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Abstract—In this article two approaches of Tabu Search in
Multi–Skill Resource–Constrained Project Scheduling Problem
(MS–RCPSP) have been proposed, based on different neighbour-
hood generation methods. The first approach assumes swapping
resources assigned to pair of tasks, while the second one proposes
assigning any resource that could perform given task. Both
approaches need to respect the skill constraints. The objective
of this paper is to research the usability and robustness of
proposed approaches in solving MS–RCPSP. Experiments have
been performed using artificially created dataset instances, based
on real–world instances, got from Volvo IT and verified by
experienced project manager. Presented results show that Tabu
Search (TS) based methods are efficient approaches that could
be developed in the further work.

I. INTRODUCTION

RESOURCE-Constrained Project Scheduling Problem

(RCPSP) is a classical problem (e.g. [3], [11]). Its

objective is to assign scarce resources to given tasks to make

the project schedule as short / cheap as possible. Because

of its combinatorial nature, it is known as NP–hard [1]. It

means that it is not possible to find optimal solution in finite,

polynomial time. It also suggests using some soft computing

methods, which do not always provide optimal solutions,

but usually sub–optimal acceptable solutions in reasonable

processing time. There are several metaheuristics [12] used for

solving RCPSP and its extensions – Evolutionary Algorithms

(EA) [4], [6], [7], [9], [15], [22], [26], Simulated Annealing

(SA) [2], [5], [14], Ant Colony Optimization (ACO) [16] or

Tabu Search (TS) [17], [18], [20], [21], [24]. The last of

mentioned methods would be investigated in this paper. We

decided to develop TS–based methods because of its relative

simplicity in comparison to other metaheuristics. On the other

hand, it could be comparably effective to other methods.

RCPSP could be extended by the skills domain to Multi–

Skill Resource–Constrained Project Scheduling Problem (MS–

RCPSP) [8], [19]. Each task requires given skill in specified

familiarity level, while each resource disposes some skills

pool. It causes that not every resource can perform every task

and the schedule is more difficult to be built.

(MS–)RCPSP is very practical problem. Project managers

in significant companies still often need to schedule their

projects manually, what is extremely time consuming. Be-

cause of human fail-ability, manually scheduling could also

cause obtaining infeasible schedule solutions, where not every

constraints are satisfied. Providing computer–aided methods

could save a lot of time and ensures that every designed

constraints would be met. What is also important, automated

AI–based methods mentioned earlier could give final solution

in minutes, while experienced project manager needs a few

hours to prepare a schedule for the same–sized project (with

the same number of resources and tasks).

Proposed (MS–)RCPSP definition has been designed in

strict cooperation with Volvo IT Department in Wroclaw.

Provided requirements, assumptions and constraints have been

considered, approved and then included in problem descrip-

tion, what enlarges the practical value of this paper.

The rest of the paper is organised as follows. Section II

describes other approaches to solve the (MS–)RCPSP using

metaheuristics, especially TS. Section III presents the MS–

RCPSP problem statement, while Section IV describes the

approaches proposed in this paper. Section V provides con-

ducted experiments of proposed methods in a given dataset.

Finally, section VI presents the conclusions of obtained results

and suggests some ideas of future work.

II. RELATED WORK

To make a structured overview of related work, we divided

it into groups of methods. EA–based [4], [6], [7], [9], [15],

[22], [26] methods mostly use task–vector representation of

an individual. The order in a vector describes the order of

tasks’ performance in a project. Schedule can be generated in

a serial [7], [22], [25], [26] or parallel [12] generation scheme.

Because of proposed individuals representation, mostly semi–

blind crossover and mutation operators could be applied, like

swap [22], [23], [26] or insert [7], [25] mutation and one–

point [7], [9], [25], two–point [7], position–based [26] or

uniform [15] crossover. Some papers presents more dedicated

operators, like peak crossover in [22].

SA–based approaches [2], [5], [14] are also often investi-

gated. In [2] classical precedence–feasible activity list rep-

resentation with the serial generation scheme is used. The

neighbourhood is created by insertion method of regarded task

within its last predecessor and the first successor. Cooling

scheme assumes annealing of multiple starting solutions. The

other approach of generating a neighbourhood is presented

in [5], where the new solution in neighbourhood is created

randomly, preserving precedence– and resource constraints. In

[5] some hybrid of TS and SA has been proposed, where the

memory of moves has been added to traditional SA approach.
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The last of mentioned approaches, presented in [14] assumes

investigating set of SA–based methods with multiple start,

where the initial solution is prepared in various ways, e. g.

randomly or using scheduling priority rules.

In TS–based methods [17], [18], [20], [21], [24] several

elements can be variously implemented. The neighbourhood

can be created by swapping or inserting activities [20] in the

task–order list. In [20] the tabu list size is dependent on the

number of critical tasks to be scheduled in a project. What is

more, several strategies of diversification have been proposed

there, while not better solutions have been recently found and

strategies of intensification, where a solution with very good

quality has been found. In [21] a starting solution is obtained

using the minimal slack heuristic rule (MINSLK). The same

approach assumes regarding move as an exchange of two

activities positions in the activity list and the difference move

measure is introduced, computed as the difference between

solutions which are regarded by given move. An aspiration

criterion is also proposed in [21] – if the move is on a tabu list,

but produced solution (S) is better than the best (B) found so

far, S replaces B. The termination criterion is set as a number

of iterations which could not find better solution. Similar

starting solution, using priority rule heuristics, is proposed in

[17], [18], where classical neighbourhood generation methods

have been also proposed: swap and insertion. In an approach

presented in [24] classical TS method has been extended by

local search procedures, to find better solutions.

Other (MS–)RCPSP heuristic solutions have been included

in [12], [13], where local search methods and other population

based methods have been also presented, e. g. ACO–based

approach, that was also investigated in [16].

III. PROBLEM STATEMENT

In MS–RCPSP we assume that project consists of several

main elements: tasks, precedence relations, resources and

skills. Tasks are described by their start and finish dates,

duration and skill required to be performed. Tasks are often

related by precedence relations – some tasks cannot be started

before their potential predecessors would not be finished.

Analogously, task’s successor cannot be started before it’s

finish date. Resources are described by their salary and skills

pools they own. As it was mentioned earlier, not every resource

can perform each task, when given resource does not own skill

required by given task. Only one resource can be assigned to

given task.

A. Conflicts, solution’s feasibility

Furthermore given resource cannot be assigned to more than

one task in an overlapping period of time – if such a situation

occurs, we defined it as a conflict and it has to be resolved.

Conflict solving is made by shifting one of conflicted tasks just

after the other one in the timeline. Because conflict resolving

could disturb the precedence relations constraints, they should

be preserved after each conflict resolution. Without resolving

conflicts and preserving critical path constraints, produced

solutions would be infeasible and could not be regarded as

final, correct schedules. Solutions where resource is assigned

to task when it does not own required skill in specified level

is also regarded as infeasible.

B. Evaluation function

The (MS–)RCPSP objective is to schedule the project as

quick or / and cheap as possible. It could be presented

as multi–objective optimization problem: project sched-

ule’s duration minimization and project’s performance cost

minimization. Those objectives are generally in opposition.

Reducing a project duration could cause enlarging a project’s

cost and vice versa. That is why, the happy medium is often

sought – how to reduce the value of first objective, to get

larger but still acceptable value of the second objective. In

project scheduling problem domain it is often called time &

cost trade–off problem.

A single project schedule (PS) solution is represented as a

resource–to–task assignments vector A = [aji ] : i = 1, 2, ..., t,
j = 1, 2, ..., r, where a

j
i represents the assignment of j-

resource to i-task, t-number of tasks and r - number of

resources.

To evaluate a solution, we proposed weighted, evaluation

function:

min f(PS) = wτfτ (PS) + (1− wτ )fc(PS) (1)

where: wτ - weight of duration component, fτ (PS) - duration

evaluation component, fc(PS) - cost evaluation component.

Components’ weights are applied to tune up the importance

of time and/or cost factor in the given project optimization.

The duration–aided optimization means setting time weight

close to value 1 that automatically reduce the cost weight near

zero. Analogously weights in the cost–aided optimization are

tuned.

The time component fτ (PS) is calculated as follows:

fτ (PS) =
dPS

τmax

(2)

where: dPS - duration of schedule PS, τmax - maximal

possible duration of schedule PS, computed as the sum of

all tasks’ duration. The cost component fc(PS) is defined as

follows:

fc(PS) =

t∑

i=1

c
j
i

cmax − cmin

(3)

where: c
j
i - standard cost of performing task i by resource

j, cmin - minimal schedule cost – a total cost of all tasks

assigned to the cheapest resource, cmax - maximal schedule

cost – a total cost of all tasks assigned to the most expensive

resource. cmax and cmin do not involve skill constraints. It

means that cmin value could be reached only for non–feasible

solution. Analogously to cmax.

C. Solution space size

Given number of tasks and number of resources, we can

estimate the solution space size, as:

SS(t, r) = t! ∗ rt (4)
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However, that estimation takes also into account non–feasible

solutions, because skill–constraints are not satisfied. To give

an example, let’s assume t = 10 and r = 5 – without

any precedence relations we get SS(10, 5) = 3.54 ∗ 1013

combinations. It is worth mentioning, that each task can be

placed only once in schedule, but resources could be assigned

more often. An extreme situation occurs if the same one

resource would be assigned to perform each task.

Large solution space size makes impossible checking each

of the combinations manually. However, space includes also

non–feasible solutions that do not satisfy defined conditions.

Moreover, given example is a simplification and in real world

problems we meet a higher number tasks (about t = 100) and

resources (r = 20) – it gives SS(100, 20) = 1, 19 ∗ 10288

of all solutions. As solution space is constrained, relatively

large and the MS–RCPSP problem is NP–hard it proves the

legitimacy of metaheuristics usage.

IV. PROPOSED APPROACHES

The overall TS approach is to avoid entrainment in cycles by

forbidding moves which take the solution, in the next iteration,

to point in the solution space previously visited (hence tabu).

TS proceeds according to the supposition that there is no point

in accepting a new (poor) solution unless it is to avoid a path

already investigated. This insures new regions of a problems

solution space will be investigated in with the goal of avoiding

local minima and ultimately finding the desired solution.

To perform, TS needs some parameters to be set. The

neighbourhood size defines the size of neighbourhood, that

is created based on currently best solution and from which

the better solution is sought. Number of iterations stands how

many times the neighbourhood would be generated and sought

for better solution (stopping criterion). Tabu list size tells, how

many recent swaps should be recorded in the list of forbidden

ones. For simplicity in this paper, we decided not to introduce

any aspiration criteria for TS in our investigations.

A. Initial solution generation

Initial solution is straightforwardly loaded from a file that

contains the project data. The project schedule had been

previously prepared using EA with classical crossover (one–

point) and mutation (swap–based) operators that satisfies

all constraints (precedence, skills and conflicts resolving).

Therefore, it could be regarded as a feasible solution. The

feasibility of initial solutions has been confirmed and approved

by experienced project manager from Volvo IT.

B. Neighbourhood generation

To generate a neighbourhood, a new solution generation

method has to be provided. We designed new solution as

generated in two general steps: setting assignments to tasks

and then build the schedule, respecting precedence constraints

and resolve conflicts. We proposed and compared two methods

of setting assignments to tasks. The first one bases on the

swapping resources within the pair of tasks, while the second

approach assumes assigning any resource that is capable of

performing given task. Above mentioned rules provide the

feasibility of generated solution.

Swap–based neighbourhood (SBN): In this approach po-

tential solution is created in the following way. For given

assignment another is sought that enables swapping resources

between those assignments. Swapping is possible only if both

resources are capable of being assigned to tasks related to

chosen assignments – skill constraints are preserved. If no

other assignment, which can be used for swapping with given

one, is found, new assignment is selected and the procedure

of searching swapping mate for it is repeated.

Random–based neighbourhood (RBN): A new potential

solution, that can be visited by the TS procedure, is created

by changing the assignment of given task in following way.

List of resources that can perform given task (dispose skill

required by task) is obtained and then any different resource

than currently assigned is chosen.

Fig.1 presents schematically ways of generating new so-

lutions that can be included into new neighbourhood. OK

signs in this figure presents which resources can perform

given tasks. In RBN, we consider only one task, for which

new resource is sought. In SBN, we need to find two tasks

and resources that are capable to swap assignments between

them. The QX.Y notation describes skills owned by resources

or required by particular task to be performed. In provided

example task T1 requires skill Q2 at proficiency level 2 to be

performed. Moreover, resource R1 owns skill Q1 at proficiency

level equal 3 and skill Q2 at proficiency level equal 2. Thus

R1 is able to perform T1. R1 is also able to perform task

T4 because R1 owns skill (Q1) required by T4 (level 1) with

higher proficiency level (3). Analogously R1 is also capable

of performing T3.

Fig. 1. Illustration of neighbourhood generation methods

Example results of neighbourhood generation methods have

been presented in the Fig.2. For SBN only resources for tasks

T1 and T3 could be swapped. Hence, as a result, swapping

of mentioned pair of resources assigned to indicated tasks has

been performed. For RBN other resource could be assigned

to every task. In this example, we decided to change the

assignment of T4. This example explains the main difference

– SBN involves two tasks, while RBN changes assignment of
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only one task.

Fig. 2. Example of neighbourhood generation methods

After setting an assignments’ vector, the schedule is built

in a few steps. First, all tasks have their start time dates set to

the project’s start date. Then the conflict fixing mutually with

the critical path preserving methods are launched, until no

conflicts would be found and the schedule could be regarded

as a feasible. Neighbourhood generation methods are designed

not to allow generating infeasible solutions.

C. Move description

A move describes how the solution B has been created in

the base of solution A. In our approach, the move stores the

information about task and resource related to assignments that

have been changed in neighbourhood generation procedure. In

SBN the information about pair of tasks and pair of resources

within which the swap has been performed.

Let’s see some example: task A has been assigned to

resource 1 - A(1) and task B has been assigned to re-

source B(2). After the swap the situation is as follows: A(2)

and B(1). The information stored in move is as follows:

A(1),B(2)→A(2),B(1).

In RBN less information is stored in particular move. It is

because this neighbourhood creation method involves only one

task. Hence, using previous example, the information stored

in a move looks like: A(1)→A(2).

V. EXPERIMENTS AND RESULTS

The goal of conducted experiments was to compare two

different approaches of creating neighbourhood in TS and

investigate whether proposed TS approaches could be used

in solving MS–RCPSP in effective way. To evaluate solution

– the resulted project schedule – its duration time ([days]) and

performance cost ([c.u]1) were investigated.

A. Dataset

Due to evaluate not only the project schedule duration, but

also the cost of the schedule, we cannot use the standard

PSPLIB benchmark dataset [10], that does not contain any

information about the task performance cost. What is more,

PSPLIB dataset instances do not reflect the MS–RCPSP.

Hence, we prepared the dataset, containing six project in-

stances, that have been artificially created2, in a base of

real–world instances, got from the Volvo IT Department in

Wroclaw.

1Currency units
2http://www.ii.pwr.wroc.pl/˜myszkowski/scheduling

TABLE I
MS–RCPSP DATASET DESCRIPTION

Property D1 D2 D3 D4 D5 D6

Tasks 100 100 100 200 200 200
Resources 20 10 5 40 20 10
Skills 9 9 9 9 9 9
Relations 20 26 22 133 148 129

The dataset summary has been presented in the Table I.

There are two groups of created project instances: one contains

100 tasks and the second – 200 tasks. Within the group, project

instances are varied by number of available resources and

the precedence relationship complexity. It led to create three

different project instances both with 100 and 200 tasks. The

skill variety has been set up to constant 9 different skill types

for each project instance, while any resource can dispose no

more than six different skill types. Because of the different

resources and relations number, the scheduling complexity for

each project is varied.

B. Experiments’ set–up

The experiments have been divided into investigating the

influence of TS parameters’ configurations for project duration

and performance cost in three various components’ weights in

evaluation function: duration optimization (DO: wt = 1), bal-

anced optimization (BO: wt = 0.5) and cost optimization (CO:

wt = 0). Each experiment for given parameter configuration

has been repeated ten times.

To present the average results in detail, a standard deviation

measure should be introduced and applied to each average

value. However, to keep the results’ presentation clear and

simple, we decided not to present it. It is because we have

obtained the standard deviation measure values and they

generally were not much significant. Only 2 of conducted

experiments provided the standard deviation value bigger than

10% of the average.

The processing time of both approaches was varied within

the range from about 40 seconds (D1 project instance with

neighbourhood size = 10) to about 900 seconds (D6 project

instance with neighbourhood size = 45)3.

C. Experiments’ performance

During the experiments, following parameters have been ex-

amined: tabu list size and neighbourhood size. Each parameter

configuration was ran in both neighbourhood creation meth-

ods. Number of iterations has not been investigated. During

experiments we noticed that after, in average, 200 iterations, no

better solutions have been produced, regardless the remaining

parameters’ configuration and used dataset instance. Based on

that observation, we set up the iterations size as a constant

value equal to 250 iterations. Neighbourhood size and tabu

list size parameters have been chosen experimentally.

For DO and CO, the best result has been indicated as the

one with the smallest value of duration and cost respectively.

3Intel Core 2 Duo P8700 (2.53 GHz at each core) and 4 GB memory RAM.
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If there was more than one result with the smallest value of

time or cost, the one with the smallest value of the second

optimization aspect has been chosen as the best. For BO the

best result has been obtained based on the smallest value of

evaluation function.

D. Results’ discussion

Analysing results we can notice that optimization direction

(more duration– or more cost–oriented) is related with the

neighbourhood creation method. Looking at the Tab.?? the

best results for DO have been found in SBN method part

in 5 from 6 dataset instances. On the other hand, the best

CO results have been all obtained using RBN. An interesting

observation regards the results for BO optimization mode.

Project instances consisting 100 tasks have been optimized the

best using SBN method, while the best optimization results for

project instances consisting 200 tasks have been found in the

part of table regarding the RBN.

Analysing the influence of examined TS parameters to ob-

tained results, some following observations could be indicated.

Taking into account the influence of the neighbourhood size to

the DO results, we can suggest using smaller neighbourhood

size values. It is because that the best DO results have been

obtained for the N = 10 (4 best solutions – winners). N = 20
and N = 45 provided best results only once per each N

value parameters’ configurations. On the other hand, all best

solutions for CO have been found for N = 45. It could lead to

some general conclusion that enlarging the search space could

be beneficial for cost optimization but does not have to help

obtaining better solutions, where project duration is the core

aspect of optimization. Above mentioned observation could

be derived to BO mode but with a respect to a conclusion

made in previous paragraph – for BO best solutions of project

instances consisting 200 tasks have been obtained for RBN

with the N = 45. BO results for project instances consisting

100 tasks cannot allow us to make any general conclusions.

We have not found any interesting relationship between the

tabu list size and the optimization’s robustness, regardless the

configuration of remaining parameters, chosen optimization

mode or even project instance. We have found 4 best obtained

solutions in DO or BO for the TL = 10, but that value

has not been confirmed in remaining results as potentially

good in optimization. It is very difficult to make any general

conclusions and assumptions regarding the influence of tabu

list size into the potential of optimization.

VI. CONCLUSIONS AND FURTHER WORK

The best obtained solutions for each dataset instance in

every optimization mode have been presented in Tab.II. For

each solution a project duration and performance cost has been

presented with the description of configuration, for which the

solution has been found. The notation for that description is as

follows: neighbourhood creation method (neighbourhood size,

tabu list size). E.g., SBN(10,15) means that the solution has

been obtained for swap–based neighbourhood solution with

neighbourhood size equal to 10 and tabu list size set to 15.

That summary table briefly summarizes which neighbourhood

creation mode is preferred for a given optimization mode.

Obtained results could lead to a conclusion that neigh-

bourhood creation strategy has significant influence on the

optimization ability. Using SBN, better solutions in duration

optimization were obtained. SBN provided the best duration

optimization results in 5 of 6 project instances. On the other

hand RBN generally is more effective in cost optimization.

Hence, different approaches could be used for different op-

timization modes. Despite that, end user would have to be

always aware of opposite–character of project duration and

performance cost objectives, which cause enlarging one aspect

where the optimization is focused on the second one.

TABLE II
SUMMARY TABLE – BEST OBTAINED RESULTS IN INVESTIGATED

OPTIMIZATION MODES

ID
DO BO CO

days cost days cost days cost

D1
SBN(10,15) SBN(45,10) RBN(45,10)
32 40656 37 38939 129 30750

D2
RBN(10,10) SBN(45,7) RBN(45,10)
33 43542 49 34240 179 26444

D3
SBN(10,7) SBN(20,7) RBN(45,7)

51 40054 61 36100 133 31645

D4
SBN(45,10) RBN(20,15) RBN(45,7)
92 88720 125 50438 254 46371

D5
SBN(20,15) RBN(45,10) RBN(45,10)

179 80448 184 54181 481 52425

D6
SBN(10,15) RBN(45,15) RBN(45,15)

199 97978 222 75996 330 73126

To lift end–user of setting weights in evaluation function,

both TS approaches could be merged in Pareto–based re-

lated mechanism. Mixing solutions from both approaches and

choosing only the best, non–dominated ones could give the end

user more flexibility of choosing the most appropriate schedule

of proposed solutions pool. Furthermore two interesting future

work directions could be indicated: investigating and applying

aspiration criteria for both proposed approaches and creating

an initial solution in more directed ways. To cope with the

second mentioned idea, scheduling priority rules could be

applied, while the first of proposed research directions could

enhance the proposed method’s robustness.

It would be also useful to compare obtained results with

simple hill–climbing method – like TS without storing infor-

mation about moves. It would provide information about the

real usability of applying TS for MS–RCPSP.
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