
Improving security in SCADA systems
through firewall policy analysis

Ondrej Rysavy Jaroslav Rab Miroslav Sveda

Faculty of Information Technology

Brno University of Technology,

612 66 Brno, Czech Republic

e-mail:{rysavy, rabj, sveda}@fit.vutbr.cz

Abstract—Modern SCADA networks are connected to both the
companys enterprise network and the Internet. Because these
industrial systems often control critical processes the cyber-
security requirements become a priority for their design.

This paper deals with the network security in SCADA envi-
ronment implemented by firewall devices. We proposed a method
for verification of firewall configurations against a security policy
to detect and reveal potential holes in implemented rule sets.
We present a straightforward verification method based on
representation of a firewall configuration as a set of logical
formulas suitable for automated analysis using SAT/SMT tools.
We demonstrate how such configuration can be analyzed for
security policy violation that can be inferred from a security
policy specification of an industrial automation system.

I. INTRODUCTION

S
CADA (Supervisory Control and Data Acquisition) sys-

tems are commonly deployed to continuously monitor

and control industrial processes to assure proper functioning,

by automating telemetry and data acquisition. Historically,

SCADA systems were believed to be secure because they were

isolated networks: an operator console, or human-machine

interface (HMI), connected to remote terminal units (RTUs)

and programmable logic controllers (PLCs) through a propri-

etary purpose-specific protocol. Yielding to market pressure,

that demands industries to operate with low costs and high

efficiency, these systems are becoming increasingly more inter-

connected. Many of modern SCADA networks are connected

to both the companys enterprise network and the Internet.

Furthermore, it is common that the HMI is a commodity

PC, which is connected to RTUs and PLCs using standard

technologies, such as Ethernet and WLAN (see Fig. 1). Such

configuration has exposed these networks to a wide range of

security problems. The access to individual subnetworks are

secured by firewalls that implement basic network security

policy.

Securing networks properly by configuring firewall rules

is difficult, time consuming and error-prone task. Wool has

analyzed possible threats of incorrectly configured firewalls

in [1] and called for methods that would help to improve

the quality of firewall rules. The stated observation considers

the complexity and the size of firewall rule sets as the main

source of errors. He identified major source of difficulties

in creating complex firewall configurations. Although Wool

considered only a small set of relatively obvious errors, his

survey demonstrated that a rule set having 1000 items includes

more than 8 errors on average.

The approach described in this paper is close to the work

done by Guttman [2], Bera, Ghosh and Dasgupta [3], and

Al-Shaer et el [4]. Similarly we develop the method that is

able to verify correctness and consistency of firewall con-

figurations against network security policy given a set of

simple policy rules. We show a simple translation of policies

and firewall rules into logical formulas and describe the

Satifiability Modulo Theory (SMT) verification method. The

SMT tools employ algorithms for solving logical formulas

with respect to combinations of background theories expressed

in classical first-order logic with equality. In the present work

we use Microsoft’s Z3 tool that implements an efficient SMT

decisions procedures.

Packet filters implement the basic level of security policies

in the network. By restricting the accessibility of certain

services, computers or subnetworks, we deploy rough but

efficient security measures. Our network model deals only

with IP addresses and services or ports. Therefore, the analysis

does not reflect hardware or Operating Systems (OS) attacks.

The contents of TCP/UDP packets are not examined, but it is

possible to extend the description to support this. Our primary

goal is to verify safety or resistance of the network with respect

to the effect of dynamic routing. Therefore, this classification

includes only basic categories of network security properties.

Since it can utilize typical fields from IP, TCP, or UDP headers,

namely source/destination IP address and service/port allows

us to specify wide range of different communications to be

analyzed in the network.

This paper is structured as follows: Section II discusses

various packet filter representations. Section III presents rep-

resentation of filtering rules in form of SMT formulas. In

Section IV we define a verification method for a single firewall

configuration. This is extended to the cascade of firewalls in

Section V, thus providing a method for system-wide security

policy verification. In Section VII we present a preliminary

experimental results showing performance of the presented

method. The paper concludes in Section VII by comparing

presented method to related work and suggesting further

development.

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 1423–1428

978-1-4673-4471-5/$25.00 c© 2013, IEEE 1423

Fig. 1: An example of modern SCADA network.

II. REPRESENTATION OF PACKET FILTERS

Firewall configurations are usually written in form of access

control lists (ACL). An ACL format is easy to understand

for network administrators and it is also suitable for machine

processing. Nevertheless, for an efficient formal analysis this

format may represent a problem because it admits conflicting

rules. Conflicting rules are pairs of rules that match the

same set of packets. These conflicts are solved at runtime by

implementing first match semantics. However, certain classes

of conflicts can signalize a configuration error, for instance, a

rule that completely hides some other rules. Several methods

to check conflicts in ACLs and constructing a non-conflicting

rule sets were proposed, e.g. [5], [6], [7], [8].

Rules have multidimensional structure. Dimensions cor-

respond to fields in a packet header, in particular, source

and destination addresses, port numbers and a protocol type.

Formally, we define a rule as a tuple 〈src, dst, srv, act〉, where

src and dst are set of addresses, srv is a set of services, and

act is an action.

A logical formula that is a translation of a simple rule

r = 〈s, d, v, a〉 consists of a conjunction of all selectors. A

selector is represented by a predicate that extracts required

header field from packet p. Thus, for rule r the formula is

written as follows:

src adr(p) ∈ s ∧ dst adr(p) ∈ d ∧ service(p) ∈ v.

A list of all possible selectors is shown in Table I A

network-mask convention is adapted for representing a se-

quence of continuous addresses. For instance, address pre-

fix 147.229.12.0/24 is a set of addresses ranging from

147.229.12.0 to 147.229.12.255. We can use the standard

set operations, e.g., src adr(p) ∈ 147.229.12.0/24 or

dst adr(p) ∈ 147.12.28.0/24∪147.12.30.0/24. The latter can

be expanded to dst adr(p) ∈ 147.12.28.0/24∨dst adr(p) ∈
147.12.30.0/24, which allows us to use network-mask format

for the canonical address representation.

Often, rule sets implicitly assume the existence of a default

rule, which has the lowest priority and matches all packets

TABLE I: Network field selectors

Function Description
dst adr(p) Destination address of a packet p.
src adr(p) Source address of a packet p.
dst port(p) Destination port of udp or tcp datagram carried in packet p.
src port(p) Source port of udp or tcp datagram carried in packet p.
service(p) Service of a packet p.

not matched by any of the previous rules. For a single rule set

of an ACL configuration we compute two logical filter repre-

sentations. A positive filter represents all packets permitted by

the ACL configuration. A negative filter represents all packets

denied by the ACL configuration.

III. FILTER REPRESENTATION

As proposed in [9] the output of reachability analysis and

the input for consecutive security property analysis consist

of a collection of reachability sets for forwarding paths in

an analyzed network. There are various methods to calculate

reachability sets. In this section, we discuss several issues

related to these calculations. We overview the problem of

efficient address encoding and rule set representation.

Guttman has described an approach to deal with abstract

address scheme [2]. The abstract address is a symbolic name

of a host or a subnetwork. This address scheme avoids dealing

with huge IP address space, which consists of 232addresses.

An abstract packet consists of an abstract source address, an

abstract destination address, service identification, and a flow

orientation. The flow direction represents the communication

direction that is either client to server, or server to client.

This approach leads to very reasonable complexity which

is dependent on the size of the network and mainly on

the number of interesting destinations and services. For an

example, considering a network with N different distinguished

addresses, S different distinguished services, then the abstract

packet space of size will be N2 · 2S.

Different approach was proposed by Bera, Ghosh and Das-

gupta in [3]. In their work, the IP address space is explicitly

represented by bit variables. The bit variables s1, . . . , s32
represents a source address, bit variables d1, . . . d32 represents

a destination address, and a vector of bit variables v1, . . . , vn
of the appropriate length n, represents a service. A flow

direction may be modeled separately by a single bit variable

or encoded in the service vector. In this way, there is an

explicit representation not only for each packet but also for

each network represented in network-mask format.

Independently on whether we use abstract address represen-

tation or explicit representation, we construct logical formula

for each rule in a filter. These are used in composition of

formulas for positive and negative filters. Such formula can

be encoded as a SAT instance using the Boolean reduction

approach, which is defined in detail for explicit address scheme

in [3]. If the abstract address scheme is used each abstract

address has to be represented by a single Boolean variable.

These two approaches differ from the number of Boolean

variables in generated SAT instances. While explicit represen-

1424 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

tation requires the fixed number of variables, the number of

variables used by abstract approach depends on the number of

abstract addresses. On the other hand, the former may generate

a large number of clauses while the latter tends to keep number

of clauses smaller. It remains for future work to analyze and

compare both approaches from the practical perspective on

real data.

IV. SMT-BASED VERIFICATION METHOD

In this section, we describe an SMT-based verification

method for validation of a network security policy. Given

requirements on a packet flow and a filter specification in form

of a rule set, we compute a subset of rules that violates these

requirements. If the subset is empty than all requirements are

satisfied.

First, we present the method to verify a single filter against

a security policy. Later this method will be extended for

verifying a cascade of filters. Checking if the specified packet

flow p is permitted by a filter f it is enough to show that

formula f̄ ∧ p cannot be satisfied. For instance, assuming that

s0, s1, s2 are atomic propositions capturing abstract packet

properties. Then filter f̄ and a policy p are expressed as

follows:

f̄ =
∨

s0 ∧ s1
s0 ∧ s2
s1 ∧ s2

, p = s0 ∧ s̄1

In thi case, it is possible to find an assignment s0 = 1, s1 =
0, s2 = 1 that satisfies f̄ ∧ p. While this gives us the required

answer we would like to obtain more information to track the

problem. To do so, we enrich the filter representation with

information that refers to corresponding filtering rules.

f̄ =
∨

r = 0 ∧ s0 ∧ s1
r = 1 ∧ s0 ∧ s2
r = 2 ∧ s1 ∧ s2

, p = s0 ∧ s̄1

where r is a bit vector that encodes a rule number. Using this

annotation the answer contains information on deny rule that

denied the analyzed packet flow, which is, r = 1.

To capture network security policy we employ Security

Policy Specification Language (SPSL) as defined in [10].

This simple language allows us to express services available

between different network zones. For network presented in

Fig.1, such policy specification can be as follows:

zone ENTP [10.10.100.0/24];

zone DMZ [10.10.10.0/24];

zone PCN [10.10.200.0/24];

zone Inernet [*];

service HTTP = TCP [port = 80];

service SSH = TCP [port=22];

service TELNET = TCP [port=23];

policy p1 = deny [telnet,http]([ENTP],[PCN]);

policy p2 = deny [*]([Internet],[PCN]);

policy p3 = permit [http]([Internet],[DMZ]);

For instance, a specification of policy p1 can be converted

to the following SMT representation:

01 (define-fun p_1 () Bool

02 ; deny [telnet,http]([ENTP],[PCN])

03 (and

04 (= (bvand dst_ip PCN_MASK) PCN)

05 (= (bvand src_ip ENTP_MASK) ENTP)

06 (or (and (= pt TCP)(= dst_pn HTTP))

07 (and (= pt TCP)(= dst_pn TELNET))

08)

09)

10)

This policy denies telnet and http traffic to the Process

Control Network. This is encoded by specifying source (line

5) and destination (line 4) address ranges of the packets that

should be denied. Lines 6 and 7 describe protocol type and

destination port numbers that correspond to telnet and http

traffic, respectively. Addresses are encoded as bit vectors of

size 32. Encoding constraints on addresses follows the general

pattern:

(= (bvand x net_mask) net_addr)

Here, bvand is a standard bit wise AND operation on bit

vectors. Port numbers are encoded as bit vectors of size 16.

Using this direct encoding it is possible to directly express

policy rules using a standard bit vector theory available in

SMT tools.
We demonstrate the translation of ACL configuration to

positive and negative filters using the following ACL snippet:

R ip access-list extended paper-example

1 permit icmp any any echo-reply

2 permit icmp any any echo

3 deny ip any 10.10.10.0 0.0.0.255

4 deny ip any 10.10.11.0 0.0.0.255

5 permit ip any any

These five rules permit any icmp echo and echo-reply traffic

and forbid other traffic to target network. The translation to

SMT yields four definitions of functions. Note that default

permit rule is not translated.

(define-fun f1_r1 () Bool

; permit icmp any any echo-reply

(and

(= pt ICMP)

(= dst_pn ECHO_REPLY)

)

)

(define-fun f1_r2 () Bool

; permit icmp any any echo

(and

(= pt ICMP)

(= dst_pn ECHO)

)

)

(define-fun f1_r3 () Bool

; deny ip any 10.10.10.0 0.0.0.255

(and

(= (bvor dst_ip #x000000ff) #x0a0a0aff)

)

)

(define-fun f1_r4 () Bool

; deny ip any 10.10.11.0 0.0.0.255

(and

(= (bvor dst_ip #x000000ff) #x0a0a0bff)

)

)

Rules constraint only properties explicitly defined. Argu-

ment any is not represented as it expresses that the variable

ONDREJ RYSAVY, JAROSLAV RAB, MIROSLAV SVEDA: IMPROVING SECURITY IN SCADA SYSTEMS THROUGH FIREWALL POLICY ANALYSIS 1425

is constrained by the valid range of the corresponding type,

which is implicitly enforced by the type system of SMT. The

translation of addresses and wild cards are according to the

following pattern:

(= (bvor x wildcard) (bvor address wildcard))

To verify that ACL obeys a network security policy we need

to obtain a representation in form of two partial filters. The

negative filter, denoted as f1_deny, is a boolean formula

that is satisfied for all denied abstract packets. Likewise, the

positive filter, denoted as f1_permit, is a boolean formula

that is satisfied for all permitted packets. We use this splitting

to simplify the process of verification and finding counter-

examples. The general method for computation of permit and

deny filters is presented as Algorithm 1. We will explain the

idea of this algorithm on an example of a deny filter. A list

of ACL rules is processed in a reverse order. The deny filter

formula is constructed in several steps. The immediate result of

each step is denoted as f i
d. Initially, f0

d is empty. The formula

f i+1

d is constructed as follows:

• If rule r is deny than its logical representation φr is added

to formula f i+1

d = f i
d ∨ φr.

• If rule r is permit than its logical representation φr is

combined with filter as f i+1

d = f i
d ∧ (¬φr).

Note that in the algorithm the construction of a formula is

slightly modified to improve compactness of the resulting

formula. All consecutive rules sharing the same action is

threated in a single step. Thus, in case of deny rule, we have

f i+1

d =
∨

f i
d, φr1 , . . . , φrn . The deny filter for ACL from the

previous example is generated as follows:

01 (define-fun f1_deny () Bool

02 (and

03 (not f1_r1)

04 (not f1_r2)

05 (or

06 (and f1_r4 (= deny 4))

07 (and f1_r3 (= deny 3)))))

It can be seen that with deny rules there are annotations

referring to ACL rules. The annotations allow us to infer

information for counter-examples. The permit rule is computed

in similar way. Line 8 contains a representation of permit all

rule. Permit/Deny all rules match all abstract packets, thus

logical representation is constant true.

01 (define-fun f1_permit () Bool

02 (or

03 (and f1_r1 (= permit 1))

04 (and f1_r2 (= permit 2))

05 (and

06 (not f1_r3)

07 (not f1_r4)

08 (and true (= permit 5)))

Policy verification is performed by checking formulas rep-

resenting policy and filter by the SMT tool. For restricting

policies, p1 and p2 it means to find satisfying valuation for

p1 ∧ fd. In SMT syntax this is represented by the following

code block:

(assert (and f1_permit p_1))

Algorithm 1 Computation of a permit filter

Require: An input access-control list L, represented as an

ordered list of rules, r1, . . . , rn ∈ L.

ri ∈





action : {permit, deny}, pt : protocol,
src.ip : ip range, dst.ip : ip range,
src.pn : port range, dst.pn : port range



 .

Ensure: A boolean formula representing the deny filter fd.

fd := true

R = L.Reverse

while R not empty do

r := R.Pop

if r.action = permit then

p := true

while r.action = permit & R not empty do

p := p ∧ ¬φr

r = R.Pop

end while

fd := fd ∧ p
else

d := false

while r.action = deny & R not empty do

d := d ∨ φr

r = R.Pop

end while

fd := fd ∨ d
end if

end while

(check-sat)

The answer of SMT is unsat, which means that the

conjunction cannot be satisfied and hence the filter f1 is correct

with respect to policy p1. In case of policy p2 the result given

by SMT is sat and a random model is provided, e.g., an as-

signment satisfying (assert (and f1_permit p_1))

is as follows:

permit = 2, pt = ICMP, src_ip = #x0a0a6400,

dst_pn = #x0800, dst_ip = #x0a0a0a00

Such result contains diagnostic information telling us that

policy is violated by ACL because permit rule 2 matches

ICMP echo-reply packets originated from 10.10.100.0 and

destined to 10.10.10.0. However, these packets should be

denied according to the policy.

A cascade of filters is verified by applying essentially the

same approach as described in previous sections. permit and

deny predicates are computed for each filter. Then these filters

are combined to a single formula representing the cascade of

filters.

• f c
p = f1

p ∧ . . . ∧ fn
p ,

• f c
d = f1

d ∨ . . . ∨ fn
d ,

where f1
p , . . . , f

n
p are permit filter predicates and f1

d , . . . , f
n
d

are deny filter predicates. Permit filter is combined using ∧
operator as a packet is permitted if it passes all ACL on the

1426 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

path. Contrary, a packet can be filtered by any ACL on the

path and thus ∨ operator is used.

V. SYSTEM-WIDE ANALYSIS

In this section, we discuss an extension of a described

method for verification of a security policy to system-wide

scope. The main goal is to find a network states that violate

the given security policy. Recall that security policy is a list

of permitted and denied traffic between specified locations.

Performing system-wide analysis amounts to check for every

pair of network locations specified in a policy rule the permit

or deny requirements on the traffic. As there can be multiple

paths between these locations these have to be considered.

Once we found that a path violates the policy rule it is reported

to the user. Considering SCADA network as shown in Fig. 1.

Then the topology of this network is capture by the following

specification:

(declare-const path (Array Int Bool))

;path 1 = ENTP -> F1.1 -> F2.1 -> PCN

(define-fun fp1_permit () Bool

(and f1_1_permit f2_1_permit))

;path 2 = ENTP -> F1.1 -> DMZ

(define-fun fp2_permit () Bool

(and f1_1_permit))

;path 3 = PCN -> F2.2 -> F1.2 -> ENTP

(define-fun fp3_permit () Bool

(and f2_2_permit f1_2_permit))

;path 4 = PCN -> F2.2 -> DMZ

(define-fun fp4_permit () Bool

(and f_2_2_permit))

; checking violations for policy 1

(assert (or

(and fp1_permit p1 (select path 1))

(and fp2_permit p1 (select path 2))

(and fp3_permit p1 (select path 3))

(and fp4_permit p1 (select path 4))))

We use array to remark which paths violate the policy. The

evaluation of SMT specification leads to finding a counter ex-

ample in case of policy rule violation. The presented encoding

brings any counter example depending on the run of SMT

algorithm. However, it would be desirable if the produced

counter example represent the largest subset of a rule set that

violates a security policy. Using this approach the user is not

confronted with an arbitrary counter example in case of policy

violation, but with a counter-example that, if applied to path

based policy checking, violates the greatest number of paths.

The idea of finding the greatest number of paths, which

violates the policy rule is based on binary search procedure

that guarantees to find the result in log2 N steps. The search

environment is initialized by introducing a counter array,

which keeps the number of paths violating the policy rule.

An index in the array is computed as follows:

sums [i] := sums [i− 1] + IF path[i] THEN 1 ELSE 0.

This initialization is encoded as follows:

(define-sort SumT () (Array Int Int))

(declare-const sums SumT)

(assert (= (select sums 0) 0))

(assert

(forall ((i Int))

(ite (select path i)

(= (store sums i

(+ (select sums (- i 1)) i)) sums)

(= (store sums i

(select sums (- i 1))) sums)

)

)

)

Note that it is better to unwind the forall statement to avoid

dealing with quantifiers. The iteration consists of several steps

for i by asserting the following:

(assert (= (select sums n) i))

Here, n is the total number of paths. Reading sums [n]
means to get a number of satisfied paths. The iterative steps

are guided by the immediate results of SMT executions for

the current instance.

VI. RESULTS AND DISCUSSION

We experimentally implemented the proposed SMT-based

method using Microsoft’s Z3 tool. The results of execution of

this method on problems of various size are shown in Table II.

The testing set of filtering rules consists of filters generated

using the tool called ClassBench [11]. This generator is

equipped with templates of filtering rules derived from a

collection of real firewall configurations. The tool generates

ACLs of different sizes and parameters. For our purpose,

we generated filters for different templates, denoted as acl1-

3 and fw1 and fw2. These templates differ by the number

of conflicting rules. For every template a range of filters of

various size was generated. We use rule sets generated for

these templates as an imput to our tool that translated them

to SMT specification, which was consumed by Z3 tool. We

meassured time and memory requirements of the SMT method

that checks rule set consistency.

Experiments were performed on a 2.53 Ghz Intel Core 2

Duo machine with 8 GB of RAM running Z3 version 4.3.1

in 64 bit mode. Table II contains results for different sizes of

the problem. It can be seen that in most cases the time and

memory consumption of the methods increases linearly with

the number of rules in firewall configuration. The irregulairites

are caused by the different number of conflicting rules in those

samples.

VII. CONCLUSIONS

In this paper, we presented an approach for verifying ACL

configurations by translating them to rule sets, which can be

formally analyzed using SMT tools. The proposed method

enables network administrators to observe the quality and

correctness of firewall configurations, which improves the

overall security in administered networks. This technique can

be combined with other approaches supposed for securing

industrial networks. The overview of security threats in in-

dustrial networks were presented by Alcaraz et el in [12] and

later by Cardenas et el in [13]. These analyses emphasize the

ONDREJ RYSAVY, JAROSLAV RAB, MIROSLAV SVEDA: IMPROVING SECURITY IN SCADA SYSTEMS THROUGH FIREWALL POLICY ANALYSIS 1427

TABLE II: Time and memory requirements of SMT procedure

Time[s] 10 100 1000 10000 100000
acl1 0.01 0.02 0.11 1.43 13.91
acl2 0.01 0.02 0.10 1.13 14.36
acl3 0.01 0.02 0.11 1.22 39.95
fw1 0.01 0.02 0.13 1.08 30.59
fw2 0.01 0.03 0.11 1.42 13.81

Memory[MB] 10 100 1000 10000 100000
acl1 2.35 2.95 7.81 55.41 459.11
acl2 2.36 2.94 7.73 55.45 460.55
acl3 2.31 2.97 7.84 55.48 456.98
fw1 2.34 2.98 7.84 55.45 455.28
fw2 2.34 3.00 7.89 55.45 458.47

importance of a combination of reactive and proactive methods

in order to secure the system against deception and DoS attack.

Description of network security properties is related to the

classification of threats and intrusion. There are plenty of

different network security problems, such as HTTP attacks,

spam, TCP flooding, DoS attacks, Web server misuse, spoofing

and sniffing etc. Protection of critical components and network

infrastructure is identified as a key requirements for improving

security in SCADA system by Hentea in [14].

Analysis of firewall configuration has been intensively stud-

ied. Namely, Guttmannin [2] proposed algorithm for comput-

ing reachibilty sets based on the firewall configurations. Bera

et al in [10] proposed SAT-based methods for verification of

security policy. Al-Shaer et al. [15] uses similar approach for

representation of ACLs as permit and deny predicates. Their

verification methods employ the BDD representation in model-

checking procedure.

The network model presented in this paper deals only with

IP addresses and services or ports. Therefore, the analysis

does not reflect hardware or OS attacks. It also does not

examine the contents of TCP/UDP packets. Therefore, this

classification only includes selected categories of network

security properties. Since it can utilize typical fields from IP,

TCP, or UDP headers, namely source/destination IP address

and service/port, it allows to specify wide range of different

communications to be analyzed in the network.

In this paper we demonstrated the problem of automatic

security analysis of IP based industrial networks. The pre-

sented verification method aims at validating network design

against the absence of security and configuration flaws. The

verification technique is based on the encoding problem into

SMT instance solved automatically by the solver tool.

REFERENCES

[1] A. Wool, “Trends in Firewall Configuration Errors: Measuring the Holes
in Swiss Cheese,” IEEE Internet Computing, vol. 14, no. 4, pp. 58–65,

Jul. 2010.
[2] J. Guttman, “Filtering postures: Local enforcement for global policies,”

in IEEE Symposium on Security and Privacy. IEEE Comput. Soc.
Press, 1997, pp. 120–129.

[3] P. Bera, S. Ghosh, and P. Dasgupta, “Formal Verification of Security
Policy Implementations in Enterprise Networks,” Information Systems

Security, pp. 117–131, 2009.
[4] E. Al-Shaer, W. Marrero, A. El-Atawy, and K. ElBadawi, “Towards

global verification and analysis of network access control configuration,”
DePaul University, Chicago, IL, USA, Tech. Rep, 2008.

[5] L. Cholvy and F. Cuppens, “Analyzing consistency of security policies,”
in Security and Privacy, 1997. Proceedings., 1997 IEEE Symposium on.
IEEE, 1997, pp. 103–112.

[6] a. Hari, S. Suri, and G. Parulkar, “Detecting and resolving packet filter
conflicts,” in INFOCOM 2000. Nineteenth Annual Joint Conference of

the IEEE Computer and Communications Societies. Proceedings. IEEE,
vol. 3. IEEE, 2000, pp. 1203–1212.

[7] E. Al-Shaer and H. Hamed, “Discovery of policy anomalies in dis-
tributed firewalls,” in Ieee Infocom 2004. Ieee, 2004, pp. 2605–2616.

[8] S. P. Hidalgo, R. Ceballos, and R. M. Gasca, “Fast Algorithms for
Consistency-Based Diagnosis of Firewall Rule Sets,” 2008 Third Inter-

national Conference on Availability, Reliability and Security, pp. 229–
236, Mar. 2008.

[9] G. Xie, D. Maltz, A. Greenberg, G. Hjalmtysson, and J. Rexford, “On
static reachability analysis of IP networks,” Proceedings IEEE 24th

Annual Joint Conference of the IEEE Computer and Communications

Societies., pp. 2170–2183, 2005.
[10] P. Bera, S. Maity, S. Ghosh, and P. Dasgupta, “A Query based Formal

Security Analysis Framework for Enterprise LAN,” 2010 10th IEEE

International Conference on Computer and Information Technology, no.
Cit, pp. 407–414, Jun. 2010.

[11] D. E. Taylor, “ClassBench: A Packet Classification Benchmark,”
IEEE/ACM Transactions on Networking, vol. 15, no. 3, pp. 135–511,
Jun. 2007.

[12] C. Alcaraz, G. Fernandez, R. Roman, A. Balastegui, and J. Lopez,
“Secure Management of SCADA Networks,” New Trends in Network

Management, Cepis UPGRADE, vol. 9, no. 6, pp. 22–28, 2008.
[13] A. a. Cardenas, S. Amin, and S. Sastry, “Secure Control: Towards

Survivable Cyber-Physical Systems,” in Proceedings of the 28th Interna-

tional Conference on Distributed Computing Systems Workshops. Ieee,
Jun. 2008, pp. 495–500.

[14] I. N. Fovino, A. Carcano, and M. Masera, “A Secure and Survivable Ar-
chitecture for SCADA Systems,” 2009 Second International Conference

on Dependability, pp. 34–39, Jun. 2009.
[15] E. Al-Shaer, H. Hamed, and R. Boutaba, “Conflict classification and

analysis of distributed firewall policies,” IEEE Journal on Selected Areas

in Communications, vol. 23, no. 10, 2005.

1428 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

