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Abstract—In many areas of application it is important to
estimate unknown model parameters in order to model precisely
the underlying dynamics of a physical system. In recent years,
Sequential Monte Carlo (SMC) methods have become a very
popular tool for Bayesian parameter estimation. In this case, the
problem of finding the best parameters configuration comes to
the optimization issue which is to determine the best fit. In this
paper, the application of this approach to the classical global
optimization problem is described. We consider the situation
when optimized functions are dynamical i.e. the global extremum
is changing in time. For this purpose, we adapt two dimensional
Ackley and four-dimensional Wood functions. Our aim is to find
the most probable localization of the extremum in each time
with the use of the Bayesian approach joined with the Markov
Chain Monte Carlo (MCMC) and SMC algorithms. We propose
a mechanism for dynamic tuning of the proposal distribution in
SMC. The approach is based on the Metropolis-Hastings algo-
rithm, combined with a resampling mechanism to achieve better
results. We have examined different version of the proposed SMC
and MCMC algorithms in terms of effectiveness to estimate the
probabilistic distributions. The effect is demonstrated using two
benchmark optimization problems. Computed results show that
the proposed mechanisms can significantly improve optimization
results compared to standard MCMC.

I. INTRODUCTION

C
ONSIDER the general optimization problem (OP) de-

signed with a time aspect i.e. the global extremum is

changing its position with time (see e.g. Fig. 1). Suppose that

various possibilities for a OP are defined by some parameters

φ ∈ Φ , where Φ denotes the bounded space of parameters. As

far as we have uncertainty connected with the best parameters

configuration which provides optimum, we can express it in

a form of a probability density function P (φ|D). P (φ) is the

prior probability function that we can estimate based on the

currently available information D [1]. Moreover, if new data

D, related to the behavior of the optimization function, become

available, it can be used for updating the prior distribution of

searched parameters value P (φ) using Bayes theorem. This

way we can obtain the posterior distribution P (φ|D) i.e. the

distribution updated by the new information. In design opti-

mization algorithms, the goal is to find the optimal values of

the parameters set that minimizes (maximizes) the considered

function. We consider that effectiveness of searching for the

function extremum in subsequent time step can be increased

by taking advantage from the information about the location

of extremum in previous stages.

Previously, we have applied the methodology combining

Bayesian inference with Markov Chain Monte Carlo (MCMC)

methods to the problem of the contaminant source localization

based only on the substance concentrations registered by

distributed sensors network ( [2] and [3] ).

In this paper, we propose the application of the Sequential

Monte Carlo (SMC) methods combined with the Bayesian

inference to the global optimization problem. We present the

possibility to connect MCMC and SMC to provide addi-

tional benefit in the process of event reconstruction. Proposed

algorithms were tested on two benchmark functions where

optimum was moving with time.

II. OPTIMIZATION ALGORITHM THEORETICAL

PRELIMINARIES

A. Bayesian inference

A good introduction to Bayesian theory can be found in [4]

and [5]. Bayes’ theorem, as applied to optimization problem:

P (φ|D) =
P (D|φ)P (φ)

P (D)
(1)

where φ represents possible configuration of optimization

function parameters and D is the value of the optimized

function at given point.

For our problem, Bayes’ theorem describes the conditional

probability P (φ|D) of optimum parameters (configurations of

variables φ) given observed value of function under consider-

ation (D). This conditional probability P (φ|D) is also known

as the posterior distribution and is related to the probability

of the D conforming to a given parameters configuration

P (D|φ), and to the possible model configurations P (φ), be-

fore updating by new information D. The probability P (D|φ),
for fixed D, is called the likelihood function, while P (φ) is

the prior distribution. P (D) is the marginal distribution of D
and is called prior predictive distribution. P (D) serves as a

scaling factor and is this case is equal 1. So, in our case the
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Bayes theorem can be written as follows:

P (φ|D) ∝ P (D|φ)P (φ) (2)

To estimate the unknown function’s optimum parameters φ
using (2), the posterior distribution P (D|φ) must be sampled.

P (D|φ) quantifies the likelihood of a set of measurements D
given the function’s optimum parameters φ.

We use a sampling procedure with the Metropolis-Hastings

algorithm to obtain the posterior distribution P (φ|D). This

way we completely replace the Bayesian formulation with a

stochastic sampling procedure to explore the optimized func-

tion parameters’ space and to obtain a probability distribution

for the optimum location.

B. The likelihood function

A measure indicating the quality of the current state of

Markov chain is expressed in terms of a likelihood function.

This function is proportional to considered global optimization

function H(.):

ln[P (D|φ)] = ln[λ(φ)] ∝ H(φ) (3)

After calculating value of the likelihood function for the

proposed state its acceptance is performed as follows:

ln(λprop)

ln(λ)
≥ U(0, 1) (4)

where λprop is the likelihood value of the proposal state, λ is

the previous likelihood value, and U(0, 1) is a random number

generated from a uniform distribution in the interval (0, 1).
It is important to note that condition (4) is more likely to

be satisfied if the likelihood of the proposal is only slightly

lower than the previous likelihood value. It gives a chance to

choose even a little ”worse” state, because the probability of

acceptance depends directly on the quality of proposed state.

C. Posterior distribution

The posterior probability distribution (2) is computed di-

rectly from the resulting samples defined by the algorithm

described below and is estimated with

P (φ|D) ≡ π̂N (φ) =
1

N

N
∑

i=1

δ(φi − φ). (5)

P (φ|D) represents the probability of a particular parameters

configuration φ. Equation (5) is a sum over the entire samples

set of length N of all the sampled values φi. Thus δ(φi −
φ) = 1 when φi = φ and 0 otherwise. Consequently, if a

Markov chain spends several iterations at the same location

value of P (φ|D) increases through the summation (increasing

the probability for those optimum parameters).

D. Sequential Monte Carlo

Sequential Monte Carlo (SMC) is designed to sample from

dynamic posterior distributions. The SMC methods are easy

to parallelize - the different Monte Carlo proposals can be

generated and evaluated in parallel. A good introduction to

SMC is present in [6], [7], [8] .

E. Sequential importance resampling

Sequential importance resampling (SIR) is a sequential

version of importance sampling (IS) and combines IS with

resampling procedure [9] . At the center of the SMC approach

in our case is the generation of a weighted sample using IS

method. IS uses a proposal distribution q(.), that is close to

target distribution π(.) and from which it is easy to generate

samples. The basic methodology is given below.

1) Generate a sample of size N from the proposal distribu-

tion q(φ):
φ(i) ∼ q(φ), i = 1, ..., N (6)

2) Compute the importance weights:

w̌(φ(i)) ∝
π(φ(i))

q(φ(i))
, i = 1, ..., N (7)

and define

w(φ(i)) =
w̌(φ(i))

∑N

j=1 w̌(φ(j))
(8)

3) The distribution π(·) is then approximated by

π̌N (φ) ≡

N
∑

i=1

w(φ(i))δ(φi − φ) (9)

which places the probability mass w(φ(1)), ..., w(φ(N))
on the support points φ(1), ..., φ(N).

Hence, the weights would be proportional to the value

of likelihood. In our case to calculate the weight we use

of the following formula,which is related to the likelihood

function (3):

w̌(φ(i)) ∝
1

ln[λ(φ(i))]
, i = 1, ..., N (10)

Resampling is used to avoid the situation when almost all

(except only a few) of the importance weights are close to

zero (problem of degeneracy of the algorithm). Basic idea

of resampling methods is to eliminate samples which have

small normalized importance weights and to concentrate upon

samples with large weights. So,:

1) for i = 1, ..., N are chosen samples with indexes k(i)
distributed according to the discrete distribution with N
elements satisfying

P (k(i) = l) = w(φ(i)) (11)

for l = 1, ..., N ,

2) then for i = 1, ..., N for samples Mk(i) are assigned the

weights

w(φk(i)) =
1

N
. (12)

A sufficient number of draws is called Effective Sample

Size (ESS) and is equal:

N̂eff =
1

∑N

i=1 w(φ(i))
2
. (13)
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where w(φ(i)) are normalized weights. If all weights are equal

1/N then effective sample size is N . In the contrast to a

situation where all weights = 0, except for one weight = 1,

effective sample size is equal 1.

F. MCMC prior to SMC

The SMC algorithm needs some set of samples to be

initialized. An ideal way to generate this initial sample is

using MCMC data from first K iterations in all time steps.

The resulting equally weighted MCMC set of samples can

then be passed on to SMC for processing in the subsequent

iteration.

First, the scanning algorithm starts from the randomly

chosen values of parameters φ (i.e. first we start from the ”flat”

priori). This assumption reflects lack of knowledge about the

function optimum parameters. For the actual state φ likeli-

hood function λ is calculated. Then we apply random walk

procedure ”moving” our Markov chain to the new position.

Precisely, we change each model φ parameter by the value

draw from the Gaussian distribution with the zero mean and

variance σ2
φ each parameter. Standard deviations for sampling

parameters are determined by the problem’s domain size and

refined with a trial and error procedure to ensure that the

Markov chains had access to realistic ranges with minimal

occurrences of stuck problem. Problem of stuck in chains

can occur when the standard deviations chosen for the next

iteration lead to a large number of rejected samples, causing

that the chain remains in a given position for many iterations.

For the proposal state the likelihood function λprop is again

estimated. We compare this two values λ and λprop according

to (4). If comparison is more favorable than the previous chain

location, the proposal is accepted (Markov chain ”moves” to

the new location). If the comparison is ”worse”, new state

is not immediately rejected. Random variable from binomial

distribution is used to decide whether or not to accept the

new state of chain. After K iteration we pass all the samples

(from all m chains)to the sequential procedure. We compute

importance weights by (10) and normalize them. Next we use

roulette procedure to draw N samples from the set generated

by Markov Chain.

This random component is important because it prevents the

chain from becoming trapped in a local minimum. The pseudo

code for one time step of the algorithm is given below.

One of the important aspects of stochastic procedure of

calculating the posterior distribution is choosing burn-in phase.

The burn-in factor represents the number of samples needed

at the beginning for the Markov chain to actually reach the

search state where it is sampling from the target distribution.

Statistical convergence (to the posterior distribution) is

monitored by computing between-chain variance and within-

chain variance [4]. If there are m Markov chains of length N ,

then we can compute between-chain variance B with

B =
N

m− 1

m
∑

j=1

(φ̄j − φ̄)2 (14)

where φ̄j is the average value along each Markov and φ̄ is

the average of the values from all Markov chains. The within-

chain variance W is

W =
1

m

m
∑

i=1

s2i (15)

where

s2i =
1

N − 1

N
∑

i=1

(φij − φ̄i)
2 (16)

The convergence parameter R is then computed as

R =
var(φ)

W
(17)

where var(φ) is estimate variance of φ and is computed as

var(φ) =
N − 1

N
W +

1

N
B. (18)

In this paper, we consider the following variants of scanning

algorithms:

1) Classic MCMC

In this algorithm, the parameter space scan in each time

step t is independent form the previous ones. So, in this

case we don’t use information from past calculations.

Classic MCMC don’t use sequential mechanism.

2) SMC via Maximal Weights

As the first location of Markov chain φt
0 it select the set

of φ parameters for which weight in previous time step

procedure was the highest. So, for t > 1:

φt
0 ∼ arg (φ ∈

{

φt−1
0 , ..., φt−1

n

}

) max{w(φt−1
i )}

(19)

With this approach, we always start with the best values

found so far.

3) SMC via Rejuvenation and Extension

In contrast to SMC via Maximal Weights this algorithm

as the first location of Markov chain φt
0 at the time t > 1

chooses the set of parameters φ selected randomly from

previous realization of resampling procedure in t − 1
with use of the uniform distribution:

φt
0 ∼ U(φt−1

0 , φt−1
1 , ..., φt−1

n ) (20)

a uniform distribution {1, ..., n}

Applying the new knowledge (new measurements) the

current chain is ”extended” starting from selected posi-

tion with use of the new information in the likelihood

function calculation.

III. ALGORITHMS RESULTS FOR SELECTED OPTIMIZATION

PROBLEM

A. Two-dimensional (2D) Ackley function

We have benchmark the proposed global optimization algo-

rithms with use of the 2D version of Ackley function Fig. 2.

PIOTR KOPKA, ANNA WAWRZYNCZAK, MIECZYSLAW BORYSIEWICZ: TIME DEPENDENT GLOBAL OPTIMIZATION 365



−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

↑1↑2 ↑3 ↑4
↑5

↑6
↑7

↑8
↑9

↑10

Fig. 1. Trajectory of the optimum of Ackley function

−10

−5

0

5

10

−10

−5

0

5

10
0

5

10

15

20

xy

z

Fig. 2. Surf of two-dimensional Ackley benchmark function

H1(x, y) = −20 exp(−0.2
√

0.5(x2 + y2))− (21)

exp(0.5(cos(2πx) + cos(2πy))) + 20 + e

The proposed optimization algorithms are designed to

search for the optimum of the dynamical functions. To achieve

the dynamical nature of the process described by the consid-

ered function we have ascribe the displacement of the optimum

in 10 subsequent time steps. The assumed trajectory of the

searched function optimum is presented in Fig. 1.
Based on the dynamical Ackley function we would like to

compare the performance of two described in previous chapter

SMC algorithms (i.e. SMC via Maximal Weights and SMC via

Rejuvenation and Extension) in compare with a well-known

stochastic simulation method i.e. classic MCMC. Since we

are interested in runtime of all algorithms for optimization

problems we use exactly the same parameters. The number of

iteration for each algorithm is equal K = 2000. This number

was chosen based on the numerical experiments as the number

of iteration needed to reach convergence for each sampled

dimension (R ≈ 1) Fig. 3. The same way we tuned the rest of

the algorithm parameters which adequately are equal: number

of chains M=10; burn-in factor=500.
Fig. 5, and 6 presents the probability distributions of x and

y optimum parameters in each time step for classic MCMC

algorithm. Fig. 7 and 8 presents the same results for SMC

via Maximal Weights and Figs. 10 and 11 for SMC via
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Fig. 3. R convergence parameter for x and y. The samples came from results
of MCMC algorithm.
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Fig. 4. The traces of three Markov chains in the x,y space. The global
minimum is marked by diamond. The samples came from results of MCMC
algorithm.

Rejuvenation and Extension, respectively. The target value

of search optimum parameters are denoted by vertical lines.

One can see that for the 2D Ackley dynamical function all

algorithms successfully generate samples in the vicinity of

the optimal solution. If we look carefully we can denote the

difference of its probability values for the search parameters

x and y. Moreover, the posteriori distributions of MCMC

algorithm are much flatter than for SMC algorithms. For

SMC via Maximal Weights and SMC via Rejuvenation and

Extension the maximum value of the probability distribution

x and y is close to 0.05 while for MCMC it is ≈ 0.027.

In both SMC algorithms transmission of the information in

subsequent time steps about ”fleeing minimum” effect enlarge

the concentration of the samples around the target optimum.

Resampling mechanism can be seen in Fig. 4 and Fig. 9. Fig. 4

presents the traces of the Markov chains for classic MCMC

and Fig. 9 for SMC via Rejuvenation and Extension in the

last time step. One can see that MCMC algorithm consider

samples spread out far from the the searched optimum values,

at the same time the SMC method in subsequent time steps

choose samples close to the target value, which results in the

increase of its probability.
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Fig. 5. Posterior distribution of x parameter in subsequent time steps for
MCMC algorithm. Vertical line represents the target value of x.
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Fig. 6. Posterior distribution of y parameter in subsequent time steps for
MCMC algorithm. Vertical line represents the target value of y.

B. Optimization problem - 4D Wood function

The previous example showed that the SMC algorithms

give impute to the value of the probability of the searched

optimum parameters (the probability is doubled). However,

the classic MCMC also reached the target value of optimum.

We would like to check if the proposed algorithms increase

their efficiency in the case of the multidimensional space.

To test the effectiveness of SMC for optimization problem
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Fig. 7. Posterior distribution of x parameter in subsequent time steps for
SMC via Maximal Weights. Vertical line represents the target value of x.
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Fig. 8. Posterior distribution of y parameter in subsequent time steps for
SMC via Maximal Weights. Vertical line represents the target value of y.
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Fig. 10. Posterior distribution of x parameter in subsequent time steps for
SMC via Rejuvenation and Extension. Vertical line represents the target value
of x.
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Fig. 11. Posterior distribution of y parameter in subsequent time steps for
SMC via Rejuvenation and Extension. Vertical line represents the target value
of y.

with higher dimensions, we consider the four-dimensional

(4D) Wood function in our second benchmark test:

H2(x1, x2, x3, x4) = 100(x1
2 − x2)

2 + (x1 − 1)2 + (22)

(x3 − 1)2 + 90(x3
2 − x4)

2 + 10.1((x2 − 1)2 +

(x4 − 1)2) + 19.8(x2 − 1)(x4 − 1)

In this test we also assume that the optimum initial value

x = (1, 1, 1, 1) moves in 6 subsequent time steps reaching at

last x = (3.84, 6.89, 3.84, 6.89). In this test for all considered

algorithms we take: number of iteration K = 20000, number

of chains M = 10; burn-in factor = 2000.

Figs. 12- 22 presents the marginal probability distributions

for all four optimum parameters of the considered 4D Wood

dynamical function. The target minimum location in each

dimension is marked by the vertical red line. One can see that

for the 4D Wood function efficiency of the classic MCMC is

decreased. This method do not mark the target value of x2

and x4 parameters as the values with the highest probability

(Figs. 13, 15). At the same time the results obtained from the

two SMC algorithms are better than the MCMC algorithm.

However, one can note than the SMC via Rejuvenation and

Extension algorithm seems to be more efficient than SMC via

Maximal Weights. The reason is that the SMC via Maximal

Weights results for parameter x2 (Fig. 17)are a bit worse than

obtained from SMC via Rejuvenation and Extension (Fig. 21).

Moreover, the SMC via Rejuvenation and Extension denotes

the target values of the x1 ,x3 and x4 parameter with higher

probabilities than SMC via Maximal Weights.

It is worth to mention that SMC via Maximal Weights,

SMC via Rejuvenation and Extension use the probability

distributions obtained based on information from previous time

steps to update the probability distributions with use of the new

information. This causes a significant increase in convergence

of the algorithm to the target location of the function’s

optimum in the subsequent time steps. This methodology

makes these algorithms more effective for optimization of

multidimensional dynamical functions than classic MCMC.
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Fig. 12. Posterior distribution of x1 parameter in subsequent time steps for
MCMC. Vertical line represents the target value of x1.
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Fig. 13. Posterior distribution of x2 parameter in subsequent time steps for
MCMC. Vertical line represents the target value of x2.
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Fig. 14. Posterior distribution of x3 parameter in subsequent time steps for
MCMC. Vertical line represents the target value of x3.
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Fig. 15. Posterior distribution of x4 parameter in subsequent time steps for
MCMC. Vertical line represents the target value of x4.
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Fig. 16. Posterior distribution of x1 parameter in subsequent time steps for
SMC via Maximal Weights. Vertical line represents the target value of x1.
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Fig. 17. Posterior distribution of x2 parameter in subsequent time steps for
SMC via Maximal Weights. Vertical line represents the target value of x2.
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Fig. 18. Posterior distribution of x3 parameter in subsequent time steps for
SMC via Maximal Weights. Vertical line represents the target value of x3.
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Fig. 19. Posterior distribution of x4 parameter in subsequent time steps for
SMC via Maximal Weights. Vertical line represents the target value of x4.
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Fig. 20. Posterior distribution of x1 parameter in subsequent time steps for
SMC via Rejuvenation and Extension. Vertical line represents the target value
of x1.
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Fig. 21. Posterior distribution of x2 parameter in subsequent time steps for
SMC via Rejuvenation and Extension. Vertical line represents the target value
of x2.
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Fig. 22. Posterior distribution of x3 parameter in subsequent time steps for
SMC via Rejuvenation and Extension. Vertical line represents the target value
of x3.
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Fig. 23. Posterior distribution of x4 parameter in subsequent time steps for
SMC via Rejuvenation and Extension. Vertical line represents the target value
of x4.

IV. CONCLUSION

We have presented a methodology to solve the global

optimization problem of dynamical functions with use of

the Bayesian approach joined with SMC algorithms. The

presented method combines Bayesian inference with SMC

sampling and produces posterior probability distributions of

the searches extremum’s parameters. We have examined two

version of the SMC algorithms i.e. SMC via Maximal Weights,

SMC via Rejuvenation and Extension and compare its ef-

ficiency to estimate the probabilistic distributions of opti-

mum parameters for 2D and 4D optimization functions. We

compared the effectiveness of the proposed SMC algorithms

with classic MCMC and have shown the advantage of the

SMC algorithms that in different ways use the probability

distributions of possible optimum parameters obtained basing

on samples generated in previous time steps. We have shown

that efficiency of proposed SMC algorithms increases with

increasing the dimension of the optimized dynamical function.

We conclude that proposed methodology joining the Bayesian

inference with SMC algorithms is effective for optimization

of multidimensional dynamical functions.
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