
Abstract—the majority of formal description for software
testing in the industry is conducted at the system or acceptance
level, however most formal research has been focused on the
unit level. This paper shows formal test selection and analyzes
criteria for system or integration test based on visualization
analysis for low level test cases. Visual analysis for low level
test case selection is to be based on inputs from available Test
Management system. The paper presents a use case for visual
metaphor as a base for analysis testware for a test project in
the industry.

I. INTRODUCTION

oftware development is dealing with growing complex-
ity, shorter delivery times and current progress made in

the hardware technology. Within the software lifecycle the
biggest, however not directly seen part, is the maintenance.
Number of used systems in the corporation is continuously
increasing. During time progression users get trusted to the
used software, so tolerated number of deviations is decreas-
ing. As soon as software is put in the production environ-
ment, every big change or even small adaption of the source
code can cause potential danger in the best case monetary in
the worst case image or even human being losses. Neverthe-
less the maintenance is very often provided during the whole
period through different groups of technicians or business
partners. This makes the task of programming, understand-
ing and maintaining of the source code for the system and its
testware more complex and difficult. Testware management,
especially for the high (HLTC) and low level test cases
(LLTC) [8], which are focusing on old but still valid func-
tionality keeps going to be not affordable, or omitted on pur-
pose. This causes increasing maintenance costs to the limit,
when new development can produce less cost and even be
easier to implement than creation of the new functionality
within the old system.

S

Required quality of the software is very often to be
reached through quality assurance activities on several lev-
els, starting from unit test, through system, integration and
ending on acceptance tests. Artifacts produced during the
test process required to plan, design, and execute tests, such
as documentation, scripts, inputs, expected out-comes,
set-up and clear-up procedures, files, databases, environ-
ment, and any additional software or utilities used in testing
are named, according to ISTQB, testware [8]. Detection of

the problems within a testware can save much effort and re-
duce necessary maintenance costs. Number of executed tests
in the first or second year of software maintenance is not be-
ing a disruptive factor for the test projects. As soon as soft-
ware is coming into the last phase, associated teams are very
often moved to the other development projects or taken out
of the company (e.g. consultants are being moved from cus-
tomer to customer). To prove necessary quality after per-
formed adaptations, growing complexity of the system is de-
manding high professional skills and understanding from
people and organizations taken over the responsibility for
the system.

Software quality is according to definition:
1. The degree to which a system, component or

process meets specified requirements [21].
2. Ability of a product, service, system, component, or

process to meet customer or user needs, expecta-
tions, or requirements [22].

3. Degree to which the system satisfies the stated and
implied needs of its various stakeholders, and thus
provides value [23].

4. Degree to which a system, component, or process
meets customer or user needs or expectations [21].

5. The degree to which a set of inherent characteristics
fulfills requirements [24].

Above given definition is obligating quality assurance
teams to perform planned and systematic pattern of actions
to provide adequate confidence to the product or item that it
conforms to established technical requirements [2]. Execu-
tion of needed actions to provide at least same quality during
the whole maintenance phase is a big cost factor. According
to survey-analysis presented during the iqnite 2011 confer-
ence in Düsseldorf [19], almost 60% of the software projects
are spending between 20 and 30% of its budget on Quality
Management (QM) and testing activities.

Especially big and complex systems are providing large
number of functions and demanding even larger number of
objects within the testware. To provide 100% fulfillment the
test team has to ensure that each function is not affected
through the code adaptation and its site effects. Adaptation
of the system demands adaptation of testware to fulfill qual-
ity requirement for the current system.

Even best managed testware, after few years of usage, is
not free of objects which are old, obsolete, duplicated or

Test City metaphor as support for visual testcase analysis within
integration test domain

Artur Sosnówka
West Pomeranian University of
Technology, ul. Żołnierska 49,
71-210 Szczecin, Poland
Email: arsosnowka@wi.zut.edu.pl

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 1353–1358

978-1-4673-4471-5/$25.00 c© 2013, IEEE 1353

there are no HLTCs or LLTCs covering demanded function-
ality. Those objects are causing additional management ef-
fort and its existence does not increase expected quality
needs.

Often developers and managers believe that a required
change is minor and attempt to accomplish it as a quick fix.
Insufficient planning, design, impact analysis and testing
may lead to increased costs in the future. Over time succes-
sive quick fixes may degrade or obscure the original design,
making modifications more difficult [7] and finishing in not
acceptable, low quality of the system.

As long as we are accepting loose of the software and
testware quality, its transparency, increasing maintenance
costs, decreasing test efficiency, and continuous testware
erosion is not a subject. However, in time of financial crisis
and decreasing IT budgets, there is none of the project
which can come over this dilemma. In the next chapters we
would like to show results from pilot project which has been
executed in the industry in order to prove usefulness for the
approach of the visualization metaphor for testware reorga-
nization.

II.RELATED WORK

Since the early days of software visualization, software
has been visualized at various levels of detail, from the mod-
ule granularity seen in Rigi [13] to the individual lines of
code depicted in SeeSoft [3]

The increase in computing power over the last 2 decades
enabled the use of 3D metric-based visualizations, which
provides the means to explore more realistic metaphors for
software representation. One such approach is poly cylin-
ders [20], which makes use of the third dimension to map
more metrics. As opposed to this approach in which the rep-
resentations of the software artifacts can be manipulated
(i.e., moved around), our test cities imply a clear sense of lo-
cality which helps in viewer orientation. Moreover, our ap-
proach provides an overview of the hierarchical (i.e., pack-
age, test object) structure of the systems.

The value of a city metaphor for information visualization
is proven by papers which proposed the idea, even without
having an implementation. [15] Proposed this idea for visu-
alizing information for network monitoring and later [14]
proposed a similar idea for software production. Among the
researchers who actually implemented the city metaphor,
([9]; [1]; [18]) represented classes are districts and the meth-
ods are buildings. Apart from the loss of package informa-
tion (i.e., the big picture), this approach does not scale to the
magnitude of today’s software systems, because of its gran-
ularity.

The 3D visual approach closest in focus to ours is [10],
which uses boxes to depict classes and maps software met-
rics on their height, color and twist. The classes’ box repre-
sentations are laid out using either a modified tree map lay-
out or a sunburst layout, which split the space according to
the package structure of the system. The authors address the
detection of design principles violations or anti-patterns by
visually correlating outlying properties of the representa-
tions, e.g., a twisted and tall box represents a class for which

the two mapped metrics have an extremely high value. Be-
sides false positives and negatives, the drawbacks of this ap-
proach is that one needs different sets of metrics for each de-
sign anomaly and the number of metrics needed for the de-
tection oftentimes exceeds the mapping limit of the repre-
sentation (i.e., 3). The detection strategies [12] were intro-
duced as a mechanism to formulate complex rules using the
composition of metrics-based filters, and extended later [11]
by formalizing the detection strategies and providing aid in
recovering from detected problems.

III. VISUALIZATION METAPHOR

A visualization metaphor is defined as a map establishing
the correspondence between concepts and objects of the ap-
plication under test and a system of some similarities and
analogies. This map generates a set of views and a set of
methods for communication with visual objects in our case -
test cases [6].

Lev Manovich has said: “an important innovation of com-
puters is that they can transform any media into another”.
This gives us possibility to create a new world of data art
that the viewer will find as interesting. It does not matter if
the detail is important to the author; the translation of raw
data into visual form gives a viewer possibility to get infor-
mation which is the most important just for him. Hence, any
type of visualization has specific connotations, which may
become metaphoric when seen in context of a specific data
source. Metaphor in visualization works at the level of struc-
ture, it compares the composition of a dataset to a particular
conceptual construct, and the choice of any visualization is
always a matter of interpretation.

Numerous currently existing visualization systems are di-
vided into three main classes:

Scientific visualization systems [4];
Information visualization systems [5];
Software visualization systems [16]
Although all visualization systems differ in purposes and

implementation details, they do have something common;
they manipulate some visual model of the abstract data and
are translating this into a concrete graphical representation.

In this paper we are not aiming to present all possible vi-
sualization metaphors, as this is not the focus for our re-
search. We would like to show basic and easy to understand
“City metaphor” which is helpful for representation specific
test data and allow easier test reorganization. After some of
the previous research work which is however not in focus of
this paper we settled our first attempt to the metaphor which
is very widely presented in [17] and is a part of his PhD
[17]. In its research and implementation for software source
code classes are represented as buildings located in city dis-
tricts which in turn represent packages, because of the fol-
lowing reasons:

A city, with its downtown area and its suburbs is a fa-
miliar notion with a clear concept of orientation.

A city, especially a large one, is still an intrinsically,
complex construct and can only be incrementally explored,
in the same way that the understanding of a complex system
increases step by step. Using an all too simple visual

1354 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

metaphor (such as a large cube or sphere) does not do justice
to the complexity of a software system, and leads to incor-
rect oversimplifications: Software is complex; there is no
way around this.

Classes are the cornerstone of the object-oriented para-
digm, and together with the packages they reside in, the pri-
mary orientation point for developers.

Fig. 1 Example of “Software City” representation of JBoss application
server.

In our attempt we perform mapping between available
LLTC and its basic metrics, perform testware reorganization
and at the end provide easy to understand and manage over-
view about the current state of testware.

A. Test metrics

To be able to perform data visualization, defined set of
the static and dynamic data has to be prepared. Based on the
available information’s for LLTC we are extracting follow-
ing basic metrics, which we use for later mapping:

Amount of LLTC
Execution status for available LLTC
Last modification date/age
Number of executions
Dependent on the metrics type, those are to be taken as a

data export through the available API from the test manage-
ment tool or statistical data taken from the support or test or-
ganization.

Fetched metric can be mapped into the chosen visualiza-
tion metaphor as:

Data physical properties (color, geometry, height map-
ping, abstract shapes)

Data granularity (unit cubes, building border or urban
block related)

Effect of Z axis mappings on the image of the city
Abstraction of data and LOD are key issues
Resulting "data compatible" urban models are much

larger than the original VR urban models.

IV. TEST REORGANIZATION

In this paper we would like to show how useful can be us-
age of visualization based on the “Test City” metaphor. We
would like to show how to perform test reorganization based
on the very basic set of metrics available in the test project.

For our experimental work we have established a new
system interacting with several Test Management applica-

tions placed on the market. The base idea of the system is an
automation extraction and pre-evaluation of several different
test metrics. Those metric are imported via available API
connections from the Test Management tool and evaluated
to get required set of metrics. The test metrics are provided
as a text file, e.g. CSV (Comma Separated Values), and im-
ported into visualization framework. Used visualization
framework is based on the existing solution presented in
[17] and allows us perform necessary analysis. The analysis
result is taken as an input to the Test Management tool for
Test-Set creation and evaluation.

Fig. 2 - Block Structure created analysis system.

Within our research for one test project that contains over
4000 LLTC, we have performed analysis for basic and ex-
tended test metrics.

Visualization results for this test project with testware
structure shown in the tables 1 and 2 are shown in the Figure
3, 4, 5 and 6. Parameters have been based on following test
metrics:

1. Test execution age mapped to the color.
2. Number of executions mapped to the height.
3. Modification age mapped to size.

Fig. 3 Test-City based on LLTC for Test Project

To provide real reference to the analysed testware, the
districts (as a square group) of the Test City are mapped to
the structure created by test teams and managed with help of
the Test Management system (e.g. Test folder or Test
object).

Looking at the possible analysis for testware visualization
according to the Figure 3 we can provide following input for
the improvements:

ARTUR SOSNÓWKA: TEST CITY METAPHOR AS SUPPORT FOR VISUAL TESTCASE ANALYSIS 1355

1. There is a large number of old LLTC which has been
executed later than threshold set to 370 days (e.g. red
buildings – left site in the Figure 3). Most of them had a
small height which gives as an information about low
number of executions. Those LLTC shall be either archived,
or completely removed from the Testware. LLTC not
modified for longer than 1 year and rarely executed is with
very high probability obsolete.

2. There are other areas in the middle and the top, which
has to be taken as well under investigation (red buildings).
Based on the height we can assume, most of them are
obsolete; however moving to the archive is better option
than leaving them within the testware.

3. Each green building is representing LLTC been most
likely commonly used in the last 370 days. Large number of
high and green buildings allows us to assume area of
regression tests. Those LLTC has been used in the last
period to assure certain quality of the product and shall not
be moved to the archive or adapted within the first phase for
testware reorganization.

Below, the tables shows the visualized artifacts in
numbers.

Using a visualization we are able to show up hotspots
within the testware domain. In order to localize objects
within the testware we are focusing the interesting area with
help of built in zoom function. Please see Figure 4 for an
example

Fig. 4 Zoom on interested LLTC for Test Project

Without having a deep knowledge about the current test-
ware and objects details we can provide the test managers
with exact information regarding that LLTCs. Presented and
used metrics are very basic but are giving very good start for
testware reorganization and have been taken as a feedback
for involved test managers.

A. Reorganization results part 1

Based on the given output testware reorganization hase
been performed. After finishing the first part we have exe-
cuted testware domain processing and present the results. As
an outcome for our work we have presented new Test-City
shown in the Figure 5.

Fig. 5 Test City after first reorganization

There is a marked area where big part of obsolete LLTC
has been moved. Most of the buildings are small and red
colored, which shows correctness for our attempt.

Below the area we can see large district with several
parcels of building which are green colored and relatively
high. This allows us to assume commonly used regression
tests.

Recursive execution our analysis has gave as result
Test-City presented in Figure 6.

Fig. 6. Final structure for LLTCs within Test Project

There is visible well organized structure within the do-
main. Current analyze state has been taken as end Phase
with used metrics. Deeper analysis can be performed based
on other set of metrics which will allow even smaller size of
testware database afterwards.

TABLE I.

TESTWARE QUANTITY STRUCTURE

Execution Age LLTC (%)

0 11519 62,36

1-370 6526 35,33

>370 428 2,32

TABLE II.

TESTWARE QUANTITY FOR GIVEN TEST PROJECT

Object type Quantity

LLTC 18473

Executions 38182

1356 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

V. FEEDBACK FROM TEST MANAGERS

Created results have been presented to the involved expe-
rienced Test managers within the organization and their
feedback has been checked. Following results has been
achieved:

There is no false positives, all ugly layouts represents
real problems

No false negatives, no beauty layout should be ugly
Unique global overview on the testware landscape
Identify of hotspots (“there was always a question”)
Identify cluster of issues (e.g. regression test)
Identify cluster of stagnation

The feedback has proven our first impression we got by
looking at the testware visual representation. Even if the sys-
tem looks well-organized, in spite of the numerous dishar-
monious artifacts: we see a districts, where the test which
were executed more than 365 days ago are localized and dis-
tricts of increased number of high building, even sky-
scrapers, in which several very important and common tests
are defined.

The skyscrapers are giving us the impression how many
of existing LLTC have been executed very often. Their
color shows execution age as an important factor for test-
ware reorganization.

Within very short time we were able to locate and show
large number of obsolete and suspicious LLTCs. Identified
hotspots and pain points based on very basic test metrics has
been confirmed by the personal working for longer time
with the testware, even without our deeper knowledge for
the system itself. Necessary data for LLTC adaptation and/or
reorganization has been exported based on zooming infor-
mation at interesting areas/districts given to the test man-
agers and used for next iteration.

Testware reorganization has been done within integration
test domain and has brought minimization of used LLTC
within a database. This saves in long term necessary mainte-
nance costs and gives well overview about the current test-
ware status.

VI. CONCLUSION

Test case management, test analysis and test creation are
the most important tasks within the whole test management
process. It is very hard to concentrate the analysis on small
set of the LLTC as it is not getting potential win against the
requirement spectrum. Possible loss of testware quality can
be threated only as additional cost factor and each activity
steering against is helping to keep those on expected level.
Performed visualization has shown, how easy in use and ef-
ficient can be presented method for testware analysis. Find-
ing an obsolete LLTC based on available metrics is very
comfortable and does not require deep system knowledge,
even if analyzed system seems to be very complex. This
saves needed time, resources and allows problem presenta-
tion not only on technical but as well on management level.
Presented results have been used for further deeper analysis
and reorganization activities.

Additionally we have observed person performing analy-
sis is tending to point its view on maximum two metrics in
time and not searching for further information on the third
one. This behavior was partly driven via visualization
framework and its available mapping attributes and partly
human laziness.

Our future directions will focus on the points listed be-
low:

1. Extension for more APIs to Test Management tools
available on the market.

2. Comparison for analysis outcome when using same
metrics but different Visualization Metaphors.

3. Visualization for metrics within the timeline.
4. Extend number of evaluated metrics, especially to find

out duplicate tests.

REFERENCES

[1] Charters, S. M., Knight, C., Thomas, N., Munro, S., 2002:
Visualisation for informed decision making; from code to components.
In Proceedings of SEKE 2002, 765–772, ACM Press.

[2] Dickinson, W., 2001, The Application of Cluster Filtering to
operational testing of Software. Doctoral dissertation. Case Western
Reserve University.

[3] Eick, S., Graves, T., Karr, A., Marron, J., Mockus, S., 1998: Does
code decay? Assessing the evidence from change management data.
IEEE Transactions on Software Engineering 27, 1, 1–12.

[4] Friendly, M., 2008, Milestones in the history of thematic cartography,
statistical graphics, and data visualization,
http://www.math.yorku.ca/SCS/Gallery/milestone/milestone.pdf

[5] González, V., Kobsa, A., 2003, Benefits of Information Visualization
Systems for Administrative Data Analysts, Proceedings. Seventh
International Conference, 331-336, Information Visualization, IV 2003.

[6] Huffaker, B., Hyun, Z., Luckie, M., 2010, IPv4 and IPv6 AS Core:
Visualizing IPv4 and IPv6 Internet Topology at a Macroscopic Scale in
2010, http://www.caida.org/research/topology/as_core_network/

[7] IEEE, 1059-1993 - IEEE Guide for Software Verification and
Validation Plans,
http://standards.ieee.org/findstds/standard/1059-1993.htm

[8] ISTQB, ISTQB® Glossary of Testing Terms, 2012,
http://www.istqb.org/downloads/finish/20/101.html

[9] Knight, C., Munro, M. C. S., 2000: Virtual but visible software. 2000
IEEE Conference on Information Visualization, 198–205 , IEEE CS
Press.

[10] Langelier, G., Sahraoui, H. A., Poulin, P. S., 2005:
Visualization-based analysis of quality for large-scale software
systems. In Proceedings of ASE 2005, 214–223, ACM Press.

[11] Lanza, M., Marinescu, R. S., 2006:. Object-Oriented Metrics in
Practice. Springer

[12] Marinescu, R. S, 2004: Detection strategies: Metrics-based rules for
detecting design flaws. In Proceedings of ICSM 2004, 350–359, IEEE
CS Press

[13] Muller, H., and Klashinsky, S., Rigi, 1988: a system for
programming-in-the-large. In Proceedings of ICSE 1988, 80–86, ACM
Press.

[14] Panas, T., Berrigan, R., and Grundy, J. S., 2003: A 3d metaphor for
software production visualization. IV 2003 - International Conference
on Computer Visualization and Graphics Applications, 314, IEEE CS
Press.

[15] Santos, C. R. D., Gros, P., Abel, P., Loisel, D., Trichaud, N., and
Paris, J. P. S., 2000: Mapping information onto 3d virtual worlds. In
Proceedings of the IV International Conference on In-formation
Visualization 2000, 379–386.

[16] Stasko, J.T., Patterson, C., 1992, Understanding and characterizing
software visualization systems, Proceedings., 1992 IEEE Workshop, 3
– 10.

[17] Wettel, R., 2010, Software Systems as Cities, Doctoral Dissertation,
Faculty of Informatics of the Università della Svizzera Italiana

[18] Wettel, R., Lanza, M., 2008: Visually Localizing Design Problems
with Disharmony Maps, SoftVis '08 Proceedings of the 4th ACM
symposium on Software visualization, ACM Press

[19] http://www.iqnite-conferences.com/iqnite-en/about.aspx

ARTUR SOSNÓWKA: TEST CITY METAPHOR AS SUPPORT FOR VISUAL TESTCASE ANALYSIS 1357

[20] Marcus, A., Feng, L., Maletic, J., 2003, 3d representations for
software visualization. In Proceedings of SoftVis 2003, 27–36, ACM
Press.

[21] IEEE 829-2008 IEEE Standard for Software and System Test
Documentation, 3.1.2

[22] ISO/IEC/IEEE 24765:2010 Systems and software engineering—
Vocabulary

[23] ISO/IEC 25010:2011 Systems and software engineering--Systems and
software Quality Requirements and Evaluation (SQuaRE)--System
and software quality models, 3.1

[24] PMI Institute, A Guide to the Project Management Body of
Knowledge (PMBOK(R) Guide) -- Fourth Edition, 2009, ISBN:
978-1933890517

1358 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

