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Abstract—Automated recognition of video events is an impor-
tant research area in computer vision having many potential
applications, e.g. intelligent video surveillance systems or video
indexing engines. In this paper we describe components of an
event recognition system building up a full processing chain from
low-level features extraction to high-level semantic information
on detected events. It is comprised of three components: object
detection and tracking algorithms, a fuzzy ontology and Fuzzy
Semantic Petri Nets (FSPN), a formalism that can be used to spec-
ify events and to reason on their occurrence. FSPN are Petri nets
coupled with an underlying fuzzy ontology. The ontology stores
assertions (facts) concerning object classification and detected
relations being an abstraction of the information originating
from object tracking algorithms. Fuzzy predicates querying the
ontology are used in Petri net transitions guards. Places in FSPN
represent scenario steps. Tokens carry information on objects
participating in an event and have weights expressing likelihood
of an event’s step occurrence. Introduced fuzziness allow to cope
with imprecise information delivered by image analysis algo-
rithms. We describe the architecture of video event recognition
system and show examples of successfully recognized events.

Index Terms—video events, surveillance, fuzzy Petri Nets, fuzzy
ontology

I. INTRODUCTION

RECOGNITION of video events is an important research

area in computer vision. Developed methods may have

many potential applications: intelligent video surveillance,

video indexing engines and various systems in which human-

computer interactions are based on interpretation of video

content.

Automated video event recognition comprise several tasks

including detection of objects, intelligent tracking, recognition

of compound events or activities and finally reasoning about

occurrences of high-level events. Each of them may involve

various problems to solve, e.g. how to distinguish real objects

from such visual phenomena as shadows or reflexes, how to

merge objects that have split into multiple segments, how

to maintain objects’ identities in case of occlusion, what

kind of information is required to describe scene and which

formalism should be used to specify events and efficiently

detect them. Solutions to these problems are never perfect,

each processing step may produce noisy and uncertain data,

moreover a mapping between elements of semantic event
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specifications and low level video features often incorporate

vagueness.
In this paper we describe components of a video event

recognition system building up a full processing chain from

low-level features extraction to high-level semantic informa-

tion on detected events. A conceptual layout of the systems is

shown in Fig. 1. Input video sequence is analyzed with object

detection and tracking algorithms. A tracking information is

then represented in form of assertions in a more abstract Fuzzy

Ontology layer and finally video events are detected with

Fuzzy Semantic Petri Nets (FSPN), a specific class of fuzzy

Petri nets, which reference terms in an ontology.

Object Detection & Tracking

Fuzzy Ontology

Fuzzy Semantic Petri Nets

Visual Output

Scene 

configuration

Scenario 

Specification (LTL)

Input Video Sequence

Fig. 1. Conceptual model of the event recognition system

Guards in FPNS are conjunctions of unary or binary

predicates examining asserted class membership facts or

object relations. Tokens in FSPN are tuples of selected scene

objects participating in an event with associated weight

factors. Such approach make event scenarios tolerant to

classification errors, imprecise measurements and missed

subevents or conditions. As transitions are fired, fuzzy

weights obtained from guards evaluation are combined with

token weights. In consequence, FSPN are not only capable

of reasoning about scenario occurrences, but also about their

likelihoods. This property is particularly important, as it

allows to fine-tune the system operation by appropriately

selected thresholds and filter output of less probable scenarios.

Another important feature of the proposed approach is that

several scenarios, starting at different time points and with

different participating objects can be analyzed concurrently.
The paper is organized as follows: the next Section II reports

known approaches to event specification and analysis. It is

followed by Section III, in which an algorithm used to detect

and track objects is briefly described; the next Section IV

discusses the fuzzy ontology. FSPN are defined in Section V.
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The detection system implementing the proposed approach

is presented in Section VI and finally Section VII gives

concluding remarks.

II. RELATED WORKS

Recognition of video events has been intensively researched

over last fifteen years. A large number of approaches is

reported in recent surveys: [1] and [2]. Systems for video

recognition usually have a layered architecture, e.g. [3], [4], in

which lower level layers provide an abstraction of meaningful

aspects of video sequences, whereas higher level layers are

related to formalisms used for event modeling and algorithms

that detect events based on formal specifications.

Probabilistic state-based methods use models comprised of

states and transitions, in which transitions are attributed with

probability factors learned from annotated video. During an

analysis of an input video sequence a likelihood of a situation

is computed. This group include methods based on neural

networks [5], Hidden Markov Models, Dynamic Bayesian

Networks [6] and stochastic Petri nets [7].

In grammar based methods complex activities are repre-

sented by production rules that generate strings of atomic

actions. Hence, complex events can be recognized by language

parsing techniques [8], [9]. In the review [2] a limitation of

these methods as regards concurrent activities was indicated.

The criticism seems to be founded in a case, where sequences

of single actions are analyzed. However, in a more general

setting, e.g. this provided by the Kripke structure [10], each

string element is a set of low level events occurring in

parallel and in consequence high-level concurrent events can

be tracked.

Description based approaches specify events and scenarios

using high level languages, either textual [11], or graphical

as Situation Graph Trees [4], [12] and Petri nets [7], [13],

[14]. The methods falling into this category are considered to

be semantic, as specifications are prepared by experts, who

give meaningful names to events, engaged objects, actions

and conditions. Descriptions are often hierarchical: complex

events can be expressed as graphs of subevents. Models can

also include constraints and knowledge about scene objects,

e.g. in [4] they are expressed as formulas of a Fuzzy Metric-

Temporal Horn Logic. In some approaches scenarios and their

ingredients: types of participating objects and relations are

defined as ontologies [15], [16].

Petri Nets (PNs) are applied in the field of event detection in

two modes [1]. In the first mode of object PNs tokens represent

objects, places object states and transitions events of interest.

Such approach was applied in surveillance of traffic [13] and

people [17]. In the second mode of plan PNs places correspond

to subevents building up a plan. Presence of a token in a

place indicates that a particular event assigned to the place

is occurring. The latter approach was applied to parking [18]

and more recently people [14] surveillance.

The semantics of Petri nets proposed in this paper is closer

to plan PNs, as tokens represent combination of objects

participating in scenarios. There are, however, some salient

differences. 1) In probabilistic PNs discussed in [14] in case

of a conflict (e.g. two enabled transitions sharing input place

with a single token) only one transition with a higher learned

probability would fire, whereas in our model they both can be

executed and produce two tokens with weights aggregating the

weight of the input token and transition guards. This allows

to reason concurrently about scenario alternatives. Moreover, a

weak initial likelihood of a scenario branch can be amplified

by future events. 2) In our approach all enabled transitions

are executed in a single parallel step. Such behavior rather

resemble reasoning with Fuzzy Cognitive Maps [19] than the

most often utilized interleaving PN semantics. 3) Petri nets

modeling scenarios are actually state machines. Their structure

is sufficient to construct a Büchi automaton [20] representing

a LTL formula.

There are a vast number of tracking algorithms and it would

be hard to present all previous works in this field. However

there exist two very interesting surveys which give an in-depth

view of all methods [21] and [22]. Based on classification

proposed in these surveys, the tracking algorithm used in this

work can be assigned to a group, which detect objects by

background modeling and subtraction. The final tracking is

based on kernel tracking methods (region based tracking).

III. OBJECT DETECTION AND TRACKING

The detection and tracking algorithm maintains a set of

tracked objects O and updates it after an arrival of a new

video frame. Each object has several attributes: a history of

its bounding box position and size at current and N-1 previous

frames, a unique object ID, information about object type

(pedestrian, graffiti, group of objects etc.) and flags denoting

object occlusion or information, that object can’t be tracked

and its position must be estimated.

For each i-th frame the set O is updated with a procedure

comprised of the following steps:

A) A background is updated and foreground object segmen-

tation is performed.

B) A set of segments S is extracted, labeled and tracked.

C) Segments S which are similar to objects from O are

assigned to them.

D) All segments S which were not assigned to O are

submitted to a classification process and detected objects

are added to O.

E) Overlapping objects from O are merged.

F) Merged objects from O are split, if they have separate

areas.

G) Positions of objects from O, that cannot be tracked by

segments, are estimated.

These steps are explained in detail in the next paragraphs:

A. Foreground object segmentation

The method is based on background generation and fore-

ground object detection described in [23]. It consists in creat-

ing a binary mask by background substraction and processing

it in order to extract connected components (segments) and

label them. A single segment can be a group of objects (e.g.
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a crowd), single object (e.g. a pedestrian) or part of the

object (e.g. a torso). Partitioning may be caused by failures

of segmentation algorithm.

B. Segment tracking

Number of segments, their position and size may vary

significantly from frame to frame. Segmentation errors can be

caused by many factors e.g. camera noise, changes in lighting

condition, shadows, occlusion by other objects etc. To make

sure that only segments, which are correctly extracted will be

used in the next processing stage, a simple tracking mechanism

is applied that is based on checking bounding box positions of

current and previous segments. If two bounding boxes overlap

in two consecutive frames, segments are linked with the history

relation describing evolution of segments in time. For further

analysis only segments, which have clear history based on

observation form N previous frames are used.

C. Segments to object assignment

In the next step all segments S detected in a frame i are

assigned to objects from previous frame O. Let us introduce

a function h : O×N→ 2S that defines a mapping between an

object o at a frame i and a set of segments. The Algorithm 1

takes at input the sets of objects O and segments S, updates

the function h and computes the set of assigned segments Su.

Algorithm 1

procedure ASSIGN(O, S, i, Su, h )

for all o ∈ O do

for all s ∈ S do

if d(o, s) ≥ ǫ then

Add segment to an object:

h(o, i)← h(o, i) ∪ {s}
Add s to the set of used segment Su:

Su ← Su ∪ {s}
end if

end for

end for

end procedure

The function d calculates a normalized to [0, 1] similarity

between an object o and a segment s considering overlapping

of segments in h(o, i − 1) and s (bounding boxes or image

masks). The threshold ǫ is a small constant, e.g. 0.1.

After executing the procedure new positions and sizes of all

objects Ou = {o ∈ O : h(o, i) 6= ∅} are computed based on

position and size of segments assigned to them.

D. Object detection and classification

All segments, which were not assigned to any object

(SNA = S \ Su) are further analyzed by a set of classifiers.

Simple geometrical rules are applied (perspective is compen-

sated) e.g. an adult person should be higher than 160 cm and

wider than 40 cm. If a segment with desired properties is

detected, a new object is created onew with a unique ID and

added to object list O ← O ∪ {onew}. If an object is divided

into several segments, a correct classification is not possible.

In this case the system will not detect it on the current frame.

As the video sequence is analyzed, it is very likely that in

next few frames it will appear not split and the algorithm will

be able to detect it. The benefit of this approach is that only

very reliable objects are detected, what leads to smaller false

detection rate.

E. Object merging

In the next processing step, the algorithm handles cases,

when two previously tracked objects merge, e.g. if two pedes-

trians approach and finally their silhouettes overlap. As it is

then impossible to track objects based on the information on

segments position and history, the algorithm sets a special flag

in the overlapping objects descriptors. From that time their

positions are not computed based on the position of segments

belonging to them. Instead, a prediction mechanism is used,

which is based on information about previous sizes, movement

direction and speed. Also a new temporal object is created (so

called merged object). Its size and position is updated based

on segments which previously belonged to merged objects.

Thanks to this, the system is able not only to estimate the

object position, but also to keep track of real area occupied

by the estimated objects.

F. Object splitting

In the next step it is checked, if previously merged objects

are split. Such situation occurs, e.g. when two previously

joined pedestrians move away far enough to allow for total

separation of segments belonging to each object. In this case,

all segments are checked to test, if they resemble an object

within a merged group. If appropriate correspondences can

be found, the unique IDs are restored based on estimated

positions of the original objects. Another scenario is also

possible. A person may leave a luggage and start to move

away (possible bomb planting scenario). In such case it is

possible that an object, which has only one ID starts to split. To

cover such situations, a maximum object size is checked and,

if it exceeds the maximum allowed object size, the tracking

object is removed and classification is rerun for all segments

belonging to this object. The largest detected object is given

the old ID, all other detected objects are given new unique

IDs.

G. Position estimation

In the last step, for all objects, which are marked as lost or

impossible to track, i.e. h(o, i) = ∅, a history of their positions

on previous frames is analyzed to compute a mean velocities.

Object’s velocity is then used to estimate a new position. The

object size is not estimated, the last known size is used instead.

This estimation method is working well in most cases. It can

also cause wrong results, if objects change speed or movement

direction during the estimation. To overcome this types of

errors, a guard mechanism was introduced. It is based on

counting the number of pixels belonging to foreground objects

within an estimated bounding box. If it drops below a fixed
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Fig. 2. Sample tracking sequence, green boxes - tracked pedestrians, white boxes - estimated pedestrians positions, blue boxes - group position, yellow circles
- trajectories

threshold, it is a signal that the object position is not estimated

correctly. In such case the estimated object is removed.

A sample tracking sequence of two passing pedestrians is

presented in Figure 2.

IV. FUZZY ONTOLOGY

The fuzzy ontology constitute an intermediate layer between

information on tracked objects and fuzzy Petri nets. Whereas

objects within the tracking model are described with numeric

values, like size, distance or speed, the ontology provide a

kind of linguistic abstractions, e.g. a small object, objects are

close or a person is walking.

There are several benefits of this approach:

• Scenario specifications can be prepared in a more general

and meaningful manner, they can be decoupled from the

code and implementation details can be hidden .

• It is much easier to customize a recognition system to

specific needs and conditions, because the translation

between numeric values and linguistic terms is accom-

plished in isolated and easy to identify functions

• Facts concerning classifications of objects and detected

relations are materialized, hence they can be evaluated

only once, what generally increases performance.

Ontologies are often described as unions of two layers: ter-

minological (TBox) and assertional (ABox). The TBox defines

concepts and types of relation including: taxonomic relations

between concepts, object properties and datatype properties.

The ABox, in turn, gathers facts about individuals and exis-

tent relations. In Description Logic, being a counterpart of

ontology languages, concepts and relations can be expressed

by means of unary and binary predicates, e.g.: Person(x)
– x is a member of the class Person , isWalking(x) – a

boolean datatype property isWalking of an individual x or

isClose(x, y) – an object property between two individuals x

and y.

For fuzzy ontologies and corresponding Fuzzy Description

Logics the ontology relations are extended by adding weights

being real numbers from [0, 1]. They can be used to express

uncertainty, e.g. with respect to class membership or relation

occurrence. Formalizations of fuzzy ontology languages in-

cluding fuzzy classes, roles (object properties) and datatype

properties can be found in [24] and [25].

In the case of a fuzzy ontology used with FSPN, its TBox

is a stable part, whereas the ABox is updated for each frame.

A crucial element of the described approach is that relations

in the ABox are practically never fully evaluated. Only their

subset that is requested from FSPN is calculated by making

calls to plugged in functions (function objects in object-

oriented implementation) called evaluators. They examine the

tracking model and calculate fuzzy weights of predicates.

In opposition to approach proposed in [25] evaluators are

external entities beyond the ontology. In many cases they have

a form of membership functions described by line segments,

as in Fig. 3, but they can be also based on other features, as

Jaccard metrics applied to object areas (Fig. 4). In this case a

bounding box of a detected object is divided into a n×m grid

and each cell is assigned with a probability density pij . The

weight returned by the evaluator is calculated according to the

formula: w = 1
Z

∑n

i=1

∑m

j=1 hijpij , where Z is a normalizing

constant Z =
∑n

i=1

∑m

j=1 pij and hij = 1 if a cell (i, j)
intersects with an object or 0 in other case. The selection of

probability distribution is arbitrary and depends on the type

of interaction, e.g. the grid in Fig. 4a was used to calculate

intersection values for vertical objects, e.g. walls, whereas the

grid in Fig. 4b for horizontal ones, e.g. forbidden zones on a

floor.

1 2 3 4

1

isClose atUnattendedDist

Distance between centers 

of bottomlines [m]

Fig. 3. Membership functions used by evaluators

V. FUZZY SEMANTIC PETRI NETS

In this section we define Fuzzy Semantic Petri Nets and

describe their behavior. FSPNs are placed at the top of

video event recognition stack (Fig. 1 and are responsible for

interpretation of low-level events and conditions represented

as assertions in a sequence of ABoxes of the coupled fuzzy

ontology.

It should be noted, that the presented semantics of FSPN

is dedicated to a particular case of state machines, i.e. Petri

nets, in which transitions link single places. Such restrictions
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Fig. 4. Evaluators based on Jaccard metrics.

stems from fact that we use Linear Temporal Logic (LTL)

[26], [27] to specify video events. LTL specifications are then

transformed to corresponding FSPN structures following the

rules for translating them to Büchi automata [20].

Relations between FSPN and LTL are even deeper, an input

sequence of ABoxes analyzed by a FSPN can be considered

a specific kind of Kripke structure [10], which is defined as

a sequence of states s0, s1, s2, . . . , sn, . . . and a function that

assigns sets of true propositions Pi to states si. In our case

a state si corresponds to an i-th video frame and a set of

propositions Pi to a set of assertions in an i-th ABox of

the fuzzy ontology. Hence, detection of a video event can be

considered a checking if a model (a sequence of ABoxes)

satisfies an LTL formula that is translated to a FSPN.

In the presented approach we generalize and relax the

acceptance requirements:

• Instead of Büchi automata, fuzzy Petri nets are used

as a tool for scenario analysis. This allows to process

concurrently scenarios, in which participate various com-

binations of objects.

• To manage uncertainty and inexactness of input data,

fuzzy predicates returning values from [0, 1] are used.

These values are then combined with weights of tokens

flowing through a net. Tokens, in turn, represent scenario

occurrences. This enables monitoring scenario steps and

reasoning about their likelihood.

• Sequences of accepted states strictly defined with LTL

formulas can be interleaved with states not satisfying the

specified conditions. In such case, the weight determining

scenario satisfaction gradually decrease and, after passing

a certain threshold, the scenario is rejected by token

removal.

A. Definition of Fuzzy Semantic Petri Nets

Formal definition of Fuzzy Semantic Petri Nets is comprised

of three concepts: Petri net structure, binding and fuzzy

marking. We start with some auxiliary definitions. Unary

predicate is defined as a pair (n, vs) where, n is a predicate

name and vs is a variable name referring to a subject of

the predicate. Binary predicate is a triple (n, vs, vo); the

variable vo is a predicate object. Set of all unary and binary

predicates is denoted by Preds. By V ars(p) we denote a set

of variables appearing in the predicate p. Analogously, for a

set C ⊆ Preds we define V ars(C), as
⋃

p∈C V ars(p).

Definition 1 (Petri net structure). Petri net structure PN is a

tuple (P, T, F, Preds,G, L,H), where P is a set of places, T

is a set of transitions, P and T are satisfying P∩T = ∅ and P∪
T 6= ∅. F ⊆ P ×T ∪T ×P is a set of arcs (flow relation), and

Preds is a set of unary and binary predicates. G : T → 2Preds

is a guard function that assigns sets of predicates to transitions.

L : P → N ∪ {0} is a function assigning lower bound to a

place; this value defines how long a token should stay in a

place to be allowed to leave it. H : P → N ∪ {ω} assigns

upper bound to a place. The symbol ω represents infinity.

Following [28] the set of input places for a transition t ∈ T

is denoted as •t = {p ∈ P : (p, t) ∈ F} and the set of output

places as t• = {p ∈ P : (t, p) ∈ F}

Definition 2 (Binding). Let V be set of variables and I a set

of objects. Binding b is defined as a partial function from V

to I . A variable v is bound for a binding b, iff v ∈ dom b. A

set of all bindings is denoted by B.

Let p ∈ Preds a predicate and b ∈ B be a binding.

Predicate value for a binding val : Preds × B → [0, 1] is

a function that assigns value from the interval [0, 1] to a pair

(p, b), p ∈ Preds and b ∈ B. If V ars(p) \ dom b 6= ∅, then

val(p, b) = 0.

Definition 3 (Fuzzy marking). A set of fuzzy tokens FT is

defined as FT = B×R× (N∪{0})× (N∪{0}). Components

of a token tuple (b, w, c, τ) ∈ FT are the following: b ∈ B

denotes a binding, w ∈ [0, 1] is a fuzzy weight, c ≥ 0 is a

counter storing information, how long a token rests in a place

and τ is a time stamp. Fuzzy marking for a Petri net PN =
(P, T, F, Preds,G) is defined as a function that assigns sets

of fuzzy tokens to places FM : P → 2FT .

B. Execution

The behavior of FPNs defined in previous section differs

from the standard semantics for Petri nets, as they are not

intended to focus on concurrency and conflicts, but to perform

a kind of fuzzy reasoning and classification of sequences of

events.

Single i-th step of execution of a fuzzy Petri Net is

comprised of three basic stages:

1) Firing enabled non-initial transitions and generating

new tokens. During this stage each token-transition pair

(t,m), where t ∈ T and m = (b, w, c, τ) ∈ FM(•t)
is analyzed. If a guard G(t) references unbound vari-

ables, i.e. V ars(G(t)) \ dom b 6= ∅, an attempt

is made to create a new binding b′ by grounding

free variables with ontology individuals; in other case

b′ = b. Then, a weight of the guard is calculated:

wg = min{val(p, b) : p ∈ G} and aggregated with the

old token weight: w′ = awg+(1−a)w. If w′ is greater

than a certain threshold (in experiments 0.2 value was

used), a new token m′ = (b′, w′, c′, t′) is created and put
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into the transition’s output place t•. The current iteration

number i is assigned as token timestamp τ ′ = i and, if

the transition t is a self-loop, the counter is updated:

c′ = c+ 1 . It should be mentioned, that only self-loop

transitions can fire if token counter c does not belong to

the interval [L( bullett), H(•t)] (see Definition 1).

2) Removing old tokens. A transition occurrence performed

in the previous stage can be regarded as a triple

(m, t,m′), where m is an input token, m′ an output

token and t ∈ T a transition. Let C denote a set of

such triples, and w(m) a weight of a token. For each

input token m a sum of weights of output tokens m′ is

calculated and subtracted from its weight: wnew(m) =
w(m) −

∑
(m,t,m′)∈C w(m′). If the value falls below

a certain threshold, the token m is removed. Also in

this step multiple tokens having the same binding and

assigned to the same place are aggregated.

3) Firing initial transitions. Finally, new tokens are in-

troduced into the net, by firing initial transitions (i.e.

satisfying •t = ∅). For each initial transition variables

appearing in its guard are bound to objects, then the

guard value is calculated and used as a weight of new to-

kens. To avoid analyzing scenarios with low likelihoods,

a threshold preventing from creating tokens with small

weights is defined. The mechanism is also protected

against introducing tokens with a binding already present

in the net.

C. Video event specification

We start preparing a specification of a video event by outlin-

ing a general scenario in form of Temporal Logic formula, then

events appearing in the scenario are refined into conjunctions

of low-level events or conditions expressed as predicates. The

resulting LTL specification is used in two ways: (1) it is

translated into FSPN and (2) predicates are included into TBox

of the fuzzy ontology.

To give an example: a high-level video event, in which a

person violates a forbidden zone can be expressed in LTL as

a sequence of three medium-level events: init ⇒ ♦move ⇒
�violate, where init defines conditions to start recognition,

move denotes a situation, when a person is moving towards

a zone and violate a situation, when the person enters the

zone. During the refinement step the scenario is transformed

into formula (1), which is further translated into FSPN shown

in Fig. 5.

Person(x) ∧ isWalking(x) ∧ atBorder(x) ∧ Zone(y)
⇒ ♦(isWalking(x) ∧movesTowardsZone(x, y){8,∞}

⇒ �(bottomInZone(x, y)){4,∞}

(1)

Fig. 6 shows a FSPN defining a complex event, during

which a person leaves unattended luggage. Its scenario (in

a narrative form) with accompanied video material was pub-

lished as a benchmark for PETS 2006 workshop [29]. The

event is defined as a sequence of four simple steps: init – a

still person appears, separate – the person puts a luggage on

the floor and remains close to it, leave – distance between the

Person(p), 

atBorder(p), 

Zone(z)

init

Person(p), 

atBorder(p), 

Zone(z)

mov

{8,∞}

violate

{4,∞}

isWalking(p),

movesTowards(p,z)

isWalking(p),

movesTowards(p,z)

bottomInZone(p,z)

bottomInZone(p,z)

Fig. 5. Fuzzy Semantic Petri Net representing a scenario, in which a person
violates a forbidden zone

person and luggage grows above a certain threshold (equal

to 3 meters in PETS specification) and finally remain – the

person disappears and the luggage remains alone.

Person(x), 

isStill(x)

init

Person(x), 

isStill(x)

sep

{4,∞}

leave

{5,∞}

disapp

{30,∞}
SmallObject(y), 

isStill(y), 

isClose(x,y)

SmallObject(y), 

isStill(y), 

isClose(x,y)

isStill(y), 

atUnattendedDist(x,y)

isStill(y), 

atUnattendedDist(x,y)

isStill(y), 

noObject(x)

isStill(y), 

noObject(x)

Fig. 6. Fuzzy Semantic Petri Net representing luggage left scenario

A more complex FSPN is presented in Fig. 7. It defines an

event of graffiti painting on a wall decomposed into medium

level events: a person moves towards a wall, then appears in

front of the wall, optionally: a person is widening (what may

indicate painting graffiti), then a new object emerges on a wall

(but not inside a window) and remains still.

VI. DETECTION SYSTEM

In this section we describe a prototype system allowing to

test recognition of events based on specifications in FSPN.

The system takes at input a video sequence with an XML

file defining tracking information. For each frame a list of

segments and identified objects is provided. The data originate

from tracking algorithms described in Section III. The archi-

tecture of the prototype scenario detection system is presented

in Fig. 8. Main components are: the Fuzzy ontology, a set of

Evaluators and the Fuzzy Semantic Petri Net execution engine.

The system is also equipped with GUI providing visual output

shown in Fig. 9.

The control flow during a single iteration was marked in

Fig. 8 with numbers in circles.

1) After a new frame appears, asserted relations between

objects are removed from the ontology, then newly

identified objects are added as individuals.

2) In the next step all enabled transitions in concurrently

analyzed Petri nets are fired. Preparation of transitions

requires calculations of guards and in some cases exten-

sions of bindings.

3) In order to obtain weights of predicates appearing in

guards, appropriate queries are made to ontology. If

a weight for a predicate was evaluated earlier, it is

immediately returned.

4) In other case an evaluator assigned to the predicate is

called, and returned value is asserted in the ontology as

a weight of corresponding fuzzy relation.
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Person(p), 

atBorder(p), 

Wall(w)

init

Person(p), 

atBorder(p), 

Wall(w)

mov

{3,∞}

front

{10,∞}

appear

{3,∞}
movesTowards(p,w)

movesTowards(p,w)

inFrontOf(p,w)

inFrontOf(p,w)

newObject(g),

inside(g,w),

notInsideSomeWindow(g)

newObject(g),

inside(g,w),

notInsideSomeWindow(g)

remain

{10,∞}
isStill(g),

inside(g,w),

notInsideSomeWindow(g)

isStill(g),

inside(g,w),

notInsideSomeWindow(g)

widen

{3,∞}

inFrontOf(p,w),

isWidening(p)

inFrontOf(p,w),

isWidening(p)
newObject(g),

inside(g,w),

notInsideSomeWindow(g)

Fig. 7. FSPN representing graffiti painting scenario

Person(x)

SmallObject(x)

isClose(x,y)

approaches(x,y)
Scene sequence & 

Tracked objects

...

Predicate Evaluators

Fuzzy ontology
Fuzzy Semantic 

Petri Net

� 

� 

� individuals

� 

� 

�

Step
Output

Fig. 8. Architecture of the detection system

5) Evaluators examine the tracking information. As a track-

ing history covering a number of past frames is kept,

evaluators are capable of returning temporal properties,

e.g. newObject(x) - an object is considered new if it

has recently appeared.

6) After the net state is updated, a reached marking is

analyzed. If a token stays in a selected place long enough

(observed places are defined in FSPN specification) its

presence is reported as an important scenario step or a

final stage.

Fig. 9. Visual scenario tester. The displayed video frame and messages
correspond to the place leave (isStill(y) ∧ atUnattendedDist(x, y)) of
the FSPN specifying luggage left scenario.

The software is entirely written in Java. Its performance is

quite good: for three concurrently analyzed scenarios and a

scene with a few tracked objects, a single reasoning iteration,

during which the ontology is updated, evaluators are called and

multiple transitions in Petri nets are fired, is executed within

0.1ms to 1.6ms (average 0.45 ms) on a Pentium i7 2.2 GHz

machine.

The system was successfully tested to recognize a number

of events, including these specified in Fig. 5, Fig. 6 and Fig. 7,

returning in each case high likelihood value close to 1.0.

Fig. 10 presents visual output corresponding to the steps

of the graffiti painting scenario specified by FSPN in Fig. 7.

Filled bounding boxes mark objects included into the binding

of tokens that reached places (scenario steps), for which

semantic messages are displayed.

VII. CONCLUSIONS

In this paper we describe components of video events

recognition system building a full processing chain: from

objects detection and tracking, through transforming tracking

information into more abstract representation of Fuzzy Ontol-

ogy, to reasoning on events occurrences with Fuzzy Semantic

Petri Nets.

An advantage of FSPN is their capability of detecting

concurrently occurring events, in which participate various

combinations of objects, analyze scenario alternatives and their

likelihoods. Petri nets state (marking) gives general overview

of the situation, of what’s going on. A presence of a token in a
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a. b.

c. d.

e. f.

Fig. 10. Recognized steps of a graffiti painting event: a – init, b – move, c
– front, d – widen, e – appear, f – remain (scenario completion)

place can be reported as semantic output, e.g. to a surveillance

system operator.

The proposed scenario detection system is a generic frame-

work, that can be adapted to specific needs by: 1) defining

an ontology including classes of objects and relations of

interest; 2) implementing evaluators, i.e. functions responsible

for calculating values of fuzzy predicates, and plugging them

into the framework; 3) configuring scene objects (their types

must be defined in the ontology) 4) writing a scenario using

in formulas entities (classes and relations) from the ontology.
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