacks are

registered for the directives and so those directives do nothing.

Design of the graphical FSUI is shown in figure 3. The

graphical FSUI is based on interaction of three basic kinds of

components – actions, invokers and value holders.

Actions

An action represents a function from the source

code of the underlying program. Each action is

represented as a button on the left side of the UI.

The program starts with some initial actions which

can then enable or disable other actions by executing

GUI directives inside the body of the function. These

are the only directives that are placed inside function

966 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

Fig. 2. Program computing an average written in tree rewriting scheme (taken from [7]).

Action 1

Action 2

Action 3

Other opened

invokers

Other value holders

Other available

actions

Panel of available

actions

Panel for opened invokers Holders panels

Slot x:

Slot y:

Invoke Close

seq:

Item 1

Item 2

Item 3

Item 4

Item 5

<-- X

Toggle for slot selection

<<

Invoker

Value holder

Fig. 3. Design of functionally structured user interface.

implementations. The key concept here is that actions

do not execute functions right ahead. Instead, they

open so called invokers.

Invokers

Invoker is a component used to collect inputs for

particular action. The user can enter those inputs

using slots (see figure 3). Slots are represented in the

FSUI by text fields. Each slot declares its type so that

the user cannot enter invalid values (more about the

type system later in this section). The invokers panel

in the middle of the UI can contain as many opened

invokers as the user wishes. The actual invocation

of the represented function is done by clicking on

Invoke button. The same function can be executed

multiple times since the invoker stays opened until

the user closes it. When the function returns a value

this value is inserted into so called value holder.

Value holders

Value holder displays a graphical component accord-

ing to the type of value returned by the executed

function. There are four types of holders at this time

seq

Item 1

Item 2

Item 3

Item 4

Item 5

<-- X

Button for transferring

the value to selected

slots.

object

Field 1

<< X<<

<--

Field 2 <--

Field 3 <--

Field 4 <--

Field 5 <--

map <v X<k<<

Key: Value:

Key 1

Key 2

Key 3

Key 4

Value 1

Value 2

Value 3

Value 4

primitive X<<

Label

X

<<

Button for closing the

holder.

Button for opening a new holder for an item

from the list.

Button for opening a new holder for a given

✁eld.

Button for opening a new holder for a

selected key.
Button for opening a new

holder for a given value.

Fig. 4. Four types of holders for corresponding value types.

(see figure 4). These types are taken from the type

system described later in this section.

Value from a holder can be transferred to a slot with

compatible type. The fundamental idea here is that all values

in holders are immutable thus they can be changed only by

invoking a function on them. This preserves the immutability

principle from the functional programming paradigm and

makes the UI actually more function oriented than object

oriented.

The flow of the program is controlled solely by enabling

and disabling actions in the source code. Since all values

are immutable, and the user has to execute a function even

to create a non-primitive value, the programmer has a great

control over what the user can and cannot do at a given

moment.

The FSUI is implemented in Clojure in Swing GUI

toolkit [15] with help of Seesaw library [27]. This library

makes it easier to write GUIs in functional style.

B. The type system

Although the user is limited to create non-primitive values

only using functions, he has considerable freedom in what

MARTIN PODLOUCKÝ: RAPID APPLICATION PROTOTYPING 967

functions to execute and what values to pass them as argu-

ments. To prevent errors and misunderstandings in the GUI,

a function should clearly declare values of what types are

expected as input and what is the type of the returned output.

As the Clojure language is not statically typed, a type system

for annotating functions had to be developed.

These requirements were imposed on the type system

1) The types system should be simple enough so that the

user can understand it and be able to relatively easily

determine which value can be passed to which function.

2) There is absolutely no need for type inference. All

the type information is explicitly written in function

annotations.

3) Primitive types as well as composed ones should be im-

plemented. Lists, maps and objects are for now the basic

composed types in FSUI. Objects are just heterogeneous

key-value structures grouping different kinds of values

together.

The type system meeting the above requirements was devel-

oped based on [28]. It is used for annotating function bodies

in a way that each function is prepended with a type signature.

Type signature is a list of type forms specifying value types.

The first form in the list specifies the type of the return value

and the following forms specify types of the arguments. The

grammar for the type signature is shown in listing 2.

Listing 2 Structure of type signature.

<signature> ::= (<form> <form-list>)

<form-list> ::= <form> | <form> <form-list>

<form> ::= <prim> |

(seq <form>) |

(map <form> <form>) |

(object <name>)

<prim> ::= :bool | :int | :float | :ratio |

:number | :string | :file

<name> ::= arbitrary symbol starting

with a lower case letter

C. The generator

As it was previously mentioned, the GUI itself is dynamic

which means that the code for the GUI itself doesn’t have to

be generated. The GUI needs only a description of actions and

their respective inputs and outputs. This description is saved

in Clojure data structure which is the output of the generator.

Input for the generator is annotated source code in Clojure.

The generator and the dynamic GUI are both implemented

purely in Clojure.

VIII. DISCUSSION

The solution developed in my master thesis [26] and

described here contributes a new approach to the field of

application prototypes development in functional languages

hereby represented by Clojure. The main attributes of this

solution, compared to object oriented approaches analysed in

section V, are:

1) The UI generation is done using actual source code

instead of domain data model.

2) The generator of the FSUI was developed to use more

lightweight annotations then the OO solutions usually

use.

3) The generated UI is uniform for all generated prototypes.

4) The type system was implemented with simplicity in

mind so that the user can understand the GUI quickly.

5) Output of the generation was designed to simplify im-

plementing the FSUI on other platforms.

Possible shortcomings of the whole FSUI and ideas for

future development may be:

1) The FSUI is not flexible enough to support specific

needs of particular prototypes. More control over the

resulting UI layout could be integrated into source code

annotations. Specific locations for invokers and value

holders may be specified or actions could be nested and

produce menu hierarchies.

2) The type system is not flexible enough either since it

does not yet support recursive types.

3) This solution is built on top of Lisp-like languages which

are dynamically typed. If statically typed languages such

as Haskell are used, there will be no need for separate

type system and the code annotations could reduce even

further.

IX. CONCLUSION

Focus of this work was on the problem of automated GUI

generation for functional languages in relation to application

prototyping. Its result is, on the one hand, an analysis of

current state in automated GUI generation in object oriented

languages, on the other hand, a design and implementation

of functionally structured user interface concept using Clojure

and Java programming languages.

REFERENCES

[1] I. Sommerville, Software engineering, 9th ed. Pearson, c2011.
[2] J. A. O’Brien and G. M. Marakas, Management information systems,

9th ed. McGraw-Hill Irwin, c2009.
[3] M. Smith, Software prototyping. McGraw-Hill, c1991.
[4] K. Czarnecki, Generative programming. Addison-Wesley, c2000.
[5] J. Nielsen, Usability engineering, 1st ed. AP Professional, 1993.
[6] T. Stahl, Model-driven software development. John Wiley and Sons,

2006.
[7] J. Jelinek and P. Slavik, “Gui generation from annotated source code,” in

Proceedings of the 3rd annual conference on Task models and diagrams,
ser. TAMODIA ’04. New York, NY, USA: ACM, 2004, pp. 129–136.

[8] D. S. Touretzky, Common Lisp: a Gentle Introduction to Symbolic

Computation. Dover Pubns, 2013.
[9] R. K. Dybvig, The Scheme Programming Language. The MIT Press,

2009.
[10] R. Hickey, “The clojure programming language,” in Proceedings of the

2008 symposium on Dynamic languages, ser. DLS ’08. New York, NY,
USA: ACM, 2008, pp. 1:1–1:1.

[11] B. J. Maclennan, Functional Programming: Practice and Theory.
Addison-Wesley Professional, 1990.

[12] H. Abelson, G. J. Sussman, and J. Sussman, Structure and Interpretation

of Computer Programs, Second Edition. McGraw-Hill Science/Engi-
neering/Math, 1996.

968 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

[13] L. VanderHart and S. Sierra, Practical Clojure (Expert’s Voice in Open

Source). Apress, 2010.
[14] N. Shavit and D. Touitou, “Software transactional memory,” Distributed

Computing, vol. 10, no. 2, pp. 99–116, 1997.
[15] J. Elliott, R. Eckstein, M. Loy, D. Wood, and B. Cole, Java Swing,

Second Edition. O’Reilly Media, 2002.
[16] F. Baader and T. Nipkow, Term Rewriting and All That. Cambridge

University Press, 1999.
[17] (2013, Feb.) Ajax java framework for rapid application development:

Openxava. [Online]. Available: http://www.openxava.org
[18] J. A. Jacko, Ed., Human-Computer Interaction Handbook: Fundamen-

tals, Evolving Technologies, and Emerging Applications, 3rd ed. CRC
Press, 2012.

[19] (2013, Feb.) Naked objects. [Online]. Available: http://nakedobjects.
codeplex.com

[20] (2013, Feb.) Roma framework: The new way to conceive web

applications. [Online]. Available: http://www.romaframework.org
[21] (2013, Feb.) Google project hosting: Magritte metamodel. [Online].

Available: http://code.google.com/p/magritte-metamodel
[22] (2013, Feb.) Tynamo framework. [Online]. Available: http://tynamo.org
[23] (2013, Feb.) Trails framework. [Online]. Available: http://trails.

codehaus.org
[24] (2013, Feb.) Jmatter. [Online]. Available: http://jmatter.org
[25] (2013, Feb.) Apache isis: Domain driven applications, quickly. [Online].

Available: http://isis.apache.org
[26] M. Podloucký, “Automated gui generation for functional data struc-

tures,” Master thesis, Charles University in Prague, 2012.
[27] (2013, Feb.) Seesaw. [Online]. Available: https://github.com/daveray/

seesaw
[28] R. L. Akers, “Strong static type checking for functional common lisp,”

Doctoral dissertation, University of Texas at Austin, USA, 1995.

MARTIN PODLOUCKÝ: RAPID APPLICATION PROTOTYPING 969

