
Content Delivery Network Monitoring
with Limited Resources

Krzysztof Kaczmarski, Marcin Pilarski
Faculty of Mathematics and Information Science,

Warsaw University of Technology

ul. Koszykowa 75, 00-662 Warszawa, Poland

Email: k.kaczmarski@mini.pw.edu.pl

Email: marcin.pilarski@mini.pw.edu.pl

Bogdan Banasiak, Christophe Kabut
Orange Labs Poland

Telekomunikacja Polska S.A.

ul. Obrzeżna 7, 02-691 Warszawa, Poland

Email: bogdan.banasiak@orange.com

Email: christophe.kabut@orange.com

Abstract—This article presents results of designing a Con-
tent Delivery Network monitoring system for resource limited
applications. CDN monitoring is important both for content
providers (media companies) and administrators (Internet Ser-
vice Providers). It is a challenging task since network traffic may
generate huge volume of data which must be parsed and analysed
in real-time. This paper describes the design of a prototype
system that uses a small resource footprint, scalable Big Data
solution, which is motivated by real world use cases.

I. INTRODUCTION

D
ISTRIBUTED internet systems monitoring is already

an important branch of industrial computer systems.

Network data transfer, hardware state and many other aspects

of distributed systems need to be constantly tracked in order to

detect anomalies, prevent failures and measure hardware and

software load. In this field Content Delivery Network (CDN)

monitoring becomes a fast developing branch of telecommu-

nication. Network caching is used in a variety of different

contexts to provide cost savings due to decreased bandwidth

consumption, but also to reduce network latency. Due to the

techniques described in [1] that makes RAM/HDD resources

ratio important especially for use cases in developing regions

of the world.

CDN Monitoring requires detailed information, both statis-

tical and sensor-reported to be available real-time and cover

any given period of time while not loosing any detail. For

example, if a malfunction is detected one may need to track it

back behaviour up to the unlimited time point in order to find

possible coincidences with other events. Therefore all relevant

data concerning CDN operation must be stored in exact shape.

There are several highly efficient systems able to collect and

store raw logs. Flume [2] for example is able to collect log

lines, send them to a HDFS storage and generate reports on

them. Hive [3] can evaluate SQL-like queries over large data

volumes collected in Hadoop HDFS [4]. All these classical Big

Data technologies require large hardware configurations while

storing data inefficiently from the time series point of view.

Much better approach is applied in OpenTSDB [5], a dedicated

time series database running on Hbase [6]. Its data model can

be effectively tuned to achieve both very fast querying and lim-

ited hardware. This paper describes optimizations for a CDN

monitoring system based on experiences of its deployment in

one of the biggest telecommunication companies in Poland

which operates commercial CDN services.

A. Limitations of Network Traffic Monitoring

The CDN monitoring becomes especially challenging in

developing regions where storage footprint for monitoring

is very limited. The situation at those regions is especially

unfortunate since the transmission of data logs into public

clouds or third party services cannot be performed for the

reasons like cost, security and privacy.

This type of monitoring system may be useful in environ-

ments where the link bandwidth is a constrained resource

e.g. the CDN nodes deployed at libraries, schools, remote

communities, etc., basically all locatlizations where uplink

bandwidth is limitted.

Also, the security and privacy constraints are general in

this scope e.g., most of ISPs are reluctant to deploy subset of

CDN systemts called Transparent Caching solutions primarily

because of logging concerns in third party services.

The goal of this research was to develop CDN monitoring

tool for usage in developing regions with limited resources. We

present the system which provides the same level of flexibility

of traditional heavy weight monitoring tools.

II. TIME SERIES DATABASE

From a theoretical point of view the system needs to store

time series understood as a collection of observations made

sequentially in time [7]. These discrete observations T are

represented by pairs of a timestamp and a numerical value

(ti, vi) with the following assumptions:

• number of data points (timestamps and their values) in

one time series is not limited,

• each time series is identified by a name which is often

called a metric name,

• each time series can be additionally marked with a set of

tags describing measurement details,

• observations may not be done in constant time intervals,

• storage should not limit time series to be piecewise

constant or linear (see Fig.1).

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 801–805

978-1-4673-4471-5/$25.00 c© 2013, IEEE 801

A. Architecture

The general architecture of the system is composed of three

components: data collection, data storage and querying engine.

As in many other systems data are inserted by distributed

data collectors, which may work directly on data sources and

push data into the data storage. Usually data collection is a

result of the ongoing measurement or monitoring processes

(the operating system, databases and web servers or network

devices: see OpenTSDB monitoring tools [8]). The system

does not limit possible data which can be inserted and anal-

ysed. The only requirement is that it must have a form of time

series.

According to the existing taxonomies (like in FAME system

[9]) measured values are of two types [10]:

• level values stay the same from one period to the next in

the absence of activity. For example, inventory is a level

value, because inventory stays the same if you neither

buy nor sell.

• flow values are zero in the absence of activity. For

example, energy expenses go to zero if there is no

consumption.

This distinction turns out to be important when interpolating

missing values and for time scale conversion. Our system is

open for both solutions by inserting zeros when necessary

during data collection time.

As we described in [11] our CDN monitoring system is

built on OpenTSDB which uses HBase and HDFS as a data

storage. OpenTSDB is responsible for storing data in two

HBase tables: the first one contains main data compacted into

one hour blocks, the second one keeps time series and tag

IDs. OpenTSDB is also evaluating queries by getting proper

data blocks from HBase and aggregating them into a time

series according to the query semantics. Performance of all

the system is influenced by all the three components: HDFS,

HBase and OpenTSDB.

B. CDN Metrics and Metrics Querying

For the purposes of CDN monitoring the most important

metrics from an operational point of view are:

• bandwidth – average number of bits per second trans-

ferred from the platform within a given time period [kbps,

Mbps, Gbps]

• traffic – sum of bytes transferred in a given time period

[kB, MB, GB]

• sessions – number of active sessions in a given time

period

Fig. 1. Time series with constant (a) and variable (b) sampling, piecewise
constant (S1) and piecewise linear (S2).

• unique clients – number of unique IP addresses

• url hits – number of content download events content

from given URL addresses

• byte cache hit ratio – percent of data volume sent from

the cache [%]

Additionally, all metrics must be further divided into the

following dimensions:

• node name – CDN node name or IP which sends data to

a client

• cluster group name – group of nodes logically grouped

together

• http response code – HTTP code sent in response to a

client request

• country ISO code – client’s geographical location

• AS code – Autonomous System code of a client’s Internet

Service Provider

• CDN instance name – a logical grouping of nodes work-

ing in one or multiple CDNs

• provider name – name of a content provider

• origin server name – name of an origin server which

contains the original data cached by a CDN

• url – url which is tracked by the system

We use the following metric naming schema:

[infrastructure].[measurement].[aggregation]

where:

infrastructure indicates a system which is measured (in our

case CDN instance, but could also be CPU),

measurement indicates a name and type of the measurement

being done (for example Mbps, MB, requests, etc.),

aggregation describes the type of aggregation done during

the data collection which results in one data point for a given

time interval.

For example, one of the clients’ requests in Poland down-

loading the content from a hypothetical disco-tv could be

stored as (a metric name, timestamp and value followed by

a list of tags):

cdn.mbps.avg5min 2013-02-20-21:04:20 2.50

node=node01.waw.cdn-lab.pl group=waw02 httpcode=200

country=pl as=AS5617 cdn=lab provider=disco-tv

origin=share.disco.pl url=clip463421-doda

which means that within 5 minutes period the collector

calculated average value of Mbps to be 2.5 for server named

node01.waw.cdn-lab.pl being in cluster group waw02 for

a client located in Poland in AS5617 downloading content

from a provider named disco-tv originating from a server

share.disco.pl with the use of CDN instance named lab

and referencing url clip463421-doda.

This approach, characterized by defining all possible di-

mensions for each metric, enables very flexible querying of

collected data. For example, one could ask for an average

Mbps for given provider in Germany in a given time period or

number of error codes returned for a given provider’s network

(identified by AS number) when accessing certain CDN node

by given URL. Please note, that all tag values combination

defines one time series. Total number of time series stored for

802 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

tag name min values real-life

node 10 100
group 5 10

httpcode 5 12
country 1 90

as 1 30
cdn 1 5

provider 1 5
origin 1 20

url 10 50

total time series 2500 810 · 10
9

TABLE I
APPROXIMATION OF POSSIBLE NUMBER OF TIME SERIES FOR ONE METRIC

IN MINIMAL AND REAL-LIFE SCENARIOS.

one metric is then given by v1 · v2 · . . . · vi, i = 1 . . . l where l

stands for the number of tags attached for a metric and vi is

maximal number of distinct values possible for tag i. Let us

analyse how many time series can be generated by an average

metric and tags set. An approximation of minimal and real-life

scenarios are given in Table I.

The real-life approximation was done using production data

from one of the working average CDN systems. It assumes

it is possible that accessing all URLs will be tracked with

possibly all http response codes and hitting all possible nodes

from each country. Since there might be some dependencies

between the dimensions the real observed values may be

smaller, however, the database must be prepared for the worst

scenario which may appear for example during malfunction.

Actually, anomalies are the most important from the analytical

point of view. Therefore the system should be able to present

data including all possible dimensions, and tag values ranges.

C. Data Volumes

Another aspect of CDN monitoring is the estimation of

data volumes which must be processed by the system in real-

time. CDN traffic monitoring may be based on at least three

information sources: CDN proprietary logs, Apache http logs

and Syslog events. Due to the latest IETF standarization efforts

[12] and [13] we may expect fourth information source of

the logs from CDN interconected systems. One request for

content generates one line in the log entry (about 0.2 kB).

One Smooth Streaming video generates up to 300 entries

per 5 minutes (about 60 kB) 10k users watching 90 minutes

smooth streaming video generates about 10GB of log data. In

some cases log coalescing funciton may be used, however that

techniques may reduce size of log by a factor of 10 in average.

Another example is 100k users downloading a 1GB game with

5Mbps connection may generate up to 1GB of log data. These

data need to be downloaded and analysed and cannot wait

for batch processing at night or weekend days. CDN systems

offering content worldwide may be equally loaded all the time

in which case a monitoring system must collect and process

data in real-time.

III. OPTIMIZATIONS

It is a typical HBase performance design pattern to build

clusters of at least 11 nodes. In more demanding environments

50 nodes is an average number. This approach would lead

to building a monitoring infrastructure more expensive than

the monitored CDN itself. Therefore the time series database

must be deployed on a single node cluster with a pseudo-

distributed configuration on one hand allowing for possible

quick extensions in the future and generating sensible running

costs on the other hand.

A. Single Node Configuration Performance

Let us now analyse the performance of a single node

configuration. We executed two types of queries:

• Aggregating all available time series for a given met-

ric into a one time series in a given time window.

For example1: select sum:cdn.bandwidth.15min from

01.01.2012 to 31.12.2013

• Performing a selection of time series using tags before

the aggregation and within a given time window.

For example: select sum:cdn.bandwidth.15min from

01.01.2012 to 31.12.2013 where provider=disco-tv

and country=de

Due to the CDN logs behaviour we used an equal sampling

with 5 minutes time period therefore each day is described by

24 × 12 = 288 time points. Please note that the time series

may not be continuous and therefore their number may vary

throughout a queried time window. In Table. II we can see that

an average time series processing speed for a query which is

scanning all time series in given a time window is about 660k

points per second. Since we scan all data, the number of points

and time series is constantly increasing. The processing of 4

days data takes almost 40 seconds. Queries for the periods

longer than 4 days failed due to an out of memory error.

Similar situation appears for the filtered time series querying

presented in Table III but we may observe that processing

speed is much worse due to more complex data selection from

the database. However, the number of processed points is much

smaller allowing for better response times. Although it was

possible to run queries covering even 16 days, the response

time took 108 seconds, which is totally unacceptable from a

user’s points of view.

B. Reduction of data complexity

One of the conclusions from the previous section is a need

to reduce the number of time points and time series in the

database. This can be achieved in two ways:

• by aggregating the points in time with downsampling,

which can be called horizontal compaction

• by aggregating time series with grouping the tags for one

metric, which can be called vertical compaction

Both solutions lead to a reduction of available information

but may be acceptable if consulted with the user queries. For

example, in a most typical example a user wants to get brief

information about the system and would like to drill down

if needed. Therefore both the detailed and coarse information

1In this paper we use an abstract query language with obvious semantics
to express platform independent queries.

KRZYSZTOF KACZMARSKI ET AL.: CONTENT DELIVERY NETWORK MONITORING WITH LIMITED RESOURCES 803

TABLE II
QUERYING AGGREGATING ALL TIME SERIES, DAYS: 1. . . 4.

queried days proc. time data points periods series pts/sec.
1 2.9 2,225,293 288 7,726 767,342
2 13.2 9,497,624 576 16,488 719,516
3 28.5 17,137,873 864 19,835 601,328
4 38.1 25,099,032 1,152 21,787 658,767

TABLE III
QUERYING FILTERED TIME SERIES, DAYS: 1. . . 16.

queried days proc. time data points periods series pts/sec.
1 6 793,907 288 2,756 132,317
2 8.4 1,295,810 576 2,249 154,263
3 14.1 2,284,509 864 2,644 162,021
4 20.6 3,250,740 1,152 2,821 157,802

16 108.9 12,479,745 4,608 2,708 114,598

should be kept in the system. In case of short time periods a

user is interested in a detailed information, for the longer ones

the details would not be visible anyway, therefore the coarse

plots are just fine.

1) Downsampling Collectors: There are two possible ways

to calculate the downsampled time series. The first one,

the easiest, is to perform downsampling right during the

data collection process. However, this would require to store

aggregates for a long time according to the downsampling

period (even one week or more). Keeping a collector’s state

for a longer time may be dangerous in case of a server

malfunction. In industrial prototype we prefer solutions which

are stateless, run frequently and returning results as quickly as

possible. Therefore, we propose another way by implementing

additional collectors which process data already stored in

the database and send it back into another metrics after

aggregation. The basic architecture of this solution is visible

in Fig. 2 where the new collector is in gray colour. Obviously

there should be one downsampling collector running for each

downsampling time period. It is not working continuously but

rather started every given time interval. For flexible querying it

produces several metrics containing four different aggregations

if sensible: minimum, maximum, sum and average of values

for the sampled time period. Additionally to enable further

average calculation it also counts a number of processed points

and put the result into another metric called count. For some

metrics (like Mbps) the summation downsampling does not

make any sense and should be omitted.

2) Tags Grouping During Data Collection: During the

prototype evaluation phase, we have observed that although

a client could run queries containing any combination of

tag values he is usually interested only in a subset of two

or three tags. The queries concerned: geographical location;

traffic per AS, http response code, origin server; and download

speed. All time series need to be further divided per content

providers. Therefore, instead of one metric with 9 tags, as it

was described in II-B, we propose five metrics with six tags.

In case of bandwidth metric (cdn.mbps) it could be:

• cdn.mbps-country with tags:

node, group, cdn, provider, origin, country

Fig. 2. The basic architecture of a downsampling collector.

• cdn.mbps-group with tags:

node, group, cdn, provider, origin, group

• cdn.mbps-network with tags:

node, group, cdn, provider, origin, network

• cdn.mbps-speed with tags:

node, group, cdn, provider, origin, speed-group

• cdn.mbps-httpcode with tags:

node, group, cdn, provider, origin, httpcode

Obviously, a user cannot display for example http codes

for given AS or country with the above metrics and tags.

However, these detailed queries can be processed with the

original unoptimized metrics since selecting many tags greatly

reduces the number of queried time series. Furthermore the

query gets sensible number of data points. The optimized

metrics should be used for general queries aggregating many

time series. This optimization is a kind of a pre-aggregation

done for certain query types.

This vertical aggregation can be run as a post-processor

alike in downsampling or during the data collection process.

Due to the architecture presented in our previous publication

[11] it is much simpler to build it as a MOLAP cube with a

reduced number of dimensions.

IV. RESULTS

Adding the vertical compaction optimization by aggregating

time series during the data collection time has increased the

log processing time for one CDN log covering data transfer

for 5 minutes period from a single node by a factor of 3 from

about 10 to 30 seconds. The log rotates every 5 minutes (300

seconds) so the time left can be used for processing log files

even 10 times larger which will not be the case of a small or

medium system.

The horizontal time compaction by the downsampling of

the existing data and putting it back into the database as a

new time series does not introduce any additional cost in an

on-line log processing and does not need to be further studied

here.

804 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

TABLE IV
SPEED-UP FOR QUERIES ON OPTIMIZED TIME SERIES.

days 1 2 3 4 16
speed-up total 3.2 11 17.8 16.5

speed-up filtered 12 12 11.75 15.8 13.4

a) 1 day 2 days 3 days 4 days 16 days
0

20

40

60

80

100

120

re
s
p
o
n
s
e
 t

im
e
 [

s
]

global filtering

b) 1 day 2 days 3 days 4 days 16 days 32 days
0

2

4

6

8

10

12

14

16

re
s
p
o
n
s
e
 t

im
e
 [

s
]

global optimized filtering optimized

Fig. 3. Response times for initial unoptimized system (a) and final optimized
version (b). The charts present two types of queries: global aggregating
all time series and filtering performing selection before aggregation. For
unoptimized system global query for more than 4 days could not be run
due to out of memory error. The queries were run on time series without
downsampling.

The reduction of time series and tags describing one metric

resulted in an outstanding improvement of the database query-

ing performance (see Table IV and Figure 3). This effect was

possible first by the reduction of Hbase tables lookups. When

processing queries, OpenTSDB first looks for IDs of the time

series in a meta table. The more time series and tags, the

more expensive this initial query can be. Then, the second

great speed up is achieved by reducing the complexity of the

time series needed to be grouped and interpolated in order to

get the final time series which answers the query.

The response times for the same queries, but working on

remodelled time series, are around 15 times faster for the

longer time periods. This optimization decreased the amount

of memory necessary to process the time series during the

aggregation and therefore allowed for the processing of the

times ranges longer than 4 days, which is obviously important

for the real-life monitoring platforms.

V. CONCLUSIONS

We presented the problem of a small and medium scale

CDN monitoring system in a case of limited resources which

does not allow for real Big Data storage cluster. The initial

state could not be accepted by the industrial requirements
since the short term queries were processed too slowly and

longer term queries could not be evaluated at all. Adding

more resources by inserting computational nodes or increasing

size of memory was not possible due to budget constraints.

A significant improvement was achieved by introducing opti-

mizations of the time series stored in the system. All initial

properties of the system including the real-time processing and

a fine grained data store allowed for detailed queries.

As the next step we plan to study the number of time series

reduction allowing for arbitrary queries on an optimized series.

This could be achieved by adding more metrics with reduced

tag sets.

VI. ACKNOWLEDGMENTS

We appreciate many valuable comments from the anony-

mous reviewers of Federated Conference on Computer Science

and Information Systems 2013. We thank Sara Oueslati, Paris,

France for her great support with setting up the logging

environment in the ISP CDN networks, and Marc Fiuczynski,

New Jersey, USA for additional technical feedback.

REFERENCES

[1] A. Badam, K. Park, V. S. Pai, and L. L. Peterson, “Hashcache:
Cache storage for the next billion.,” in NSDI, pp. 123–136, USENIX
Association, 2009.

[2] The Apache Software Foundation, “Apache Flume.” http://flume.apache.
org, 2013.

[3] The Apache Software Foundation, “Apache Hive.” http://hive.apache.
org, 2013.

[4] The Apache Software Foundation, “Apache Hadoop.” http://hadoop.
apache.org, 2013.

[5] B. Sigoure, “OpenTSDB scalable time series database (TSDB).” http:
//opentsdb.net, 2012. Stumble Upon.

[6] The Apache Software Foundation, “Apache HBase.” http://hbase.apache.
org, 2013.

[7] C. Chatfield, The analysis of time series: an introduction. Florida, US:
CRC Press, 6th ed., 2004.

[8] OpenTSDB, “Whats opentsdb.” http://opentsdb.net/, 2010-2012.
[9] “MARKETMAP ANALYTIC PLATFORM.” http://www.sungard.com/

fame, 2013.
[10] D. Shasha, “Time series in finance: the array database approach.” http:

//cs.nyu.edu/shasha/papers/jagtalk.html.
[11] K. Kaczmarski and M. Pilarski, “Content delivery network monitoring,”

in FedCSIS (M. Ganzha, L. A. Maciaszek, and M. Paprzycki, eds.),
pp. 633–639, 2012.

[12] L. Peterson, J. Hartman, and M. Pilarski, “A simple approach to cdn
interconnection,” Internet-Draft, no. draft-peterson-cdni-strawman-00,
pp. 1–27, 2011.

[13] G. Bertrand, I. Oprescu, F. L. Faucheur, and R. Peterkofsky, “Cdni
logging interface,” Internet-Draft, no. draft-ietf-cdni-logging-04, pp. 1–
41, 2013.

KRZYSZTOF KACZMARSKI ET AL.: CONTENT DELIVERY NETWORK MONITORING WITH LIMITED RESOURCES 805

