
Magnify – a new tool for software visualization

Cezary Bartoszuk, Grzegorz Timoszuk, Robert Dąbrowski, Krzysztof Stencel
Institute of Informatics

University of Warsaw

Banacha 2, 02-097 Warsaw, Poland

Abstract—Modern software systems are inherently complex.
Their maintenance is hardly possible without precise up-to-
date documentation. It is often tricky to document dependencies
among software components by only looking at the raw source
code. We address these issues by researching new software
analysis and visualization tools.

In this paper we focus on software visualisation. Magnify
is our new tool that performs static analysis and visualization
of software. It parses the source code, identifies dependencies
between code units and records all the collected information in
a repository based on a language-independent graph-based data
model. Nodes of the graph correspond to program entities of
disparate granularity: methods, classes, packages etc. Edges rep-
resent dependencies and hierarchical structure. We use colours
to reflect the quality, sizes to display the importance of artefacts,
density of connections to portray the coupling. This kind of
visualization gives bird’s-eye view of the source code. It is always
up to date, since the tool generates it automatically from the
current revision of software. In this paper we discuss the design
of the tool and present visualizations of sample open-source Java
projects of various sizes.

I. INTRODUCTION

T
HE complexity of software systems and their develop-

ment processes have rapidly grown in recent years. In

numerous companies the high level structure of dependencies

between software components is kept only in the heads of

developers. This makes the development process fragile, since

teams composed of humans are inherently volatile. Therefore,

development teams need methods and tools to inspect current

states of complex systems and their fragments.

In this paper we describe a software visualization tool

Magnify that caters for these needs. It shows top level views

of software entities of disparate granularities: systems, com-

ponents, modules, classes etc. These views contain graphic

presentation of the importance, the quality and the coupling

of subcomponents.

Given a source code bundle Magnify parses and analyzes it

in order to create a graph-based model [1]. This model is then

persisted in the architecture warehouse that provides data for

software intelligence [2]. One of its methods is visualization.

Magnify reads the data from the warehouse and produces a

graph laid out on a plain. Nodes of the graph are entities

(classes, packages etc.) of the provided source code.

The size of a node reflects the importance of the cor-

responding artefact. In the current version of Magnify we

use PageRank to assess importance. The colour of a node

represents the quality of the corresponding piece of code. In

the examples presented in this paper, we use the numbers

of lines per class. Any software metrics accompanied with

threshold values for green and red can be employed.

Edges represent relationships of two kinds: structural inclu-

sion and dependency.

The paper is organised as follows. In Section II we address

the related work. In Section III we recall the theoretical foun-

dations for our research. In Section IV we describe the design

of Magnify and possible extension points in its architecture.

In Section V we present visualizations of sample open-source

Java projects of various sizes. Section VI concludes.

II. MOTIVATION

The idea described in this paper has been contributed to by

several existing approaches and practices.

A unified approach to software systems and software pro-

cesses has already been presented in [3]. Software systems

were perceived as large, complex and intangible objects de-

veloped without a suitably visible, detailed and formal descrip-

tions of how to proceed. It was suggested that software process

should be included in software project as parts of programs

with explicitly stated descriptions; software architect should

communicate with developers, customers and other managers

through software process programs indicating steps that are to

be taken in order to achieve product development or evolution

goals.

Multiple graph-based models have been proposed to reflect

architectural facets, e.g. to represent architectural decisions

and changes [4], to discover implicit knowledge from archi-

tecture change logs [5] or support architecture analysis and

tracing [6]. Graph-based models have also become helpful

in UML model transformations, especially in model driven

development (MDD) [7].

Visualization of software architecture has been a research

goal for years. The tools like Bauhaus [8], Source Viewer 3D

[9], Gevol [10], JIVE [11], evolution radar [12], code_smarm

[13] and StarGate [14] are interesting attempts in visualization.

However none of them simultaneously supports aggregation

(e.g. package views), drill-down, picturing the code quality

and dependencies. Moreover, all of them are significantly more

complex when compared to our proposal. In our opinion note-

worthy better effects can be achieved with simpler facilities.

Movies and the third dimension are not necessary to quickly

assess the quality, robustness and resilience of an architecture.

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 1473–1476

978-1-4673-4471-5/$25.00 c© 2013, IEEE 1473

III. THEORETICAL FOUNDATIONS

A. Model

We recall the theoretical model [1] for unified representation

of architectural knowledge. Definition of the model is based

on directed labelled multigraph. According to the model, the

software architecture graph is an ordered triple (V,L, E)
where V is the set of vertices that reflect all artefacts created

during a software project, E ⊆ V × L × V is the set of

directed edges that represent dependencies (relations) among

those artefacts, and L is the set of labels which qualify the

artefacts and their dependencies.

Example 1. Each artefact can be described by a set of labels.

A method can be described by labels showing that it is a

part of project source code (code); written in Java (java); its

revision is 456 (r:456); it is abstract and public. Edges are

directed and may have multiple labels as well, e.g.: a package

contains a class; a method calls another method.

The transformations and metrics recalled below give the

foundation for the layer of software intelligence tools [2].

B. Transformations

Our graph model is general and scalable, fits both small and

huge projects [15], and has been tested in practice [16].

The tests proved that in case of a large project its graph

model is too complex to be human-tractable as a whole. This

has confirmed that transformations and views of the graph

model are a must.

Example 2. For a given software graph G = (V, E ,L) and

a subset of its labels L′ ⊆ L, its filter is a transformation

G|L′ = (V ′, E ′,L′) where V ′ and E ′ have a label in L′.

C. Metrics

For complex projects their quantitative evaluation is a must.

The graph-based approach is in line with best practices for

metrics [17], [18], allows for easy translation of existing

metrics into graph terms [19], ensures they can be efficiently

calculated using graph algorithms. It also allows designing

new metrics that combine both software system and software

process artefacts [20].

Example 3. For a given software graph G = (V,L, E), its

metric is a transformation m : G 7→ R where R denotes

real numbers and m can be effectively calculated by a graph

algorithm on G.

IV. MAGNIFY

We implemented Magnify as a server system, based on a

graph database, with web front-end written in Scala. Magnify

functionality allows loading source code bundles, analyzing

them and displaying the resulting graphs of software compo-

nents. Figure 1 shows a sample of Magnify’s GUI.

The analytical backend is composed of three main modules:

the parser, the graph storage and the analysis engine.

The parser is the only part of Magnify that must be pro-

gramming language specific. Its responsibility is to transform

Fig. 1. Magnify functionality - main view

contents of a source code bundle into an abstract software

graph. This graph is then persisted. Currently the implemen-

tation contains a Java 5 parser based on the javaparser

library. The graph storage is based on Tinkerpop Blueprints

specification. When the source code is converted and stored in

the abstract language-agnostic form, the analysis engine will

run. The implementation computes PageRank of every node in

the graph and code quality metrics for classes. These metrics

are then escalated to the package level. Figure 2 shows the

referential deployment diagram of Magnify.

Fig. 2. General architecture of Magnify

The architecture of Magnify is flexible enough to replace

any of its components and add new constituents. As noted

1474 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

above, we can replace the repository with any graph database

that conforms to Blueprints API. New data providers can be

added, like parsers for more programming languages, runtime

profilers, analyzers of version control systems, and analyzers

of web data (e.g. forum discussions).

V. EVALUATION

In this Section we show sample visualizations produced

by Magnify. We have chosen five open-source projects that

significantly vary in size and quality. All of them have a

noteworthy number of users. They are well adopted by the

software development community.
These are Cyclos, Play, Spring and Karaf. For each system

we present its top-level visualization created by Magnify.

Then, we analyze the resulting images and enumerate con-

clusions that can be drawn from them.

Fig. 3. The visualization of Spring context 3.2.2 produced by Magnify

A. Spring context 3.2.2

Spring is one of the most popular enterprise application

frameworks in the Java community. It provides an infrastruc-

ture for dependency injection, cache, transactions, data base

access and many more. Figure 3 shows the visualization of

Spring produced by Magnify.
The structure of dependencies implies that Spring is well

designed. The graph is notably sparse. The only packages

detected as important are empty vendor packages. All the

packages that do contain classes are of the same importance.

This indicates a well balanced software. Figure 3 contains no

brightly red packages. This means that on average the classes

are small in most of packages. Thus, the overall quality is

satisfactory.

B. Cyclos 3.7

Cyclos is a complete on-line payment system. Figure 4

presents visualization of this system produced by the Magnify

tool.

Fig. 4. The visualization of Cyclos 3.7 produced by Magnify

Unfortunately, this time the dependency graph is exception-

ally dense. The software engineering experience indicates that

the development and maintenance of software systems with so

tight coupling is difficult, costly and error-prone. On the other

hand, Figure 4 shows few packages in which classes are big

on average. That means that overall complexity of the classes

themselves is acceptable.

Cyclos is a profound example of a system that should be

split into orchestrated group of communicating systems. This

kind of refactoring will significantly improve the quality of this

software. It will also reduce the cost of further development

and maintenance.

C. Play 1.2.5

Fig. 5. The visualization of Play 1.2.5 produced by Magnify

CEZARY BARTOSZUK ET AL.: MAGNIFY—A NEW TOOL FOR SOFTWARE VISUALIZATION 1475

Play is a popular Scala and Java web framework. Figure 5

shows the visualization of Play using Magnify.

It presents a small project with decent amount of depen-

dencies. The flat package structure is typical for dynamic

languages. The biggest node corresponds to the project root

package play. Brightly red packages reveal potentially high

complexity of their classes.

D. Apache Karaf 3.0.0 RC1

Apache Karaf is a small OSGi container to deploy various

components and applications. Even though it is split into many

packages, the number of dependencies is small. Many subtrees

of the package hierarchy have only a single dependency on the

rest of the system. Thus, Karaf is well packaged.

Figure 6 shows that overall code quality in Karaf is good.

There are only a few packages where the average class size is

alarming.

Fig. 6. The visualization of Karaf 3.0.0-RC1 produced by Magnify

VI. CONCLUSION

We follow the research on anayslis and visualisation of

software and software process, and promote an approach

that avoids separation between software and software process

artefacts. We demonstrate that the implementation of such

approach is feasible. We implement software intelligence on

top of a software warehouse based on our theoretical graph-

based model. We execute experiments on open-source Java

programs using those tools.

In this paper we presented Magnify - a tool that performs

static analysis and visualization of software systems. It focuses

on relationships between components rather than on their

internal structure.

Magnify is a general tool that can adapt other quality metrics

and importance estimates. Flexibility of its design allows

replacing any of its components and adding new parts. In order

to support the analyses for another programming language, we

have to add only an appropriate parser. All other facilities (the

repository and analytic algorithms) need not be changed.

Promising ideas worth implementing in the near future

include: (1) improving the vertex clustering algorithm for

module repackaging, (2) gathering the information across

revisions and (3) adding metadata stating how packages are

split into modules and how these modules depend on each

other. This kind of metadata would constitute a specification

that can be matched against the source code.

REFERENCES

[1] R. Dąbrowski, K. Stencel, and G. Timoszuk, “Software is a di-
rected multigraph,” in ECSA, ser. Lecture Notes in Computer Science,
I. Crnkovic, V. Gruhn, and M. Book, Eds., vol. 6903. Springer, 2011,
pp. 360–369.

[2] R. Dąbrowski, “On architecture warehouses and software intelligence,”
in FGIT, ser. Lecture Notes in Computer Science, T.-H. Kim, Y.-H. Lee,
and W.-C. Fang, Eds., vol. 7709. Springer, 2012, pp. 251–262.

[3] L. J. Osterweil, “Software processes are software too,” in ICSE, W. E.
Riddle, R. M. Balzer, and K. Kishida, Eds. ACM Press, 1987, pp.
2–13.

[4] M. Wermelinger, A. Lopes, and J. L. Fiadeiro, “A graph based architec-
tural (re)configuration language,” in ESEC / SIGSOFT FSE, 2001, pp.
21–32.

[5] A. Tang, P. Liang, and H. van Vliet, “Software architecture documenta-
tion: The road ahead,” in WICSA, 2011, pp. 252–255.

[6] H. P. Breivold, I. Crnkovic, and M. Larsson, “Software architecture evo-
lution through evolvability analysis,” Journal of Systems and Software,
vol. 85, no. 11, pp. 2574–2592, 2012.

[7] J. Derrick and H. Wehrheim, “Model transformations across views,” Sci.

Comput. Program., vol. 75, no. 3, pp. 192–210, 2010.
[8] R. Koschke, “Software visualization for reverse engineering,” in Soft-

ware Visualization, ser. Lecture Notes in Computer Science, S. Diehl,
Ed., vol. 2269. Springer, 2001, pp. 138–150.

[9] J. I. Maletic, A. Marcus, and L. Feng, “Source viewer 3d (sv3d) - a
framework for software visualization,” in ICSE, L. A. Clarke, L. Dillon,
and W. F. Tichy, Eds. IEEE Computer Society, 2003, pp. 812–813.

[10] C. S. Collberg, S. G. Kobourov, J. Nagra, J. Pitts, and K. Wampler, “A
system for graph-based visualization of the evolution of software,” in
SOFTVIS, S. Diehl, J. T. Stasko, and S. N. Spencer, Eds. ACM, 2003,
pp. 77–86, 212–213.

[11] S. P. Reiss, “Dynamic detection and visualization of software phases,”
ACM SIGSOFT Software Engineering Notes, vol. 30, no. 4, pp. 1–6,
2005.

[12] M. D’Ambros, M. Lanza, and M. Lungu, “The evolution radar: visualiz-
ing integrated logical coupling information,” in MSR, S. Diehl, H. Gall,
and A. E. Hassan, Eds. ACM, 2006, pp. 26–32.

[13] M. Ogawa and K.-L. Ma, “code_swarm: A design study in organic
software visualization,” IEEE Trans. Vis. Comput. Graph., vol. 15, no. 6,
pp. 1097–1104, 2009.

[14] K.-L. Ma, “Stargate: A unified, interactive visualization of software
projects,” in PacificVis. IEEE, 2008, pp. 191–198.

[15] P. Tabor and K. Stencel, “Stream execution of object queries,” in FGIT-

GDC/CA, 2010, pp. 167–176.
[16] R. Dąbrowski, K. Stencel, and G. Timoszuk, “Improving software

quality by improving architecture management,” in CompSysTech, 2012,
pp. 208–215.

[17] F. Abreu and R. Carapuça, “Object-oriented software engineering:
Measuring and controlling the development process,” in Proceedings

of the 4th International Conference on Software Quality, 1994.
[18] J. M. Roche, “Software metrics and measurement principles,” SIGSOFT

Softw. Eng. Notes, vol. 19, pp. 77–85, January 1994. [Online].
Available: http://doi.acm.org/10.1145/181610.181625

[19] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object
oriented design,” IEEE Transactions on Software Engineering, vol. 20,
pp. 476–493, June 1994. [Online]. Available: http://portal.acm.org/
citation.cfm?id=630808.631131

[20] R. Dąbrowski, G. Timoszuk, and K. Stencel, “One graph to rule them
all - software measurment and management,” Fundamenta Informaticae,
vol. to appear, 2013.

1476 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

