
Towards Rule-oriented
Business Process Model Generation

Krzysztof Kluza and Grzegorz J. Nalepa
AGH University of Science and Technology

al. A. Mickiewicza 30, 30-059 Krakow, Poland

E-mail: {kluza,gjn}@agh.edu.pl

Abstract—Attribute-Relationship Diagrams (ARD) aim at cap-
turing relations, especially dependency relation, between the spec-
ified attributes. This paper describes work-in-progress research
concerning process and rules integration, which takes advantage
of the ARD method and allows for generating executable models.
The paper examines the possibility of generating the rule-oriented
BPMN model and enriching process models with rules from the
ARD diagram.

Index Terms—BPMN, Business Processes, Business Rules

I. INTRODUCTION

B
USINESS Process (BP) models constitute a graphical

representation of processes in an organization. Such a

process is composed of related tasks that produce a specific

service or product for a particular customer [1]. When it comes

to practical modeling, Business Process Model and Notation

(BPMN) [2], [3] constitutes a standard for this purpose.

The current version of the BPMN notation allows for

modeling many aspects of business; nonetheless, it is not

suitable for modeling some aspects of the enterprise, especially

decision rules or constraints [4]. Recently, the Business Rules

(BR) approach has been proposed as a new way of captur-

ing the functional requirements and modeling system logic

in a designer-friendly fashion. Moreover, the BR approach

is a solution originated from Rule-Based Systems, that are

a mature and well established technology. As processes and

rules are related to each other, BR are often, but not limited

to, used for the specification of task logic in process models.

BR can be acquired based on some data using machine

learning techniques [5] or generated from natural language

specification [6]; however, they often have to be modeled

manually based on the knowledge collected from the domain

experts, as usually their knowledge is not written down any-

where. Similarly, processes are designed manually as well.

However, the simplified process models can be generated using

process mining tools [7] or acquired from natural language de-

scription using NLP techniques [8]. Other method of acquiring

BPMN models is to transform the existing process models in

other languages to the BPMN notation. From a researcher’s

point of view, this can be a challenge in the case that languages

are of different paradigm or presents a different aspect of the

system, e.g. UML use-case diagrams [9].

The paper is supported by the HiBuProBuRul Project funded from
NCN (National Science Centre) resources for science (no. DEC-
2011/03/N/ST6/00909).

In this paper, we present work-in-progress research which

is a part of our research concerning process and rules integra-

tion [10], [11], [12]. We examine the possibility of generation

of the rule-oriented BPMN model as well as the possibility of

enriching BP processes with rules from the ARD diagram.

As the ARD method allows a domain expert for gradual

identification of the properties of a system being designed,

we argue that having the system properties identified and

described in terms of attributes, it is possible to generate

executable BPMN model with the corresponding BR tasks

as well as enrich the BP model with such BR tasks. Such

an approach would allow for generating business processes

and rule schemas for logic task specification at the same

time. The generated rule prototypes comply with the XTT

rule representation [13], [14], [15], [16] from the Semantic

Knowledge Engineering approach [17].

The paper is organized as follows. In Section II we present

the motivation for our research. Section III provides a short

overview of the related approaches. Section IV presents the

details of the ARD method. In Section V, we give an overview

of the proposed method for process model generation and

enriching the BP model with BR tasks based on a design

example. The hybrid execution environment is presented in

Section VI. Section VII summarizes the paper.

II. MOTIVATION

The complexity of software has been constantly increasing

for the last decades. To deal with this growth, new design

methods and advanced modeling solutions are required [18].

For this purpose, modern applications use business processes

and business rules as business logic specification [19].

According to the BPMN 2.0 specification [2], the notation

is not suitable for modeling such concepts as rules. There-

fore, this reveals the challenges in modeling and executing

processes with rules. It is so because processes and rules are

developed or modeled separately and are not well matched.

Our research aims at developing the integrated method for

modeling BP with BR to provide a consistent method for mod-

eling business systems. Such a method will allow for modeling

processes with rules in a straightforward way, and then for

executing such a developed model.

The main contribution of this paper is a presentation of the

possibility of generation of the rule-oriented BPMN model,

which can be used for enriching the BP models with BR tasks.

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 939–946

978-1-4673-4471-5/$25.00 c© 2013, IEEE 939

III. RELATED WORK

Several approaches can be considered as related to the

method presented in this paper. As our method proposes

automatic generation of a BPMN model, the approach can

be compared with such approaches as: process mining [7],

generating processes from text in natural language (based on

NLP methods) [8], or finally transforming process from other

notations to BPMN, especially from the notations that are not

process-oriented, e.g. the UML use case diagrams [20].

The process mining methods [7] allow for very flexible

process models generation, and in some cases this technique

does not require any human activity. However, the result of

the method is a very general process that is not suitable for

direct execution. In order to be an executable BPMN model,

it has to be significantly enhanced and refactored. In the case

of our method, it is not as much flexible as process mining

technique, but it produces a BPMN model which is executable

and provides support for Business Rule tasks.

Generating processes from text description provided in

natural language [8] can have practical results and allows

for generating a high quality BPMN model. High quality

models can also be obtained through translation from other

representations, such as the UML use case diagrams [21],

[22]. Unfortunately, a method based on the natural language

description has to be supported by an advanced NLP system,

thus practical applications of this method is very complex.

Translation from other representations, in turn, requires pro-

cess models designed using such representations, which often

do not exist. In our approach, a process model is generated

based on the carefully prepared ARD diagram. Although this

requires the ARD diagram, it is very simple model and in

some cases it can be obtained from text description using some

mining technique to acquire attributes. This requires additional

research yet. However, there has been trials of mining such

attributes from text in natural language [23].

There are also other approaches, such as generating business

process models from Bill Of Materials (BOM) [24], Prod-

uct Based Workflow Design (PBWD) [25], [26], based on

Product Data Model (PDM), or Decision Dependency Design

(D3) [27], [28]. These are more similar to the method proposed

in this paper. However, in the case of our approach, apart

from the fact that it generates an executable BPMN model,

it supports the rule prototypes generation for Business Rule

tasks, what makes the BPMN model data consistent with the

rule engine requirements for data. Therefore, we claim that

our approach is partially rule-based [29].

It is important to mention that the presented approach can be

used either for generating a new rule-oriented BPMN model

or for enriching the existing process model with rules based

on the corresponding ARD diagram.

Although the work presented in this paper is work-in-

progress research, the method overview presented in the paper

reveals significant differences from the techniques mentioned

above, especially in the case of method simplicity and support

for rules in process models.

IV. ATTRIBUTE RELATIONSHIP DIAGRAMS

Attribute Relationship Diagram (ARD) [30] constitute

a method which allows a user (especially a domain expert) for

gradual identification of the system properties during design.

The goal of this method is to capture functional dependen-

cies between attributes. The attributes are expressed in terms of

Attributive Logic [31], [17], [32] and denote particular system

properties identified by the domain expert. The identified

dependencies form a directed graph in which properties are

represented as nodes and dependencies are represented as

transitions. In the following definitions, we present more

formal description of ARD.

A typical atomic formula (or fact) takes the following form

a(p) = d

where a is an attribute, p is a property and d is the current

value of a for p. More complex descriptions take usually the

form of conjunctions of such atoms and are omnipresent in

the AI literature [33].

An attribute ai ∈ A is a function (or partial function) of

the form:

ai : P → ❉i

where

• P is a set of property symbols,

• A is a set of attribute names,

• ❉ is a set of attribute values (the domains).

An example of an attribute can be the carAge, which

denotes the age of a car, and the attribute value is within the

domain ❉carAge = [0, inf].
A generalized attribute aj ∈ A is a function (or partial

function) of the form:

aj : P → 2❉j

where 2❉j is the family of all the subsets of ❉❥.

An example of a generalized attribute can be the

ownedInsurances, which is a set of the customer in-

surances, and the attribute value is a subset of the domain

❉ownedInsurances, which consists of the possible insurances

that a particular customer can posses.

In the case of abstraction level, the ARD attributes and

generalized attributes can be described either as conceptual

or physical ones.

A conceptual attribute c ∈ C is an attribute describing

some general, abstract aspect of the system.

Conceptual attribute names are capitalized, e.g.: BaseRate.

During the design process, conceptual attributes are being

finalized into, possibly multiple, physical attributes.

A physical attribute a ∈ A is an attribute describing

a specific well-defined, atomic aspect of the system.

Names of physical attributes are not capitalized, e.g.

payment. A physical attribute origins from one or more (in-

directly) conceptual attributes and can not be further finalized.

A simple property ps ∈ P is a property described by

a single attribute.

940 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

A complex property pc ∈ P is a property described by

multiple attributes.

A dependency d ∈ D is an ordered pair of properties (f, t),
where f ∈ P is the independent property and t ∈ P is

the dependent property that depends on f . For simplicity

d = (f, t) ∈ D will be presented as: dep(f, t).
An ARD diagram R is a pair (P,D), where P is a set of

properties, and D is a set of dependencies, and between two

properties only a single dependency is allowed.

To illustrate the ARD concepts, an exemplary ARD diagram

with properties and the dependency between them is presented

in Figure 1. The diagram should be interpreted in the following

way: payment depends somehow on carCapacity and

baseCharge.

Figure 1. An example of the ARD diagram

The core aspects of the ARD method are diagram trans-

formations, which regard properties and serve as a tool for

diagram specification and development. Transformations are

required to specify additional dependencies or introduce new

attributes for the system. For the transformation of the diagram

R1 into the diagram R2, the R2 is more specific than the R1.

Finalization final is a function of the form:

final : p1 → p2

that transforms a simple property p1 ∈ P described by

a conceptual attribute into a property p2 ∈ P , where the

attribute describing p1 is substituted by one or more conceptual

or physical attributes describing p2, which are more detailed

than the attribute describing a property p1.

In Figure 2, an exemplary finalization transformation is

presented. It shows that the simple property BaseRate

(described by a single conceptual attribute) is finalized into

a new complex property described by two physical attributes

carCapacity and baseCharge.

Figure 2. An example of the ARD finalization transformation

Split split is a function of the form:

split : pc → {p1, p2, . . . , pn}

where a complex property pc is replaced by n properties,

each of them described by one or more attributes originally

describing pc. Since pc may depend on some other properties

p1o . . . p
n
o , dependencies between these properties and p1 . . . pn

have to be stated.
To illustrate this transformation, Figure 3 shows the complex

property described by two physical attributes (carCapacity

and baseCharge), which is split into two simple properties

described by these attributes.

Figure 3. An example of the ARD split transformation

Upon splitting and finalization, the ARD model is more and

more specific (see Figure 4). The consecutive levels of ARD

forms a hierarchy of progressively detailed diagrams, which

constitutes Transformation Process History (TPH) [34]. The

implementation of this hierarchical model is provided through

storing the lowest available, most detailed diagram level at any

time, and additional information needed to recreate all of the

higher levels. Such model captures information about changes

made to properties at consecutive diagram levels.

A. Polish Liability Insurance Case Study

Let us now present an illustrative example of the Polish

Liability Insurance (PLLI) case study. The example was de-

veloped as a benchmark case for the Semantic Knowledge

Engineering (SKE) approach for rule-based systems [17].

Based on this simple case study, we will then present how

ARD can be used for BPMN model generation.
In the PLLI case study, the price for the liability insurance

for protecting against third party claims is to be calculated.
The price is calculated based on various reasons, which

can be obtained from the domain expert. The main factors

in calculating the liability insurance premium are data about

the vehicle, such as the car engine capacity, the car age, etc.

Additionally, the impact on the insurance price have such

data as the driver’s age, the period of holding the license,

the number of accidents in the last year, etc. Moreover, in

the calculation, the insurance premium can be increased or

decreased because of number of payment installments, other

insurances, continuity of insurance or the number of cars

insured. All these pieces of data can be specified using the

ARD method and presented using the ARD diagram (see

Figure 5). As specification of ARD is an iterative process, the

corresponding TPH diagram, presenting split and finalization

transformations, can be easily depicted, as shown in Figure 6.

KRZYSZTOF KLUZA, GRZEGORZ J. NALEPA: TOWARDS RULE-ORIENTED BUSINESS PROCESS MODEL GENERATION 941

Figure 4. The ARD levels for the PLLI case study

Figure 5. A complete ARD model for the PPLI example

B. Advantages of ARD

There are several advantages of using the ARD method to

specify the system. Firstly, this method describes the system

in an attribute-oriented way, and thus it is easy to comprehend

and generates a simple model.

ARD can be used even if there are not many pieces of

information available. It is so because this method does not

require anything apart from the specification of dependencies

between attributes. It is important to mention that we do not

specify the detail semantics of the dependency relationship;

thus it is only claimed that one property depends on other

property. Although this limitation of ARD can be seen as

a drawback, the main focus of this method is on simplicity.

The ARD method can also be extended, e.g. there can

be used some mining technique to acquire attributes and

dependencies among them. However, this requires additional

research tasks yet. There has been trials of mining such

attributes from text in natural language [23].

Applying ARD as a design process allows a domain expert

to identify attributes of the modeled system and refine them

gradually, as well as generates rule prototypes based on the

identified attributes. Thanks to storing the history of transfor-

mations, it is possible to refactor such a system [35].

In the following section, we give a short overview of the

proposed method of process model generation and enriching

the BP model with BR tasks based on a design example.

942 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

Figure 6. An example of the TPH diagram, corresponding to the ARD diagram presented in Figure 5

V. RULE-ORIENTED BPMN MODEL GENERATION

In the proposed rule-oriented approach for BPMN model

generation, we consider:

1) Generating the whole BPMN model based on ARD,

presented in the previous section. Such an approach

requires specific input and generates particular output:

Input: Attribute-Relationship Diagram (ARD), and ad-

ditionally Transformation Process History (TPH).

The input is the most detailed ARD+ diagram, that has

all of the physical attributes identified (in fact, this can

also be applied to higher level diagrams, generating rules

for some parts of the system being designed).

Output: A rule-oriented BPMN process model.

The output is a process model in the BPMN notation

with User tasks, BR tasks and additional elements of the

control flow objects. BR tasks contain rule prototypes in

a very general format:

rule:

condition attributes | decision attributes

Goal: The goal of this approach is to automatically build

a rule-oriented BPMN process model on the basis of

the ARD diagram (optionally supported by the TPH

diagram). The algorithm will generate both User Tasks

with form attributes for entering particular pieces of

information and Business Rule Tasks with prototypes

of decision tables.

Sketch of the algorithm:

1. Generate BR tasks from ARD based on the mod-

ified version of the algorithm for generating the

XTT2 representation from ARD (detailed descrip-

tion of this part is presented below).

2. Generate proper User tasks which acquire neces-

sary information from the user.

3. Generate proper User/Mail tasks to communicate

process results to the user.

4. Complete the diagram using control flow with ad-

ditional flow objects, such as start and end events,

and gateways.

2) Enriching the existing BPMN model with BR tasks

based on ARD (either developed parallely to BP model

or generated based on the process description).

Input: BPMN process model, Attribute-Relationship

Diagram (ARD) corresponding to the BPMN model, and

additionally Transformation Process History (TPH).

Output: A rule-oriented BPMN process model.

Goal: The goal of this approach is to automatically

enrich a BPMN process model with rule tasks on the

basis of the ARD diagram (optionally supported by the

TPH diagram). The algorithm will support refactoring

of the process model to rule-oriented way by proposing

new BR tasks for the process model.

KRZYSZTOF KLUZA, GRZEGORZ J. NALEPA: TOWARDS RULE-ORIENTED BUSINESS PROCESS MODEL GENERATION 943

Figure 7. BR tasks generated from the ARD diagram

In the aforementioned cases, the most important aspect is to

generate Business Rule tasks with rule prototypes for a process

model. This can be done using the modified version of the

algorithm for generating the XTT2 representation from ARD

(described in [36], [34]). The result of application of this

algorithm is presented in Figure 7. A draft of the algorithm

for generating Business Rule tasks with rule prototypes for

a process model is as follows:

1) Prepare data:

a) Choose a dependency d ∈ D : dep(f, t), f 6= t,

where D is a set of dependencies in the ARD

diagram.

b) Select all independent properties (other than f) that

t depends on. Let Ft = {f i
t : dep(f i

t , t), f
i
t 6= f}.

Remove the considered dependencies from the set:

D := D \ {dfi
t ,t
}.

c) Select all dependent properties (other than t) that

depend only on f . Let Tf = {tif : dep(f, tif), t
i
f 6=

t, 6 ∃fx : (dep(fx, t
i
f), fx 6= f)}.

Remove the considered dependencies from the set:

D := D \ {df,ti
f
}.

2) Create BR tasks based on Ft and Tf :

a) if Ft = ∅, Tf = ∅, create a BR task determining

the value of the t attribute and associate the task

with the following decision table schema: f | t.

b) if Ft 6= ∅, Tf = ∅, create a BR task determining

the value of the t attribute and associate it with the

following decision table schema: f , f1

t , f2

t , ... | t.

c) if Ft = ∅, Tf 6= ∅, create a BR task determining

the value of the Tf ∪ {t}) attributes and associate

it with the decision table schema: f | t, t1f , t2f ,

d) if Ft 6= ∅, Tf 6= ∅, create two BR tasks determining

the value of the Tf and t attributes and associate

them with the following decision table schemas

respectively: f , f1

t , f2

t , ... | t and f | t1f , t2f ,

3) Go to step 1 if there are any dependencies left (D 6= ∅).

The result of application of the BR task generation for the

Polish Liability Insurance case is presented in Figure 7. Next,

User tasks which acquire necessary information from the user

and User/Mail tasks to communicate process results to the user

have to be generated (see Figure 8 and 9).

Enter car
capacity

Enter
Bonus Malus
information

Enter Premium
information

Figure 8. User tasks generated from the ARD diagram

Display
payment result

Send payment
result

Figure 9. User/Mail tasks generated from the ARD diagram

Finally, the model have to be completed using control flow

with additional flow objects, such as start and end events,

and gateways. The resulting diagram can be observed in the

Activiti-based environment presented in Figure 10.

944 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

Figure 10. A prototype Activiti-based environment for modeling and executing processes with rules

VI. HYBRID EXECUTION ENVIRONMENT

As a BPMN model generated from ARD constitutes an

executable specification of a process, it can be executed

in the process runtime environment. However, for complete

execution of the model, i.e. execution of the Business Rule task

logic, a process engine, such as jBPM [37] or Activiti [38],

has to delegate rule execution to the business rule engine.

As decision table schemas are generated automatically, the

created decision tables have to be complemented with rules.

Decision table can be filled in with rules using a dedicated

editor [13] or a dedicated plugin for the process modeler [11].

Then, our prototype hybrid execution environment [12], [39],

can serve as a specific execution example for this approach.

VII. CONCLUDING REMARKS

The aim of this paper is to examine the possibility of gen-

erating the rule-oriented BPMN model and enriching process

models with rules based on the ARD diagram. We give an

overview of the method for process model generation and

present a first draft of the algorithm for automatic generation of

rule-oriented BPMN process models from Attribute Relation-

ship Diagram. In the algorithm, BR tasks with corresponding

decision table schemas are generated and the resulting model

can be executed in the hybrid execution environment.

The presented approach can be used either to generate the

whole BPMN model based on the existing ARD diagram or to

enrich the existing BPMN model with BR tasks based on ARD

developed parallely to BP model or generated based on the

process description. As the generated rule schemas are com-

plementary to the process model, the solution addresses the

two mentioned challenges: separation between processes and

rules in the modeling phase and the problem of the execution

of such separated data, which usually requires some additional

integration or configuration in the execution environment.

As this paper presents a work-in-progress research, our fu-

ture work will consist in refining and formalizing the presented

approach. Then, we plan to extend the approach with new

patterns and some optimization elements. We consider also

enriching the ARD diagram with selected relations from the

similar methods [24], [25], [27], [28], [26] and integrate the

method with automatic verification features [40], [41].

REFERENCES

[1] A. Lindsay, D. Dawns, and K. Lunn, “Business processes – attempts to
find a definition,” Information and Software Technology, vol. 45, no. 15,
pp. 1015–1019, December 2003, elsevier.

[2] OMG, “Business Process Model and Notation (BPMN): Version 2.0
specification,” Object Management Group, Tech. Rep. formal/2011-01-
03, January 2011.

[3] T. Allweyer, BPMN 2.0. Introduction to the Standard for Business

Process Modeling. Norderstedt: BoD, 2010.
[4] B. Silver, BPMN Method and Style. Cody-Cassidy Press, 2009.
[5] T. M. Mitchell, Machine Learning. MIT Press and The McGraw-Hill

companies, Inc., 1997.
[6] I. S. Bajwa, M. G. Lee, and B. Bordbar, “SBVR Business Rules

Generation from Natural Language Specification,” in AAAI Spring

Symposium: AI for Business Agility. AAAI, 2011. [Online]. Available:
http://www.aaai.org/Library/Symposia/Spring/ss11-03.php

[7] W. M. P. van der Aalst, Process Mining: Discovery, Conformance and

Enhancement of Business Processes, 1st ed. Springer Publishing
Company, Incorporated, 2011.

[8] F. Friedrich, J. Mendling, and F. Puhlmann, “Process model generation
from natural language text,” in Advanced Information Systems Engi-

neering, ser. Lecture Notes in Computer Science, H. Mouratidis and
C. Rolland, Eds. Springer Berlin Heidelberg, 2011, vol. 6741, pp.
482–496.

[9] A. Sinha and A. Paradkar, “Use cases to process specifications in
business process modeling notation,” in Web Services (ICWS), 2010

IEEE International Conference on, 2010, pp. 473–480.

KRZYSZTOF KLUZA, GRZEGORZ J. NALEPA: TOWARDS RULE-ORIENTED BUSINESS PROCESS MODEL GENERATION 945

[10] G. J. Nalepa, K. Kluza, and S. Ernst, “Modeling and analysis of
business processes with business rules,” in Business Process Modeling:

Software Engineering, Analysis and Applications, ser. Business Issues,
Competition and Entrepreneurship, J. Beckmann, Ed. Nova Science
Publishers, 2011, pp. 135–156.

[11] K. Kluza, K. Kaczor, and G. J. Nalepa, “Enriching business
processes with rules using the Oryx BPMN editor,” in Artificial

Intelligence and Soft Computing: 11th International Conference,

ICAISC 2012: Zakopane, Poland, April 29–May 3, 2012, ser.
Lecture Notes in Artificial Intelligence, L. Rutkowski and [et al.],
Eds., vol. 7268. Springer, 2012, pp. 573–581. [Online]. Available:
http://www.springerlink.com/content/u654r0m56882np77/

[12] G. J. Nalepa, K. Kluza, and K. Kaczor, “Proposal of an inference
engine architecture for business rules and processes,” in Artificial

Intelligence and Soft Computing: 12th International Conference,

ICAISC 2013: Zakopane, Poland, June 9–13, 2013, ser. Lecture
Notes in Artificial Intelligence, L. Rutkowski and [et al.], Eds.,
vol. 7895. Springer, 2013, pp. 453–464. [Online]. Available:
http://www.springer.com/computer/ai/book/978-3-642-38609-1

[13] G. J. Nalepa, A. Ligęza, and K. Kaczor, “Formalization and modeling
of rules using the XTT2 method,” International Journal on Artificial

Intelligence Tools, vol. 20, no. 6, pp. 1107–1125, 2011.

[14] A. Ligęza and G. J. Nalepa, “A study of methodological issues in design
and development of rule-based systems: proposal of a new approach,”
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discov-

ery, vol. 1, no. 2, pp. 117–137, 2011.

[15] M. Szpyrka, “Exclusion rule-based systems – case study,” in Interna-

tional Multiconference on Computer Science and Information Technol-

ogy, vol. 3, Wisła, Poland, October 20-22 2008, pp. 237–242.

[16] A. Ligęza and M. Szpyrka, “Reduction of tabular systems,” in Artificial

Intelligence and Soft Computing - ICAISC 2004, ser. Lecture Notes in
Computer Science, L. Rutkowski, J. Siekmann, R. Tadeusiewicz, and
L. Zadeh, Eds. Springer Berlin / Heidelberg, 2004, vol. 3070, pp.
903–908.

[17] G. J. Nalepa, Semantic Knowledge Engineering. A Rule-Based Ap-

proach. Kraków: Wydawnictwa AGH, 2011.

[18] G. J. Nalepa and K. Kluza, “UML representation for rule-based
application models with XTT2-based business rules,” International

Journal of Software Engineering and Knowledge Engineering (IJSEKE),
vol. 22, no. 4, pp. 485–524, 2012. [Online]. Available: http:
//www.worldscientific.com/doi/abs/10.1142/S021819401250012X

[19] G. J. Nalepa, “Proposal of business process and rules modeling with
the XTT method,” in Symbolic and numeric algorithms for scientific

computing, 2007. SYNASC Ninth international symposium. September

26–29, V. Negru and et al., Eds., IEEE Computer Society. Los Alamitos,
California ; Washington ; Tokyo: IEEE, CPS Conference Publishing
Service, september 2007, pp. 500–506.

[20] OMG, “Unified Modeling Language (OMG UML) version 2.2. super-
structure,” Object Management Group, Tech. Rep. formal/2009-02-02,
February 2009.

[21] J. R. Nawrocki, T. Nedza, M. Ochodek, and L. Olek, “Describing
business processes with use cases,” in BIS, 2006, pp. 13–27.

[22] D. Lubke, K. Schneider, and M. Weidlich, “Visualizing use case sets
as bpmn processes,” in Requirements Engineering Visualization, 2008.

REV ’08., 2008, pp. 21–25.

[23] M. Atzmueller and G. J. Nalepa, “A textual subgroup mining approach
for rapid ARD+ model capture,” in FLAIRS-22: Proceedings of the

twenty-second international Florida Artificial Intelligence Research So-

ciety conference: 19–21 May 2009, Sanibel Island, Florida, USA, H. C.
Lane and H. W. Guesgen, Eds., FLAIRS. Menlo Park, California:
AAAI Press, 2009, pp. 414–415, to be published.

[24] W. van der Aalst, “On the automatic generation of workflow processes
based on product structures,” Computers in Industry, vol. 39, no. 2, pp.
97–111, 1999.

[25] I. Vanderfeesten, H. Reijers, and W. Aalst, “Case handling systems
as product based workflow design support,” in Enterprise Information

Systems, ser. Lecture Notes in Business Information Processing, J. Filipe,
J. Cordeiro, and J. Cardoso, Eds. Springer Berlin Heidelberg, 2009,
vol. 12, pp. 187–198.

[26] I. Vanderfeesten, H. Reijers, W. Aalst, and J. Vogelaar, “Automatic
support for product based workflow design: Generation of process
models from a product data model,” in On the Move to Meaningful

Internet Systems: OTM 2010 Workshops, ser. Lecture Notes in Computer

Science, R. Meersman, T. Dillon, and P. Herrero, Eds. Springer Berlin
Heidelberg, 2010, vol. 6428, pp. 665–674.

[27] F. Wu, L. Priscilla, M. Gao, F. Caron, W. Roover, and J. Vanthienen,
“Modeling decision structures and dependencies,” in On the Move

to Meaningful Internet Systems: OTM 2012 Workshops, ser. Lecture
Notes in Computer Science, P. Herrero, H. Panetto, R. Meersman, and
T. Dillon, Eds. Springer Berlin Heidelberg, 2012, vol. 7567, pp. 525–
533.

[28] W. Roover and J. Vanthienen, “On the relation between decision
structures, tables and processes,” in On the Move to Meaningful Internet

Systems: OTM 2011 Workshops, ser. Lecture Notes in Computer Science,
R. Meersman, T. Dillon, and P. Herrero, Eds. Springer Berlin
Heidelberg, 2011, vol. 7046, pp. 591–598.

[29] S. Goedertier and J. Vanthienen, “Rule-based business process modeling
and execution,” in In: Proceedings of the IEEE EDOC Workshop on

Vocabularies Ontologies and Rules for The Enterprise (VORTE 2005).

CTIT Workshop Proceeding Series (ISSN 0929-0672, 2005, pp. 67–74.
[30] G. J. Nalepa and I. Wojnicki, “Towards formalization of ARD+ concep-

tual design and refinement method,” in FLAIRS-21: Proceedings of the

twenty-first international Florida Artificial Intelligence Research Society

conference: 15–17 May 2008, Coconut Grove, Florida, USA, D. C.
Wilson and H. C. Lane, Eds. Menlo Park, California: AAAI Press,
2008, pp. 353–358, accepted.

[31] A. Ligęza, Logical Foundations for Rule-Based Systems. Berlin,
Heidelberg: Springer-Verlag, 2006.

[32] A. Ligęza and G. J. Nalepa, “Knowledge representation with granular
attributive logic for XTT-based expert systems,” in FLAIRS-20: Proceed-

ings of the 20th International Florida Artificial Intelligence Research

Society Conference: Key West, Florida, May 7-9, 2007, D. C. Wilson,
G. C. J. Sutcliffe, and FLAIRS, Eds., Florida Artificial Intelligence
Research Society. Menlo Park, California: AAAI Press, may 2007,
pp. 530–535.

[33] A. A. Hopgood, Intelligent Systems for Engineers and Scientists, 2nd ed.
Boca Raton London New York Washington, D.C.: CRC Press, 2001.

[34] G. J. Nalepa and I. Wojnicki, “ARD+ a prototyping method for decision
rules. method overview, tools, and the thermostat case study,” AGH
University of Science and Technology, Tech. Rep. CSLTR 01/2009, June
2009.

[35] G. J. Nalepa and I. Wojnicki, “VARDA rule design and visualization
tool-chain,” in KI 2008: Advances in Artificial Intelligence: 31st An-

nual German Conference on AI, KI 2008: Kaiserslautern, Germany,

September 23–26, 2008, ser. Lecture Notes in Artificial Intelligence,
A. R. Dengel and et al., Eds., vol. 5243. Berlin; Heidelberg: Springer
Verlag, 2008, pp. 395–396, to be published.

[36] G. J. Nalepa and A. Ligęza, Software engineering: evolution and

emerging technologies, ser. Frontiers in Artificial Intelligence and Ap-
plications. Amsterdam: IOS Press, 2005, vol. 130, ch. Conceptual
modelling and automated implementation of rule-based systems, pp.
330–340.

[37] jBPM User Guide, 5th ed., The jBPM team of JBoss Community, Dec
2011, online: http://docs.jboss.org/jbpm/v5.2/userguide/.

[38] T. Rademakers, T. Baeyens, and J. Barrez, Activiti in Action: Executable

Business Processes in BPMN 2.0, ser. Manning Pubs Co Series. Man-
ning Publications Company, 2012.

[39] K. Kaczor, K. Kluza, and G. J. Nalepa, “Towards rule interoperability:
Design of Drools rule bases using the XTT2 method,” Transactions on

Computational Collective Intelligence XI, vol. 8065, pp. 155–175, 2013.
[40] K. Kluza, T. Maślanka, G. J. Nalepa, and A. Ligęza, “Proposal of

representing BPMN diagrams with XTT2-based business rules,” in
Intelligent Distributed Computing V. Proceedings of the 5th International

Symposium on Intelligent Distributed Computing – IDC 2011, Delft, the

Netherlands – October 2011, ser. Studies in Computational Intelligence,
F. M. Brazier, K. Nieuwenhuis, G. Pavlin, M. Warnier, and C. Badica,
Eds. Springer-Verlag, 2011, vol. 382, pp. 243–248. [Online]. Available:
http://www.springerlink.com/content/d44n334p05772263/

[41] M. Szpyrka, G. J. Nalepa, A. Ligęza, and K. Kluza, “Proposal of formal
verification of selected BPMN models with Alvis modeling language,” in
Intelligent Distributed Computing V. Proceedings of the 5th International

Symposium on Intelligent Distributed Computing – IDC 2011, Delft, the

Netherlands – October 2011, ser. Studies in Computational Intelligence,
F. M. Brazier, K. Nieuwenhuis, G. Pavlin, M. Warnier, and C. Badica,
Eds. Springer-Verlag, 2011, vol. 382, pp. 249–255. [Online]. Available:
http://www.springerlink.com/content/m181144037q67271/

946 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

