
Declarative Specification of References in DSLs

Dominik Lakatoš∗, Jaroslav Porubän†, Michaela Bačı́ková‡

Technical University of Košice

Letná 9, Košice, Slovakia

Email: {dominik.lakatos∗, jaroslav.poruban,† michaela.bacikova‡}@tuke.sk

Abstract—The occurrence of identifiers and references in
computer languages is a common issue. The same applies for
domain specific languages, whose popularity is increasing and
there is a need for aid in their design process. This paper analyses
the problem of identifiers and references in computer languages.
Current methods use an imperative approach for supporting
references in languages; therefore a language designer is required
to manually write reference resolving. The method proposed
in this paper perceives references and identifiers as language
patterns, which can be specified in a declarative manner with
much less knowledge about the problem of resolving references
in computer languages.

I. INTRODUCTION

REFERENCES in languages are common. We use sim-

ple identifiers in our everyday life to identify objects,

activities, abstract designs, etc. Even every one of us has an

identifier, which we call ”name”. If we want to reference to

somebody else, we use the name of that person. The problem

arises when somebody uses short name John and there is more

than one person with that short name known to him. How do

we know, which John is he or she referring to? In that case

we have to know more information and understand the mutual

scope of names between the communicating parties to be able

to properly identify the correct person.

The situation is not different in the area of computer

languages. Majority of computer languages use references in

a form of variable names, function names or any other named

structures. How can we decide if the identifier used in our code

refers to this particular structure, if we have more than one

structure declared with the same name? In the theory of com-

puter languages, the process of searching for these identifiers

is called reference resolving. The basic solution of reference

resolving is routine: A language designer creates a table of

identifiers for storing every identifier declared in the code.

Then he/she defines a lookup method for searching in the table

for a suitable identifier based on the given textual reference in

the code. Every language needs to solve the lookup process

with its own function even when such a function is well-known

and similar in most languages. Defining the lookup function is

a common and routine task, but the implementation is poorly

automatized.

In the last few years we can notice the increase in the

language-oriented development [1]. Developers create special

small or medium sized languages, called domain specific

languages (DSLs) for many different areas. The development

of DSLs is difficult [2] and identifiers and references are

common in DSLs, which doesn’t make it easier without proper

support. The problem of a reference resolving is particularly

acute in the area of external DSLs, as they need to function

autonomically without any existing general purpose language

(GPL). In this paper we aim to simplify the specification

of DSLs with references by proposing declarative manner of

specifying language constructs as identifiers and references.

II. DECLARING REFERENCES IN LANGUAGES

Every GPL uses some sort of references. Even the oldest

ones use some a form of named variables and they need

a method to resolve the variable identifiers on their places

of usage. It is possible to identify two types of statements

concerning variables:

• declaration - a place where a name (and, optionally, a

type) is assigned to a variable

• usage - a place where we use or change the value

contained in a named variable by referring to its name

The declaration of one variable can occur only once in a

language sentence scope but usage of the variable can occur

on multiple places. A typical example of a declaration is:

float a;

It is a declaration of a variable a restricted to contain a decimal

value. A typical example of usage is an assignment or reading

of a value:

a = 10; //assignment

factor(a); //reading of a value

Supporting tools for processing and executing sentences

from a language can be created in two different ways. A

language designer can design a language and manually imple-

ment all the tools needed for language processing. The second

option is to write a language specification using any of the

existing compiler generators and then generate the processing

tools. Use of a compiler generators is preferable because it

provides better automation and is frequently used in the area

of specification of DSLs.

Compiler generator tools help with specifying lexical units,

syntax, semantic actions [3] and sometimes they even explic-

itly define language concepts by means of abstract syntax.

There are many compiler generator tools, we can mention

the most common known Yacc [4], or even more sophisti-

cated ones such as ANTLR [5], Beaver [6], LISA [7], [8],

JastAdd [9] or Xtext framework [10], [11]. If we look on

the problem of resolving textual references to places of its

declaration, usually it can be addressed within the semantic

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 1515–1522

978-1-4673-4471-5/$25.00 c© 2013, IEEE 1515

StateMachine

State

Ready

State

Running

Transition

WaterHigh

Transition

WaterLow

Ready Running Ready Running

from from to to

StateMachine

State

Ready

State

Running

Transition

WaterHigh

Transition

WaterLow

from

from

to
to

Fig. 1. Transformation from the abstract syntax tree to the abstract syntax
graph

actions of the designed language. Some of the current com-

piler generators use attribute grammars in order to simplify

the specification of semantic actions, for example in LISA.

JastAdd uses an expanded version of attribute grammars [12]

described by Hedin [13], [14] as reference attributed grammars

(RAGs). RAGs aim to simplify attribute grammars for refer-

ences by allowing attributes to be of reference type to other

nodes in the syntax tree. RAGs only expand theoretical type

model of attribute types and the actual process of discovering

nodes in the tree needs to be manually implemented in the

semantic actions of an attribute grammar. Xtext framework

offers different approach with simple definition of referenced

node types, scoping needs to be programmed with provided

API.

We would like to show the usual process of declaring and

resolving references on an example of a simple language of

state machines. For the purposes of better comparison with the

existing research we will use the example of the state machine

language used in the JastAdd tutorial paper [15].

Listing 1. EBNF context-free grammar for a state machine language [15]

<statemachine> ::= <declaration>*
<declaration> ::= <state> | <transition>

<state> ::= "state" ID ";"

<transition> ::= "trans" ID":" ID"->" ID ";"

ID = [a-zA-Z][a-zA-Z0-9]*

In the listing 1 is specified the grammar of the state machine

language, which consists of declarations. A declaration can

be a state or a transition. A non-terminal for a state contains

only the state name represented by the named token ID. A

transition contains the name (ID) of the transition, the name

of the starting state and the name of the ending state of the

transition. The abstract syntax of the state machine language is

displayed in the listing 2. For every non-terminal there is one

concept in the abstract syntax and instead of using just textual

terminals for references (as it is common during the language

desing phase) we used declarations of actual references.

Listing 2. Abstract syntax for the state machine language

concept StateMachine

AS: declarations: list of Declaration

concept Declaration

concept State : Declaration

AS: name: string

concept Transition : Declaration

AS: name: string, from: State, to: State

In the abstract syntax and the grammar, it is possible to

identify the point where there is a need for reference resolving

during the language processing. Every transition has a textual

name reference to the existing state concept. A sentence in

the state machine language can be represented by a simple

example of identifiers and references (see listing 3).

Listing 3. State machine language example sentence

state Ready;

state Running;

trans WaterHigh: Ready -> Running;

trans WaterLow: Running -> Ready;

Each state has a name, which acts as an identifier as well

as each transition has a name serving as an identifier, but in

this example we actually need only the state identifier because

there will be no reference to the transition names. In the

listing 3 we can see two states: Ready and Running and there

are two transitions, each using the already defined state names

as starting and ending states. During the language processing,

the names represented as strings have to be connected to

the actual state declarations. The process of interconnecting

the referenced language concepts in any computer language

can be perceived as a transformation from abstract syntax

tree (AST) to abstract syntax graph (ASG). AST is a tree

structure of language concepts created directly after parsing

of the language textual form. Tree structure of textual forms

of languages does not allow creation of direct references

to existing declaration.Therefore we need textual placeholder

for identifier to make references possible in later phase of

language processing. ASG is a structure transformed from

AST, which allows references from any node to any other

node, so it means that a graph structure is created by extending

the tree structure. The AST and ASG of our state machine code

are displayed in fig. 1.

The transformation from AST to ASG in current compiler

generators is accomplished manually within semantic actions.

An example of semantic actions defined via attributed gram-

mar written in JastAdd for a simple name analysis of the state

machine language is shown in listing 4. Attributes are specified

1516 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

StateMachine

Declaration

State Transition

from
to

1 1

0..*
declarations

Fig. 2. Model of the state machine language

for from Transition named source and for to Transition named

target. The lookup attribute is used for searching for a specific

named State in the already specified list of States. Understand-

ing of the provided example requires more knowledge about

the specification notation used in JastAdd [15], but it shows

the common amount of code needed to solve references in a

language sentence and this problem is repeating in most of

existing languages.

Listing 4. Code for name analysis for the state machine language specifica-
tion in JastAdd [15]
aspect NameAnalysis {

syn State Transition.source() =

lookup(getSourceLabel());
syn State Transition.target() =

lookup(getTargetLabel());
inh State Declaration

.lookup(String label);

eq StateMachine.getDeclaration(int i)

.lookup(String label) {

for (Declaration d :

getDeclarationList()) {

State match = d.localLookup(label);
if (match != null) return match;

}

return null;

}

syn State Declaration

.localLookup(String label) = null;

eq State.localLookup(String label) =

(label.equals(getLabel()))?this:null;

}

III. LANGUAGE SPECIFICATION WITH ANNOTATED

CLASSES

There are different methods of specifying languages. The

most common is in form of grammars. In our approach we

use our own tool for language specification, which allows to

model languages as classes in object-oriented programming

paradigm [16]. This way the reuse of UML modeling tools

for modeling languages [17] is possible.

In order to use our approach, the model of the state machine

language has to be described by classes as described in Fig. 2.

Each class in the model represents exactly one language

concept. The connections between the language concepts are

represented by the relationships in the model (inheritance,

composition). Each UML composition relationship describes a

required connection between the concepts, while the aggrega-

tion relationship means a connection created with identifiers.

Generalization is used to represent alternation for the parent

concept.

Modeling a language in a graphical form is great for general

overview, but as we enrich a model with additional information

such as concrete syntax and semantics, it becomes hard to

understand. Execution of a plain model without any specified

actions or supporting tool is usually not possible. In order

to solve these problems and for practical purposes we define

the language concepts in a textual form of classes of object

oriented languages. The first class could be created for the

root concept (StateMachine) of the state machine language.

Listing 5. StateMachine concept specification

class StateMachine {

List<Declaration> declarations;

StateMachine(List<Declaration> decls) {

this.declarations = decls;

}

}

Each class diagram is a representation of the abstract syntax

with the recognized language concepts and their connections,

as it is possible to notice in Fig. 2. Abstract syntax of StateMa-

chine in listing 5 is represented by the definition of the class

fields, in this case we have only one field named declarations

for storing the list of Declaration concepts. Concrete syntax is

represented by the class constructor. In this case there is only

one concrete syntax representation (hence one constructor)

which consists only of the list of Declaration concepts. It is

a simple example for defining language constructs in a form

recognizable to any programmer with a knowledge of object-

oriented programming. In later examples we will discuss

additional forms of concrete syntax specification. More details

about this representation can be found in [16].

The next specification is a declaration of an abstract lan-

guage concept Declaration, which in grammar form serves

as a non-terminal for choosing between State and Transition

non-terminals. It is possible to achieve the same effect in our

language specification using inheritance and abstract classes.

Therefore, the Declaration concept can be specified as a

simple empty abstract class or an interface. We have chosen to

use abstract class as this representation is closer to our model

situation.

Listing 6. Declaration concept specification

abstract class Declaration {}

A. Declaring identifiers

The presence of identifiers and references is so common

in computer languages, that we can consider it a language

pattern. This pattern was already used in languages, but we

have identified and distilled it as one of the building blocks

of languages and therefore it can be extracted and later used

DOMINIK LAKATOŠ ET AL.: DECLARATIVE SPECIFICATION OF REFERENCES IN DSLS 1517

in any language in form of declaration. Our example of

the state machine language uses a special form of unique

named identifiers for the State concepts. And this is where our

method comes forward and provides the capability to simply

annotate a field which should be used as a special identifier

for encapsulating the language concept. In our example we

have the State language concept with the label property, which

serves as an identifier of the State instance (see listing 7). In

order to declare the label property to be used as identifier,

we only need to annotate the property with the @Identifier

annotation. The optional options available for the @Identifier

annotation will be discussed later in this paper.

Listing 7. State concept specification

class State extends Declaration {

@Identifier
String label;

@Before("state")

@After(";")

State(@Token("ID") String id) {

this.label = id;

}

}

We have used also other annotations, which are not new in

our language specification. The @Before and @After annota-

tions serve for defining terminal symbols in textual concrete

syntax of State. The @Token annotation has a similar purpose,

it can be used to concretize the lexical symbol used for

checking and extracting data. If we compare this concrete

syntax specification with the grammar defined for the state

machine language in listing 1, it is simple to find connections

between both specifications. The token ID is already defined

in a special language configuration file in our tool and it serves

for accepting names.

B. Declaring references

For the identifiers to have a logical meaning in the language,

it is needed to reference to them from another place in the

language sentence. The places used for referencing to existing

identifiers are marked with the @References annotation. In our

example we marked the constructor parameters sourceLabel

and targetLabel as referencing names to the State concept. We

need to define the concrete syntax according to the grammar

from listing 1, therefore we are using the @Before, @After

and @Token annotations as well.

Listing 8. Transition concept specification

class Transition extends Declaration {

String label;

State source;

State target;

@Before("trans")

@After(";")

Transition(

@Token("ID")

String label,

@Before(":")

@Token("ID")

@References(State.class, field = "source")
String sourceLabel,

@Before("->")

@Token("ID")

@References(State.class, field = "target")
String targetLabel

) {

this.label = label;

}

}

The usage of the @References annotation has an impact on

some programming techniques. We are using @References to

annotate constructor parameters and this way we are assigning

special behavior to those parameters. Our language specifica-

tion implementation allows us not to store the value of the an-

notated constructor parameter in any traditional programming

way, actually this value is automatically stored for us during

the language processing phase. Therefore, in the listing 8 it is

possible to leave the constructor body with only one statement

for storing the label of the transition. The requirement for

the usage of the @References annotation is that it should be

used on a String parameter and it is required to specify the

referencing class (in the value parameter of the annotation),

in our example it is the State class. The next parameter of

@References is field, which allows us to define the name of

the referenced class field (sometimes called property) used to

store the specified language concept (object of the specified

class). Both parameters are used later to filter all identifiers

according to their corresponding language concepts, and they

are used for injecting [18] appropriate object into the class field

using reflection [19]. In our example of the Transition concept

the objects of the State class are injected into the source and

target fields, which are also checked for type consistency.

IV. SCOPE OF REFERENCES

References in computer languages are seldom created within

one universal scope of availability. Even if there is a universal

scope, called global scope, languages are not using only this

one scope. Every variable in the language can be declared

in a different scope and the rules for discovering a proper

defined variable can be very difficult to define. An example of

different scopes for the count variable is shown in listing 9.

The count variable is declared in the global scope and at the

same time it is also declared in the local scope of the foo

function (D2), therefore the output of foo is 0 as we are using

the variable declared closer to the place of its usage. The

output of goo is 10 as the count variable name is referencing

to the global variable declaration (D1) because there is no

other closer variable declaration with this name.

Listing 9. Simple scope example with the count variable

int count = 10; // D1

void foo() {

int count = 0; // D2

print count;

}

1518 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

void goo() {

print count;

}

Support for using identifiers and references in scopes is

very different in most compiler generator tools. Most of the

tools are delegating this work to the designer by means of

custom implementation (Yacc [4], Flex [20], JavaCC [21],

Beaver [6]), they offer attribute grammars to help with the

issue as it is done in JastAdd [9] and Lisa [7] or Xtext

framework provides API for implementing scopes [11]. Still

the language designer needs to know how to implement the

scoping of references for his/her new language. ANTLR [22]

provides a special support for defining scopes of variables for

non-terminals and it allows easier access in order to find the

declared variable in the tree of scoped variables, but still the

user is required to specify proper variables and implement

the use of scopes in the lookup functions. Therefore we can

summarize, that all popular compiler generator tools require

the user to write a custom solution for almost every issue

concerning the reference resolving of identifiers within any

scope.

In our method we support automatic reference resolution

with scoping rules. Result of parsing language sentence is pro-

vided in a form of AST. References with scopes are allowed by

selecting valid nodes in the required scope. In order to select

nodes in AST it is useful to use a tree quering method. Our

current solution uses the XPath querying language [23] as it

is specially designed for efficient filtering of XML nodes [24]

and use simple syntax. AST is usually not represented in XML,

but XML is also a tree structure, therefore, the transformation

from AST to XML is straighforward.

Each language is different and each reference in the lan-

guage can be defined in a different scope. In order to charac-

terize scoping, we have divided references to three levels of

scoping:

• Global scope

• Simple local scope

• Complex scope

A. Global scope

The state machine language used in the previous sections

uses references without scope or we can say that it uses

global scope. Every State language concept is uniquely named

within the full scope of a language sentence. Therefore it is

a language within the first level of scoping and there is no

need to declare it with any additional parameters. Previous

listings (5, 6, 7 and 8) of class specifications of the state

machine language are sufficient for our compiler generator

with automatic resolution of references.

B. Simple local scope

Declaration of a referenceable language concept in the scope

of parent concept is an example of a simple local scope level.

Any scoping with a simple XPath query is considered to be

a simple local, scope level. We can illustrate the problem on

an example of a language for description of departments with

cars and employees. Every car has a name, a fuel type and a

year of acquisition. Every employee has a name and he/she

can have a name of a car, which can be used by him/her.

Employees can have a permission to drive the car owned

by the same department, but it is not possible to use cars

from different departments. Name of the car in the employee

specification line is actually a reference to a declared car name

in the department. Textual representation of this language is

displayed in listing 10.

Listing 10. Department language with cars and employees

department: Accounting

car: Audi A4; diesel; 2008

car: Ford Focus; gas; 2012

empl: John Smith {Audi A4}

empl: Emma Fisher {Ford Focus}

empl: Jim Parker

department: Technical services

car: VW Golf; diesel; 2010

car: Ford Focus; gas; 2005

empl: Steve Cosby {Ford Focus}

Specification of the Employee language concept in our

class form is displayed in listing 11. Scoping in references

is allowed with the path parameter in the @References an-

notation. The value of the path parameter is an XPath query

for accessing all relevant Car concepts. In our example we

have used the XPath parent::Department/Car, which

means that we are expecting to traverse the AST from the

actual Employee node to the parent node named Department

and then to find all child nodes named Car. This way, we have

specified scoping for referencing to the Car concept within

the same Department concept. The method of finding the Car

node with a proper identifier is included in our method and it

is not necessary to specify it in the XPath query, the user only

needs to define the path for all relevant language concepts.

Listing 11. Specification of the Employee concept in the department language

class Employee {

String name;

Car car;

@Before("empl:")

Employee(

String name,

@Before("{")
@After("}")
@References(value=Car.class,

path="parent::Department/Car")
String car

) {

this.name = name;

}

@Before("empl:")

Employee(String name) {

this.name = name;

}

}

DOMINIK LAKATOŠ ET AL.: DECLARATIVE SPECIFICATION OF REFERENCES IN DSLS 1519

In the context of our approach, the simple local scope can

be perceived as any local scope, which can easily be defined

with an XPath query inside the @References parameter path.

The complexity of a possible query is depending on the user’s

knowledge of XPath. Although, we are not restricted only to

XPath, it is possible to use any other language for traversing

the tree structures, however it needs to be included in our

language tool.

C. Complex scope

In our research we aim for tool support of DSLs, which

are usually not as complex as general purpose languages

and therefore do not need to use complex scopes. Although,

sometimes it is useful to have complex scope rules. In this

section we will discuss the power of XPath expressions in

our language design method and we provide an overview for

advanced scoping.

A usual behavior of reference resolving using an XPath

expression in the path parameter of the @References anno-

tation consists of adding an XPath predicate with a test of the

name of an identifier to the end of the original expression.

For example an expression for finding a Car with the name

Audi A4 from listing 11 is converted to the following XPath

expression.

parent::Department/Car[_id="Audi A4"]

In some XPath queries it is useful to specify a place for

filtering nodes before getting all nodes. In order to write an

XPath expression for searching for appropriate variable count

declaration from listing 9 we can use an XPath expression

(ancestor::*[Variable/_id="count"])[last()]/

Variable[_id="count"]

In order to parameterize this XPath expression we can use

##cmp## as a placeholder for _id = "NAME", therefore our

extended XPath expression can be written as follows:

(ancestor::*[Variable/##cmp##])[last()]/

Variable[##cmp##]

This XPath expression first chooses the appropriate ancestor

with expected named variable declaration.

There is always a possibility to completely forget our

declarative way of solving references and to implement it on

our own. Our language method allows it without any problems,

but the user would lose a great advantage. Still there can be

some very specific scoping rules, which cannot be properly

described with XPath and in this case we recommend using the

traditional manual implementation of referencing to identifiers.

The user has to be aware that he needs to manage his own

storage of identifiers as well as the method for connecting

places of identifier usage to the language concepts with the

declared identifiers. Manual solution is possible and sometimes

needed, although we are sure it is not necessary in most DSLs

and our identifiers and references patterns are sufficient in such

scenarios.

V. PROCESS OF REFERENCE RESOLVING

Our method for reference resolving consists of three main

steps:

• Unique identifier

• Reference searching and injecting

• Creation of undefined identifiers

A. Unique identifier

The first step in our reference resolving method is to check

for uniqueness of identifiers. Every identifier for one language

concept needs to be unique in its own scale. If identifiers are

not unique it would cause a problem in reference resolving

process, as one reference needs to reference only one language

concept. This part of our method is providing functionality,

which is not commonly used in other tools and where the user

needs to implement it on his own using a table of identifiers

or any other similar method. The default behavior of the

@Identifier annotation without parameters is that the concept

name is unique in the global scale of a language sentence and

for language concept. Standard setting for uniqueness of iden-

tifiers used for specifying the state concept in the state machine

language (see listing 7) is using the @Identifier annotation

without parameters, therefore during language processing it is

tested if every state has a unique name.

In order to specify other scale of identifier uniqueness,

we are using XPath expressions as it was described in the

section IV-B. It is possible to define a query for nodes of AST

in which there is only one occurrence of an identifier of the

specified type. This way we can define automatic checking

for uniqueness of identifiers of car in department in our

department language example (listing 10).

Listing 12. Specification of the Car concept in the department language

class Car {

@Identifier(unique="parent::Department")
String name;

String fuelType;

int year;

@Before("car:")

Car(

@Token("NAME")

String name,

@Before(";")

@Token("NAME")

String fuelType,

@Before(";")

@Token("YEAR")

int year) {

this.name = name;

this.fuelType = fuelType;

this.year = year;

}

}

Listing 12 specifies the language concept car, but our main

focus is on the @Identifier annotation with the unique pa-

rameter. With this parameter we have specified that every car

1520 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

has a unique name only in the scope of its parent department

language concept. Therefore it is possible to have cars with the

same name in different departments and the parsing process

will finish without any error. Otherwise, in the case of not

specifying the unique parameter, the uniqueness of car name

would be tested in the global scale, producing an error even if

different departments would have a car with the same name.

Scoping of references defined in the section IV-B and

scoping of identifier uniqueness is based on similar XPath

expressions. It is recommended to scope uniqueness of an

identifier when we are using scopes for referencing. Identifier

XPath scopes are usually simpler then XPath expressions for

finding proper identifiers in @References. As an example,

consider uniqueness scope of identifier in a function for

listing 9, which can be defined as a simple XPath for variable

identifier: parent::Function and if we compare it with

XPath expression for finding proper variable reference shown

in the section IV-C, it is obvious that the XPath expression for

uniqueness scope is much simpler to write and understand.

B. Reference searching and injecting

The second and the most important part of our method is

actual resolving of textual references. Details about textual

reference resolving were already described in this paper in

section III and scoping details in section IV. In our method

we are using declarative specification of references with the

@References annotation, which marks the textual parameters

containing names of referencing language concepts defined in

the fields marked with the @Identifier annotation. Referencing

can be constrained with the scope rules defined by XPath. Our

method discoveres referenced language concepts and inject

them into fields specified in the field (for specifying the field

name of class) and value (used to define the referencing type)

parameters of the @References annotation.

Reference resolving can be carried out in two ways:

• after parsing an entire input sentence (explicit)

• during the parsing process (implicit)

The explicit approach is about an explicit execution of

reference resolvining at the end of the parsing process. After

execution we get an exact information about any inconsisten-

cies in identifiers and references. Any error can be detected

right after explicit execution call and propagated to the user.

On the other hand it needs this one explicit execution of

reference resolving and it makes this solution less modular.

The implicit approach is about resolving references and

identifiers after each language concept creation (usually during

the parsing process). For each parsed language concept it is

trying to resolve the unresolved references and to match them

with identifiers. The advantage of such solution is elimination

of explicit execution of reference resolving, on the other hand

it is hard to check for inconsistencies as it cannot tell if

the registration of the new language concepts has finished

or not. It is possible only to check for the actual state of

reference resolution and to get information about the non-

resolved references. At the end of the process of language

parsing we should not have any non-resolved references. It is

optional to check for non-resolved references, when we are

using the implicit approach to resolution of references.

Both presented approaches to reference resolution have

advantages and disadvantages and it is possible to use either

of them. A language designer should decide which approach

would be preferable to his new language. The implicit ap-

proach does not need any action for resolution of the ref-

erences, but cannot guarantee that all references have been

resolved properly without any optional check. The explicit ap-

proach is better in performance as the resolution of references

is done only once and it can propagate the error in case of

unresolved references, but it is required to execute this method

explicitly and therefore there is a direct dependency between

the parsing process and the reference resolution process.

C. Creation of undefined identifiers

The third part of our method is focused on the solution

of one specific problem concerning references and identifiers

within languages. In languages it is possible to have a ref-

erence to an identifier without the previous declaration of

the identifier. It is a common occurrence in untyped or dy-

namically typed languages to use a variable without previous

declaration (see listing 13). It is safe to claim, that a declaration

of an identifier is required only if the declaration contains

additional information about the language concept except the

identifier name.

Listing 13. Example of a language without variable declaration

x = 10; // it is possible to use this

var x; // instead of this

x = 10;

The previous example represents a GPL sentence fragment,

but the same situation can be found when designing a DSL

language. If we would look on the sentence written in the state

machine language in listing 3 it is clear that the declaration of

state does not contain any additional information except the

name of a state. Taking that information into account, we can

write the same state machine without any state declaration as

it is shown in the following listing 14.

Listing 14. State machine language example without state declaration

trans WaterHigh: Ready -> Running;

trans WaterLow: Running -> Ready;

The Ready and Running states are declared in the place of

their usage and the later usage is used as a reference to the

existing state. This feature allows simplification of language

sentences for common language users, as DSLs usually require

syntax, which is more practical than technical.

Our method supports the automatic creation of language

concepts in the place of their reference in case of non-

existent variable declaration in the language sentence. It can

be specified by the create parameter in the @References

annotation (example in listing 15). This parameter is set to

false by default, therefore a non-existent referenced concept

is not created. Setting the create parameter to true allows the

automatic creation of language concepts. The only requirement

DOMINIK LAKATOŠ ET AL.: DECLARATIVE SPECIFICATION OF REFERENCES IN DSLS 1521

is the existence of a constructor with a string parameter and

the usage of global scope for referencing as well as identifier

uniqueness.

Listing 15. References annotation with create parameter

@References(State.class,

field = "source", create = true)

Automatic creation of undefined identifiers is the last phase

of our method for resolving identifiers and references. It runs

after the phase of resolving references and only if there is at

least one create parameter with value true. After each creation

of a new language concept it is required to resolve references

as AST has been modified.

VI. CONCLUSION

Current language tools support creation of languages with

one or more methods, but they fail in the area of an exact dec-

laration of references and identifiers in the created languages.

A language designer has to implement checking of identifier

uniqueness and lookup methods for finding proper referenced

identifiers manually, as it is common with other tools such as

Beaver, JavaCC, JastAdd, ANTLR or at least programatically

select language concepts from the scope using API in Xtext

framework.

In this paper we have presented the method for declarative

specification of computer languages with identifiers and ref-

erences. We have discovered and described language patterns

for identifiers and references. These language patterns have

different possible parameters to adjust their impact. It is

possible to define the scope of uniqueness of an identifier.

We have described different levels of scopes for referencing

other language concepts and we have explained different levels

of scoping on illustrative examples. The scoping levels we

discovered are global scope, simple local scope and complex

scope. Complex scope is used mostly for advanced scoping

of variable names in programming languages. During our re-

search, we have analyzed various languages and discovered the

pattern for identifiers without explicit declaration of identifier

before the usage. In order to cope with such form of languages

we provide an option to automatically create language concept

on the first occurrence of identifier and to use it as a reference

on every other occurrence.

Every mentioned pattern and option has been integrated

in our method for working with references and identifiers

in computer languages, with a special orientation to DSLs.

Our method allows declarative definition of identifiers and

references instead of more common imperative solutions of

other methods. A summary of our method is a declarative

transformation of AST to ASG. The method has been imple-

mented in our YAJCo1 tool, which can be found on the central

Maven repository. All languages mentioned in this paper has

been successfully tested in YAJCo and they serve as a proof

of concept for the proposed method.

1https://code.google.com/p/yajco/

ACKNOWLEDGMENT

This work was supported by VEGA Grant No. 1/0305/11

Co-evolution of the artifacts written in domain-specific lan-

guages driven by language evolution.

REFERENCES

[1] A. Kleppe, Software Language Engineering: Creating Domain-Specific

Languages Using Metamodels, 1st ed. Addison-Wesley Professional,
2008.

[2] M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop
domain-specific languages,” ACM Comput. Surv., vol. 37, no. 4, pp.
316–344, Dec. 2005. [Online]. Available: http://doi.acm.org/10.1145/
1118890.1118892

[3] M. Tofte, Compiler generators: what they can do, what they might do,

and what they will probably never do. New York, NY, USA: Springer-
Verlag New York, Inc., 1990.

[4] S. C. Johnson, Yacc: Yet another compiler-compiler. Bell Laboratories
Murray Hill, NJ, 1975, vol. 32.

[5] T. J. Parr and R. W. Quong, “Antlr: a predicated-ll(k) parser generator,”
Softw. Pract. Exper., vol. 25, no. 7, pp. 789–810, Jul. 1995. [Online].
Available: http://dx.doi.org/10.1002/spe.4380250705

[6] A. Demenchuk, “Beaver-a lalr parser generator,” 2006.
[7] M. Mernik, N. Korbar, and V. Žumer, “Lisa: a tool for automatic

language implementation,” SIGPLAN Not., vol. 30, no. 4, pp. 71–
79, Apr. 1995. [Online]. Available: http://doi.acm.org/10.1145/202176.
202185

[8] M. Mernik, M. Lenič, E. Avdičaušević, and V. Žumer, “Lisa: An
interactive environment for programming language development,” in
Compiler Construction. Springer, 2002, pp. 1–4.

[9] T. Ekman, G. Hedin, and E. Magnusson, “Jastadd,” 2008.
[10] M. Eysholdt and H. Behrens, “Xtext: implement your language

faster than the quick and dirty way,” in Proceedings of the ACM

international conference companion on Object oriented programming

systems languages and applications companion, ser. SPLASH ’10.
New York, NY, USA: ACM, 2010, pp. 307–309. [Online]. Available:
http://doi.acm.org/10.1145/1869542.1869625

[11] “Xtext @ONLINE,” http://www.eclipse.org/Xtext/, Jun. 2013.
[12] J. Paakki, “Attribute grammar paradigmsa high-level methodology in

language implementation,” ACM Comput. Surv., vol. 27, no. 2, pp.
196–255, Jun. 1995. [Online]. Available: http://doi.acm.org/10.1145/
210376.197409

[13] G. Hedin, “Reference attributed grammars,” 1999.
[14] T. Ekman and G. Hedin, “Rewritable reference attributed grammars,”

in ECOOP 2004–Object-Oriented Programming. Springer, 2004, pp.
147–171.

[15] G. Hedin, “An introductory tutorial on jastadd attribute grammars,” in
Generative and Transformational Techniques in Software Engineering

III. Springer, 2011, pp. 166–200.
[16] J. Porubän, M. Forgáč, and M. Sabo, “Annotation based parser gener-

ator,” in Computer Science and Information Technology, 2009. IMCSIT

’09. International Multiconference on, Oct., pp. 707–714.
[17] J. Rumbaugh, I. Jacobson, and G. Booch, Unified Modeling Language

Reference Manual, 2nd ed. Addison-Wesley Professional, 2010.
[18] M. Fowler, “Inversion of control containers and the dependency injection

pattern, jan. 2004,” URL: http://martinfowler. com/articles/injection.

html.
[19] I. R. Forman, N. Forman, D. J. V. Ibm, I. R. Forman, and N. Forman,

“Java reflection in action,” 2004.
[20] G. Nicol, Flex: the lexical scanner generator. Free Software Founda-

tion, 1993.
[21] V. Kodaganallur, “Incorporating language processing into java applica-

tions: A javacc tutorial,” Software, IEEE, vol. 21, no. 4, pp. 70–77,
2004.

[22] T. Parr, The Definitive ANTLR Reference: Building Domain-Specific

Languages. Pragmatic Bookshelf, 2007.
[23] J. Clark, S. DeRose et al., “Xml path language (xpath) version 1.0,”

1999.
[24] C.-Y. Chan, P. Felber, M. Garofalakis, and R. Rastogi, “Efficient filtering

of xml documents with xpath expressions,” The VLDB Journal, vol. 11,
no. 4, pp. 354–379, 2002.

1522 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

