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Abstract—The formalization of fuzzy sets in terms of corre-
sponding membership functions is already available in machine-
verified mathematical knowledge base. We show how it can be
extended to provide the development of fuzzy numbers fully
benefitting from the existing framework. The flexibility which
is offered by automated proof-assistants allowed us to overcome
some initial difficulties. Although fuzziness stems from the same
background as rough set theory, i.e. incomplete or imprecise
information, both formal approaches are substantially different.

I. INTRODUCTION

DURING the past decades, mathematics would evolve

from the pen-and-paper model in the direction of use

of computers. As fuzzy set theory proposed by Zadeh offered

new mathematical insight for the real data in the world of

uncertain or incomplete information, dealing mainly with those

contained in digital archives, it is not surprising that similar

methods will be used in order to obtain the properties of

objects within the theory itself. The original approach to fuzzy

numbers met some criticism and various ways of improvement

were offered as yet. But usually computers serve as an assistant

offering calculations – why not to benefit from their more

artificial intelligence strength? We try to address some issues

concerned with the digitization of this specific fragment of

fuzzy set theory, representing a path to fuzzy numbers, so it

can be considered as a case study in a knowledge management,

being a work on fuzzy sets in the same time.

The paper is organized as follows. The next section is

devoted specifically to the situation in the area of computer-

checked formalization of mathematics and contains a brief

primer to formal fuzzy sets; in the third we gave an example

of the proof to show how it looks like; fourth is devoted to the

connection of our work with classical and the rough set theory.

The other two sections explain specific issues we met during

our work while the final brings some concluding remarks and

the plans for future work.

II. A FORMAL PRIMER OF FUZZY SETS

We were surprised that within the rough set theory the

notion of a rough set is not formally chosen as unique. On the

one hand, it is a class of abstraction with respect to the rough

equality, on the other – the pair of approximation operators. As

both theories have much in common, we expected the same

from fuzzy sets. But – the membership function itself can

be just treated as a fuzzy set. Obviously, there is something

unclear with the domain vs. support of a function (as what we

call ‘fuzzy sets’ in fact is a fuzzy subset), but it is not that

dangerous. As the author developed the formalization of rough

sets, he could make the decision of how much of the existing

apparatus should be used also in this case. Eventually all

relational structure framework [3] was dropped as completely

useless here. We could take the Cartesian product of the

original set and the corresponding function, but it is enough

to deal only with the latter one.

“Computer certification” is a relatively new term describing

the process of the formalization via rewriting the text in a

specific manner, usually in a rigorous language. Now this

idea, although rather old (taking Peano, Whitehead and Russell

as protagonists), gradually obtains a new life. As the tools

evolved, the new paradigm was established: computers can

potentially serve as a kind of oracle to check if the text is

really correct. And then, the formalization is not l’art pour

l’art, but it extends perspectives of knowledge reusing. The

problem with computer-driven formalization is that it draws

the attention of researchers somewhere at the intersection of

mathematics and computer science, and if the complexity of

the tools will be too high, only software engineers will be

attracted and all the usefulness for an ordinary mathematician

will be lost. But here, at this border, where there are the

origins of MKM – Mathematical Knowledge Management, the

place of fuzzy sets can be also. To give more or less formal

definition, according to Wiedijk [9], the formalization can be

seen presently as “the translation into a formal (i.e. rigorous)

language so computers check this for correctness.”

In this era of digital information anyone is free to choose

his own way; to quote V. Voevodsky, Fields Medal winner’s

words: “Eventually I became convinced that the most inter-

esting and important directions in current mathematics are the

ones related to the transition into a new era which will be

characterized by the widespread use of automated tools for

proof construction and verification”. If we take into account

famous Four Colour Theorem, automated tools can really

enable making some significant part of proofs, so hard to

discuss with this opinion.

Among many available systems which serve as a proof-

assistant we have chosen Mizar. The Mizar system [4] consists

of three parts – the formal language, the software, and the

database. The latter, called Mizar Mathematical Library (MML

for short) established in 1989 is considered one of the largest

repositories of computer checked mathematical knowledge.

The basic item in the MML is called a Mizar article. It reflects

roughly a structure of an ordinary paper, being considered at

two main layers – the declarative one, where definitions and
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theorems are stated and the other one – proofs. Naturally, al-

though the latter is the larger, the earlier needs some additional

care.
As lattice theory and functional analysis are the most

developed disciplines within the MML, further codification of

fuzzy numbers, including their lattice-theoretic flavour, looks

very promising. As a by-product, apart of readability of the

Mizar language, also presentation of the source which is

accessible by ordinary mathematicians and pure HTML form

with clickable links to notions and theorems are available after

the acceptance of the development into the library. As far as

we know, this is the first attempt to formalize fuzzy sets in

such extent using any popular computerized proof assistant.
Recall that a fuzzy set A over a universe X is a set defined

as

A = {(x, µA) : x ∈ X},

where µA ∈ [0, 1] is membership degree of x in A. Because

the notions in the MML make a natural hierarchy (as the base

set theory is Tarski-Grothendieck, which is close to ordinary

Zermelo-Fraenkel axiomatics, accepted by most mathemati-

cians): functions → relations = subsets of Cartesian product →
sets, so it is a relation. Zadeh’s approach assumes furthermore

that µA is a function, extending a characteristic function χA.

So, for arbitrary point x of the set A, the pair (x, µA) can

be replaced just by the value of the membership function

µA(x), which is in fact, formally speaking, the pair under

consideration. Then all operations can be viewed as operations

on functions, which appeared to be pretty natural in the set-

theoretic background taken in the MML as the base. All basic

formalized definitions and theorems can be tracked under the

address http://mizar.org.

definition let C be non empty set;

mode Membership_Func of C is

[.0,1.]-valued Function of C,REAL;

end;

The aforementioned definition introduces membership func-

tion just as a function from given non-empty set into a subset

of the set of all real numbers, and the values belong to the

unit interval. Of course, Membership_Func is not uniquely

determined for C – the keyword mode starts the shorthand for

a type in Mizar, that is, in fact C variable can be read from

the corresponding function rather than vice versa.

definition let C be non empty set;

mode FuzzySet of C is Membership_Func of C;

end;

We collected translations of selected formalized notions in

Table I. As we can read from this table, there are standard

operations of fuzzy sets available, usually taken component-

wise (note that F.x stands for the value of the function F on

an argument x). Note that the Mizar repository extensively

uses a difference between functions and partial functions;

(Function of X, Y and PartFunc of X, Y in Mizar

formalism); because in case of partial functions only the

inclusion of the domain in the set X is required, hence the

earlier type expands to the latter automatically.

TABLE I
FORMALIZED NOTIONS AND THEIR FORMAL TRANSLATIONS

The notion Formal counterpart
the membership function Membership_Func of C

fuzzy set FuzzySet of C

χA(x) chi(A,X).x

α-set alpha-set C

supp C support C

F ∩G min (F,G)

F ∪G max (F,G)

cF 1_minus F

III. AN ILLUSTRATIVE EXAMPLE OF THE PROOF

In this section we focus on the example of formalized

theorem about level sets. Before we start, we explain some

plain ASCII symbols which will be used as all Mizar articles

have the limitation of using only this narrow set of codes (but

automated translation enables to use ordinary mathematical

notations, usually based on LATEX). >= stands for ≥, c= is

set-theoretic inclusion, " means counterimage or the converse

of the relation (including function); in stands for ∈ . Of

course, [.a,b.] is a interval of real numbers a and b. dom

denotes a domain of a function [4]. It appeared to be pretty

feasible, because we could formalize natural properties in a

rather compact way, as shown below [2]:

definition let C be non empty set;

let F be FuzzySet of C;

let a be Real;

func a-cut F -> Subset of C equals

{ x where x is Element of C : F.x >= a };

end;

One can easily notice near one-to-one correspondence with

the well-known definition of α-cuts (or level sets):

Aα = {x ∈ X : µA(x) ≥ α}

As it is the counterimage of the interval [α, 1], we can prove

the following theorem:

theorem AlphaCut1:

for F being FuzzySet of C,

alpha being Real holds

alpha-cut F = F " ([. alpha, 1 .])

proof

let F be FuzzySet of C,

alpha be Real;

thus alpha-cut F c= F " ([. alpha, 1 .])

proof

let x be element;

assume x in alpha-cut F; then

consider y being Element of C such that

A1: x = y & F.y >= alpha;

x in C by A1; then

A2: x in dom F by FUNCT_2:def 1; then

F.y in [. 0, 1 .] by A1,PARTFUN1:4; then

0 <= F.y & F.y <= 1 by XXREAL_1:1; then

F.y in [. alpha, 1 .] by XXREAL_1:1,A1;

hence thesis by A1,FUNCT_1:def 7,A2;

end;

:: the other inclusion omitted

end;
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IV. ROUGH AND FUZZY FORMAL APPROACHES

In the usual informal mathematical jargon it is easy to say

that e.g., two objects are identical up to the isomorphism,

formal language has to deal somehow with it. In the fuzzy

set theory this can be noticed at the very beginning – some

people treat fuzzy sets as the pair of the set and corresponding

membership function. Fuzzy sets are subsets of ordinary sets;

as we can take membership function just as χ of ordinary sets,

it clearly shows the feasibility of this approach. Of course, it

is impossible then, at least without any additional preparing

work, to find the common bottom ground for ordinary sets and

fuzzy sets; however all sets can be made fuzzy in view of the

simple lemma cited below:

theorem

for C being non empty set holds

chi(C,C) is FuzzySet of C;

Although two widely-known views (rough and fuzzy ap-

proaches) for incomplete or imprecise information have much

in common in principle, there are essential differences between

both of them [10]. In fuzzy sets, every element has its

own membership measure. In rough approach, the degree of

membership is rather calculated from the set as a whole, so it

is pretty close to Bayes’ probability theory, as we quote this

below.

definition let A be finite Tolerance_Space;

let X be Subset of A;

func MemberFunc (X, A) ->

Function of the carrier of A, REAL means

for x being Element of A holds it.x =

card (X /\ Class (the InternalRel of A,x)) /

(card Class (the InternalRel of A,x));

end;

Paradoxically, even the notion of the rough set was defined

in two ways, as pairs of the lower and the upper approx-

imations of a set (in the sense of Iwiński), and as classes

of abstraction with respect to given reflexive, symmetric, and

transitive binary relation (original Pawlak’s approach). MML

reflects both approaches, concentrating on the properties of

approximation operators and various types of binary relations

generalizing equivalence relations.

V. SOME “EASY” PROBLEMS

Virtually any mathematician uses a formal language; as

engineers have also a higher math course in his curriculum, it

shouldn’t be a big problem to validate facts formally. But if

we claim the proof is correct, some natural questions arise: the

correctness with respect to which assumptions? What about

foundations? If it comes to machine, what are properties of

the checker? The original de Bruijn’s dream was to have a

small checker with the transparent kernel. Most of contem-

porary proof assistants are rather far from this requirement.

Although a theorem can look easy, formal mathematics can

bring some unpredictable problems; it is enough to mention

e.g. Kepler’s conjecture about the densest sphere packing (a

part of Hilbert’s 18th problem) or Jordan curve theorem that

any simple closed curve cuts the plane into two disjoint areas.

Intuitively, they are nearly trivial and understandable virtually

for any human being. However, even at the very foundational

level of used logic (constructive proofs do not claim the law

of excluded middle) we can find some unexpected difficulties.

Especially important example in our fuzzy context is the so-

called glueing lemma – the proof of a simple fact about pasting

some continuous functions together to make e.g. triangular (or

trapezoidal) fuzzy set, intuitively trivial, draws some surprising

dependencies.

It is rather hard to approximate the real complexity of a

proof; one of the most popular measures is the de Bruijn

factor, i.e. the ratio between the formal translation of the

mathematical paper and the original (usually after packing the

source and corresponding LATEX file). Although it is claimed

to be about 4 in the case of the Mizar library, in our case is

about six (i.e. formal proofs are six times longer than their

informal counterparts). Such relatively high number is caused

by technical calculations in the process of glueing continuous

functions.

VI. TOWARDS FUZZY NUMBERS

As all Mizar types should have non-empty denotation, it

would force us to define both triangular and trapezoidal fuzzy

sets. The natural definition is usually written as conditional

definition of parts of the function. We used intervals [.a,b.]

and AffineMaps to save some work (e.g., affine maps are

proven to be continuous, one-to-one, and monotone real maps

under underlying assumptions). The operator +* glues two

functions if their domains are disjoint; if not, then the ordering

of glueing counts.

definition let a,b,c be Real;

assume a < b & b < c;

func TriangularFS (a,b,c) -> FuzzySet of REAL

equals

AffineMap (0,0)

+* (AffineMap (1/(b-a),-a/(b-a)) | [.a,b.])

+* (AffineMap (-1/(c-b),c/(c-b)) | ].b,c.]);

end;

The assumptions on the ordering of real variables a, b, c

are unnecessary here and will be removed; we kept this as

needed to prove the continuity of this fuzzy set afterwards. It

is worth mentioning here that the proof of correctness of the

above definition is 40 lines long – surprisingly long comparing

to the popular (of course, false) opinion that definitions don’t

need proofs. Continuity of this triangular fuzzy set needed

much more lines in our Mizar script (90 lines in case of one-

point glueing).

Remembering that a fuzzy number is a convex, normalized

fuzzy set on the real line R, with exactly one x ∈ R such

that µA(x) = 1 and µA is at least segmentally continuous, we

defined it as the Mizar type:

mode FuzzyNumber is f-convex continuous

strictly-normalized FuzzySet of REAL;

As all types are constructed as radix types with added op-

tional adjectives, the generalization, especially that automated-
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driven (by cutting the adjectives in the assumptions), is possi-

ble and quite frequently used. Some of the adjectives are a little

bit stronger that others, with the quoted below as example:

definition let C be non empty set;

let F be FuzzySet of C;

attr F is strictly-normalized means :SNDef:

ex x being Element of C st

F.x = 1 & for y being Element of C st

F.y = 1 holds y = x;

end;

Observe that this adjective means that a fuzzy set is also

normalized in normal sense. Due to automatic clustering of

attributes after registering this quite natural and easy property

any additional reference won’t be needed.

registration let C be non empty set;

cluster strictly-normalized ->

normalized for FuzzySet of C;

end;

In our opinion, we made some significant progress on the

certification of fuzzy sets and numbers, but our primary aim

was to get the formal net of notions correct and reusable and

we hope to benefit from it in our future work.

VII. CONCLUSION AND FURTHER WORK

The primary aim of using computers in the process of the

formalization was to provide its undoubtful correctness. One

can argue however that also careful human review should do

the same work. The famous exception is the publication of

the proof of the Kepler conjecture by Hales in “Annals of

Mathematics”; referees cannot be fully sure of the correctness

of computer programs and tedious, extremely long computer-

driven calculations. But things are different when it comes to

program themselves; hardly readable, looking like computer

code, proof of Four Color Theorem is verified formally; it

sheds some new light for the verification of program libraries

– e.g. there is significant progress made with the computer cer-

tification of Java or C libraries or even compilers themselves.

But here readability is of minor interest; also proofs and the

content itself are rather routine. Once the topic is formalized

in the machine-understandable language, automated provers

can be applied to obtain new results automatically. Based on

computer-certified content, further automatic semantical inves-

tigations can be made [5], as, for example, extracting lemmas,

annotating technical proofs or investigating direct corollaries,

automated translation, and fast unification. Furthermore, MML

is a subject of continuous changes called revisions which can

be the result of software upgrades, generalizations, theory

merging, introducing new language constructions etc. Also the

original first formal approach for fuzzy sets which is dated

back to 2001 [6], was thoroughly revised by the author to

improve its reuse (e.g., a fuzzy set was primarily defined

as the Cartesian product of the set C and the image of the

membership function applied to C).

Computer certification of proofs seems to be an emerging

trend and some corresponding issues can be raised. We are

assured that there are some visible pros of our approach, as

for example, automated removal of repetitions, and also the

need of writing a sort of preliminary section vanishes in the

Mizar code. The type system enables us to search for possible

generalizations (including a kind of reverse mathematics at

the very end); the use of automated knowledge discovery

tools is much easier due to internal information exchange

format, which at the same time offers direct translations for

a number of formats (e.g, close to the English-like human-

oriented language), not limited to the Mizar source code.

There are of course drawbacks we should remember of: first

of all, the syntax. The Mizar language, although pretty close

to natural language, is still an artificial language. Of course,

main problem with the formalization is making proper formal

background – lemmas and theorems – which can be really

time-consuming, hence the stress on reusability of available

knowledge.
We argue that the formalization itself can be very fruitful

and creative as long as it extends the horizons of the research

and make new results possible. Furthermore, the more the

database larger is, the formalization can be more feasible.

Even if the formalized content concerning fuzzy sets is not

that big as of now (there is only about 9000 lines of Mizar

code on fuzzy sets comparing with 2.5 million of lines in

the whole MML), the basics are already done, and it can

serve both as a good starting point for further development,

including rough-fuzzy hybridization, as well as from translated

existing content we can try to obtain new results. Regardless

of the gains of the availability of the topic to majority of

popular proof assistants one can ask a question of assurance

of the correctness of the proofs; Urban’s [8] tools translating

Mizar language into the input of first-order theorem-provers

or XML interface providing information exchange between

various math-assistants are already in use, so not only proof-

checkers other than the Mizar verifier can analyze it, but

additionally it can allow for some “dirty work” to be done

by computer.
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