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Abstract—Verification is one of the essential topics in research
of cyber-physical systems. Due to the combination of discrete and
continuous dynamics, most verification problems are undecidable
and need to be dealt with by various kinds abstraction techniques.
As systems grow larger and larger, most verification problems
are difficult even for purely discrete systems. One way to address
this problem is the use of interactive verification. Recently, this
approach has also been considered by cyber-physical verification
tools like KeYmaera and other classical theorem provers.

Important requirements for the interactive verification are a
precise and readable modeling language as well as the possibility
to decompose the system into smaller subsystems. Here, tools
like KeYmaera and PVS still need further improvement. On the
other hand, these modeling aspects are both addressed within
the language Quartz as it provides a complete programming
language for cyber-physical systems with standard data types
and programming statements as well as a precise compositional
semantics that is well-suited for compositional verification.

In this paper, we take the advantages of two different tools,
the Averest system and KeYmaera, for the interactive verification
of cyber-physical systems. This way, we combine modeling and
verification capabilities of Averest and the verification capability
of KeYmaera, in order to provide a basis for powerful tool set
for the interactive verification of cyber-physical systems.

I. MOTIVATION

C
YBER-physical systems are systems that combine dis-

crete and continuous dynamics. The environment of em-

bedded reactive systems often consist of continuous behaviors

that are determined by the laws of physics. Formal verification

is already hard for discrete systems because of the size of the

transition systems, and most verification problems for cyber-

physical system are even undecidable, due to the combination

of discrete and continuous dynamics.

Inspired by the success of model checking [1] in hardware

verification and protocol analysis, there has been increasing

research on developing techniques for the automated verifi-

cation of cyber-physical systems. The main line of research

concentrates on model checking of finite abstractions of re-

stricted subclasses of the general model. Most techniques

proposed so far in this area either rely on bounded state

reachability or on abstraction refinement techniques [2–4].

While the first approach suffers inherently of incompleteness,

the latter approach often introduces unrealistic behaviour that

may yield spurious errors being reported within the analysis.

Despite the theoretic achievements in research, only a

few tools are available to verify non-trivial cyber-physical

systems. Tools like e.g. PHAVer [5], HyTech [6], Charon [7, 8]

focus on the continuous dynamics. They lack typical program

statements and data types.

Furthermore, current tools often require an explicit enu-

meration of the discrete state space. Although the discrete

state space typically consists of only finitely many states, the

number of these discrete states can become too large to be

handled properly by current computers [9].

HySAT [10] and MathSAT [11, 12] are built based upon a

SAT-solver that calls a linear program solver for conjunctions

of the linear continuous-part constraints. As this technique

requires to encode the whole problem space first, the size

of the handleable problems is quite small. BACH [13, 14]

provides a convenient GUI to construct rectangular hybrid au-

tomata with linear location invariants together with a powerful

bounded reachability checker for these systems. Another tool,

HybridSAL relation abstracter [15, 16] abstracts the discrete

and continuous dynamics of the hybrid system automatically

to infinite state discrete transition systems that can be model

checked by SAL tools [17].

An alternative approach to verification is based on interac-

tive theorem provers. An approach based on higher-order logic

[18] for specification and verification of hybrid control system

is described in [19]. A verification framework is presented

in [20] to strike the balance between the expressiveness of

theorem proving and the efficiency and automation of the

state exploration techniques. In order to assist in the deductive

verification of hybrid systems, [21] presents a tool imple-

mented as a part of STeP [22]. Deductive methods are used in

[23] to deal with the parallel composition of hybrid systems,

the operational step semantics and a number of proof-rules

within PVS [24] have been formalized as well. KeYmaera

[25, 26] is an automated and interactive theorem prover for

specification and verification logics for differential dynamic

logics for hybrid system. It integrates numerous techniques

for automated theorem proving, combining deductive, real

algebraic, and computer algebraic prover technologies.

Recently, a new language for modeling, simulation, and

verification of cyber-physical systems has been developed in

our research group [27]. This language is an extension of

the synchronous language Quartz that is derived from the

Esterel language. Originating from a programming language

for discrete systems, there is a rich set of data types, and many
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statements for expressing discrete behaviors in a convenient

way. In particular, generic statements and module hierarchies

allow one to describe large parametric systems in a concise

way. Thus, the modeling capabilities of Quartz are in many

cases better than in comparable languages. Like Quartz, also

the extension to cyber-physical systems has a precise formal

semantics that defines unique behaviors for given input traces.

For this reason, the language lends itself well for formal

verification. In particular, Quartz programs can be translated

to equivalent symbolic transition relations, and thus provide

a sound basis for formal verification. The determinism of

the language is also very important for simulation, since

it allows one to reproduce once observed behaviors. Based

on the programing language Quartz, the Averest toolset has

been developed. Besides of transformations, hardware/soft-

ware synthesis, a symbolic model checker and other tools,

the Averest toolset has recently been extended by a technique

for interactive verification [28]. However, up to now these

interactive verification techniques are restricted to the discrete

component of Quartz, models with hybrid components cannot

yet be dealt with.

In this paper, we therefore propose a new approach for

the interactive verification of cyber-physical systems by in-

terfacing the Averest toolset and KeYmaera. While the overall

verification task remains within the interactive Averest prover,

assertions for the continuous components can be verified

with the help of KeYmaera. Thus, the advantages of both

systems – the modelling and verification capabilities of Quartz

especially w.r.t. the discrete component and the verification

capabilities of continuous components within KeYmaera –

can be combined in order to result in a powerful tool for

the interactive verification of cyber-physical systems. Due to

the underlying synchronous language this approach will be

very well suited for compositional verification that is a great

challenge in the context of cyber-physical systems.

The outline of the paper is as follows. In Section II the

synchronous language Quartz and the hybrid language used

by KeYmaera are briefly introduced. Then, Section III gives a

detailed overview of the interfacing of Averest and KeYmaera

for applying interactive verification. The paper will be con-

cluded with the application of the interactive verification to a

widely known example in section IV.

II. PRELIMINARIES

In the following, we give a brief overview over the syn-

chronous language Quartz, its hybrid extension for modeling

cyber-physical systems and the KeYmaera language.

A. The Synchronous Language Quartz

Quartz is a synchronous language that is derived from the

Esterel language. The execution of a Quartz program is defined

by so-called micro and macro steps, where a macro step

consists of finitely micro steps whose maximal number is

known at compile time. Macro steps correspond to reaction

steps of reactive systems, and micro steps correspond with

atomic actions like assignments of the program that implement

these reactions. Variables of a synchronous program are syn-

chronously updated between macro steps so that the execution

of the micro steps within a macro steps is done in the same

variable environment of their macro step. This synchronous

update is important for avoiding data races, and therefore to

ensure determinism.

The language offers many data types like booleans, bit-

vectors, signed and unsigned integers that may be bounded

or unbounded, real numbers, as well as compound data types

like arrays and tuples. Modules are declared with an interface

that determines inputs and outputs, and a body statement that

may use additional local variables. In the following, we list

some of the possible statements to describe the examples given

in this paper. A complete definition of the language is found in

[29] for the discrete case, and in [27] for the hybrid extension.

Provided that S, S1, and S2 are statements, ℓ is a location

variable, x is a variable, σ is a boolean expression, and α is a

type, then the following are statements (parts given in square

brackets are optional):

• x = τ and next(x) = τ (assignments)

• assume(ϕ), assert(ϕ) (assumptions and assertions)

• ℓ : pause (start/end of macro step)

• S1;S2 (sequences)

• S1 ‖ S2 (synchronous concurrency)

• if (σ) S1 else S2 (conditional)

• do S while(σ) (loops)

• {α S} (local variable)

the pause statement defines a control flow location ℓ – a

boolean variable being true iff the control flow is currently

at ℓ : pause. Since all other statements are executed in

zero time, the control flow only rests at these positions in the

program, and thus the possible (discrete) control flow states

are the subsets of these locations.

There are two variants of assignments that both evaluate

the right-hand side τ in the current macro step: Immediate

assignments x = τ transfer the value of τ to the left-hand side

x directly, while delayed assignments next(x) = τ assign the

value in the next macro step.

If the value of a variable is not determined by assignments

of the current of previous macro step, a default value is

used according to the declaration of the variable. To this end,

declarations of variables consist of a storage class in addition

to their type. There are two storage classes, namely mem

and event that choose the previous value (mem variables)

or a default value (event variables) in case no assignment

determines the value of a variable.

In addition to the statements known from other imperative

languages (conditionals, sequences and loops), Quartz offers

synchronous concurrency S1 ‖ S2 and sophisticated preemp-

tion and suspension statements (not shown in the above list), as

well as many more statements for the comfortable descriptions

of reactive systems. There is also the possibility to call once

implemented modules and to store modules in packages to

support the re-use in the form known from software libraries.

Our Averest system provides algorithms that translate a

synchronous program to a set of guarded actions [29], i.e.,
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pairs (γ, α) consisting of a trigger condition γ and an action

α. Actions are thereby assignments x = τ and next(x) =
τ , assumptions assume(ϕ), or assertions assert(ϕ). The

meaning of a guarded action is obvious: in every macro

step, all actions are executed whose guards are true. Thus,

it is straightforward to construct a symbolic representation or

extended finite state machine (EFSM) of the transition relation

in terms of the guarded actions (see [29]).

While time in synchronous languages is given in the ab-

stract form of macro steps, cyber-physical systems require

the consideration of physical time. In order to combine these

inherently different concepts of time, the computational model

of macro steps is endowed by a continuous transition that takes

place between the immediate and delayed assignments of the

macro step. During the continuous transition, which consumes

physical time, variables of the new storage class hybrid

change their values according to the new flow assignments

x ← τ or drv(x) ← τ (that equate variable x or its

derivation on time drv(x) with the expression τ ).

The continuous transition of the macro step starts with the

variable environment determined by the immediate assign-

ments as initial values. To distinguish between the ‘discrete’

value and the changing value during the continuous transitions,

a new operator cont(x) is introduced: x always refers to the

discrete value of a variable, whereas cont(x) refers to the

(changing) value during the continuous evolution. For memo-

rized and event variables x and cont(x) always coincide as

these variables do not change during continuous evolutions.

The continuous actions may only occur in special statements

of the form flow S until(σ) where S is a list of flow as-

signments and σ is a so-called release condition that terminates

the continuous phase defined by the flow statement. Figure 1

depicts a program fragment together with the corresponding

EFSM. Starting from location ℓ1, the immediate assignment

x = 0.0 is executed so that the continuous transition starts

with initial value x = 0.0. The derivation of x is then 1

during the continuous transition, and the continuous transition

terminates as soon as the continuous value of x is 1. Then, the

control flow will move to ℓ2. However, it may be the case that

another flow-statement runs in parallel, and that its continuous

transition terminates before x = 1.0 holds. In this case, the

control flow moves to ℓ′
2
, and it will be restarted from there

in the next macro step.

B. KeYmaera: Hybrid Programs

KeYmaera is a verification tool for hybrid systems that

combines deductive, real algebraic, and computer algebraic

prover technologies [26]. It is an automated and interactive

theorem prover for a natural specification and verification logic

for hybrid systems. In this section, we give an incomplete

overview of the syntax and semantics of KeYmaera programs.

Statements not needed in the remainder of the paper will be

omitted here, for more detailed information consider [25, 26].

The relevant program statements of KeYmaera are summa-

rized in Table I. During a discrete transition, all right hand

sides of the actions xi := τi are computed in parallel and

Program Statement

ℓ1: pause

x = 0.0;

ℓ2, ℓ
′

2
:flow{drv(x)<-1.0} until (cont(x)>=1.0)

Extended Finite State Machine

ℓ1 x=0
drv(x) <- 1

release(cont(x)>=1)
ℓ2

ℓ
′

2

cont(x)>=1

¬
co
nt
(x
)>
=1

Fig. 1. The Flow Statement of Quartz Programs

TABLE I
SYNTAX OF KEYMAERA (INCOMPLETE)

1 x1 := τ1, . . . , xn := τn Discrete jump set
2 {x′

1
= τ1, . . . , x

′

n
= τn, H} Continuous evolution

3 α ; β Sequential composition
4 if(φ) then α else β fi Deterministic choice
5 < α > φ Existential operator
6 [α]φ Universal operator
7 [[α]]φ Universal Path operator

assigned in a second step, which essentially corresponds to the

delayed actions of synchronous languages. Continuous transi-

tions are defined by the differential equation systems x′
i
= τi

of the variables and the evolution domain H , which is defined

by a set of location invariants. Continuous evolutions may be

terminated at any point of time, they must be terminated at

the latest, when location invariants would be violated. Thus,

continuous transitions are always non-deterministic. As stated

in line 3, KeYmaera provides sequential composition. The

statement if-then-else in line 4 provides a deterministic choice,

that depending on the condition φ either executes α or β.

Further statements such as loops and non-deterministic

choice will not be considered here. Thus, the only non-

determinism provided in the presented fragment of KeYmaera

lies within the continuous transition, as all other statements in

Table I are deterministic.

The formulas from line 5 − 7 are used for verification.

< α > φ is an existential operator that evaluates to true iff

φ holds after at least one valid run of the hybrid program α.

Analogously, [α]φ is an universal operator that evaluates to

true iff φ holds after all valid runs of the hybrid program

α. [[α]]φ is a universal path operator that holds true iff during

all runs of the hybrid program α the condition φ is satisfied.

III. INTERFACING AVEREST AND KEYMAERA

Due to the combination of discrete and continuous dynamics,

most verification problems are undecidable for cyber-physical

systems. Even the simple reachability problem is undecidable

for most families of cyber-physical systems and the few
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Fig. 2. Idea of our Approach

decidability results depend on strong restrictions of either the

discrete or continuous component.

An interactive verification approach is pursued by the tool

KeYmaera that is especially suitable for verifying parametric

hybrid systems [26, 30]. Unfortunately, like most tools for

cyber-physical systems, KeYmaera focuses on the continuous

component, e.g. only real-valued variables can be modelled.

Furthermore, the tool still lacks good capabilities for modelling

the parallel composition of systems.

Recently, our research group proposed a new verification

approach for discrete Quartz programs (see Figure 2), which

is based on the Averest system. Assuming that the system

is given as a Quartz program, the user determines rules

based on the program structure which are then verified on

the intermediate code format AIF, that essentially is a set of

guarded actions. By rule applications, the guarded actions are

decomposed into smaller AIF files. The proof goals can also

be decomposed flexibly, so that the compositional reasoning

could be used for verification by the AIFProver, meaning that

already proved goals/assertions of some program fragments

can be used as assumptions for the remaining program frag-

ments. At the moment, this approach only supports discrete

Quartz programs.

In this section, we propose a way to integrate the contin-

uous component of Quartz programs into that framework by

interfacing the tool KeYmaera with AIFProver as depicted in

Figure 2. As already mentioned in the preliminaries, Quartz

and the underlying language of KeYmaera differ in major

points (especially the discrete semantics) which makes it

difficult to translate complete Quartz programs to KeYmaera.

Thus, we will interface Averest and KeYmaera such that proof

rules that depend on continuous transitions will be proved by

KeYmaera while the overall verification remains within the

Averest.

A. General Idea

Recall that continuous transitions of Quartz programs and

KeYmaera programs are based on quite different semantics.

t

x

t0

f0

t0 : zero-crossing point

t
′

0
: zero-touching point

t
′

0

f1

Fig. 3. Zero-Crossing and Zero-Touching Function

l , l ’:flow{

drv(x1) ← τ1; ...; drv(xn) ← τn;

}until(φ ≤ 0)

Fig. 4. Continuous Transition within Flow Statement

In Quartz programs, continuous evolutions must terminate

at exactly the first point of time, where an active release

condition evaluates to true. The continuous assertions given

in the form of constraints (which essentially correspond to

location invariants) do not influence the control flow of

the Quartz program and may be used only for verification

purposes. Thus, continuous transitions in Quartz programs

are completely deterministic. Contrary to that, continuous

transitions of KeYmaera programs are non-deterministic. They

must be terminated before active location invariants would be

violated, they may be terminated at any point of time before

that. There is no equivalent to our release condition.

In the following, we explain the general idea of how to

adapt continuous transitions in Quartz to KeYmaera and still

provide the required semantics. Assume for simplicity to have

a continuous transition (compare Figure 4) with only one

active release condition in the form of φ(t) ≤ 0 together

with the proof goal σ that shall hold true at the end of

the continuous transition, i.e. when the transition terminates

according to its release condition φ ≤ 0. Assume furthermore,

that the release function φ satisfies the condition, that it will

have a zero-crossing in finite time and that the first zero-

crossing point is a ‘real’ crossing point instead of only a

‘zero-touching’ point as depicted by the straight line in Figure

3. Then it holds, that for 0 ≤ t ≤ t0 the invariant φ ≥ 0
holds, while the same invariant will be violated for t > t0.

Thus, adding this invariant to the KeYmaera program as the

evolution domain of the continuous transition enforces the

transition to terminate at t0 at the latest while not changing

the transition otherwise.

Now, in order to enforce KeYmaera only to consider one

path, where the continuous transition terminates at time t0,

the proof goal σ at the end of the KeYmaera program must

be changed to φ ≤ 0 → σ. According to our assumption

w.r.t. the release function φ we know that at least one path

exists where the continuous transition terminates at t0. Thus,

φ ≤ 0 → σ evaluates to true iff σ holds on thepath we are

interested in.
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B. Transformation

Figure 5 shows the transformation of the continuous transition

of a macro step to an equivalent KeYmaera program according

to the ideas in the previous subsection. The left-hand side

of the figure depicts the continuous transition of the macro

step together with the given assumptions and proof goals

(assertions). The corresponding KeYmaera program (for ease

of notation without variable initializations) on the right-hand-

side is described in detail below. The transformation of the

continuous transition is divided into four parts:

• Initialization

Already obtained assumptions by the interactive verifica-

tion together with known initial values of the variables

are gathered in the assumption ψassume. Furthermore,

a new location label s := −1 is introduced that is

used for bookkeeping whether the continuous transition

has been terminated because of the release-conditions or

prematurely.

• Continuous transition

The differential equations of the hybrid variables can be

translated one-to-one. Ψ :=
∨

i

σi is the disjunction of all

active release conditions and states the termination crite-

rion for the continuous transition. As already sketched

previously, a set of location invariants Ψ̂ needs to be

added, that is determined by the active release conditions

Ψ:

For ease of notation assume that each single release

condition σ is a conjunction of basic expressions of

the form f(x0, .., xn) ≤ 0 or f(x0, .., xn) = 0. If

disjunctions occur, these can be dealt with in the same

way as several release conditions in parallel. Define now

for the first case

f̂i := f(x0, .., xn) ≥ 0

and for the latter case

f̂i := f(x0, .., xn)

{

≤ 0 : f(x0, .., xn) < 0 initially

≥ 0 : f(x0, .., xn) > 0 initially

Then, the release condition σ is replaced by σ̂ :=
∨

f̂i, as

the continuous transition must be terminated only, when

all of the basic expressions evaluate to true.

Several release conditions in parallel correspond to a

disjunction of these conditions, as it is only necessary that

at least one release triggers. Thus, the location invariants

determined by each single release condition must hold

true in parallel, i.e. Ψ̂ :=
∧

i

σ̂i

• Termination of the continuous transition

Lines 7 − 10 define the control flow of the program for

the next macro step. Depending on the fulfillment of the

active release conditions Ψ, new values of the location

variables are determined.

By definition, the continuous transition terminates due to

the release conditions iff Ψ :=
∨

i

σi evaluates to true.

Thus, the arc from line 7 − 9 will be executed iff the

continuous transition terminates because of the active

release conditions. For ease of notation, this information

is stored in the location label s, that is either set to 1 or

0, regarding to the termination condition.

• Proof goal assertion

The proof goal ψassert of the Quartz program must

evaluate to true iff the considered path terminated the

continuous transition according to the active release con-

ditions. Thus, it must be proved that s = 1 holds which is

enforced by the KeYmaera proof goal s = 1→ ψassert

C. Correctness

In this section, we present how to use the transformation given

in the previous subsection for the interactive verification. The

main difficulty lies within the different semantics of KeY-

maera and Quartz, namely the difference between determinism

(Quartz) and non-determinism (KeYmaera). These difficulties

have been dealt with by the introduction of the location

invariants Ψ̂ together with the additional location label s. The

following theorem now states the correctness of transfering the

proof results within KeYmaera back to the Quartz language.

Theorem. Consider a continuous transition in Quartz as

given in Figure 5 together with assumptions and proof goals

(assertions). Assume furthermore, that the release functions

of the continuous transition provide a real zero-crossing (see

Figure 3) and that the continuous transition will be terminated

in finite time t0. Then, the following holds:

1) The continuous evolution of the variables given by the dif-

ferential equations are analogous to the ones in Quartz.

2) The continuous transition of the KeYmaera program must

be terminated at the time 0 ≤ t ≤ t0 and after executing

the KeYmaera program, s = 1 holds iff t = t0, otherwise

s = 0.

3) If the goal s = 1→ ψassert is proven in KeYmaera, then

ψassert holds after the continuous transition in Quartz.

Proof.

1) Obvious.

2) The continuous evolutions of the hybrid variables are

equivalent within Quartz and KeYmaera. By assumption

t0 is the first point of time where an active release

condition evaluates to true. Thus, the location invariants

as defined in the previous section are satisfied for all times

0 ≤ t ≤ t0. Furthermore, according to the assumption

that the release conditions satisfy the condition as de-

picted in Figure 3, at least one of the location invariants

will be directly violated for t > t0.

Thus, the duration of the continuous transition of the

KeYmaera program can be any time t with 0 ≤ t ≤ t0.

The arc given in lines 7−9 will be executed iff at least one

release condition evaluates to true, i.e. if the continuous

transition of KeYmaera terminates at time t = t0. This

yields that after executing the program s = 1 holds iff

t = t0, otherwise s = 0.
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Assumptions

ψassume

Extended Finite State Machine

σ0

σ
n

drv(x0) < − τ0 ;...;
drv(xn) < − τn ;

release(σ0);...;
release(σn )

Proof goal

ψassert

1. \problem {
/* Initialization */

2. \ [ ψassume

3. ( s = −1
4. → \ 〈

/* Continuous transition */

5. { x
′

0 = τ0, ..., x
′

n
= τn, Ψ̂ } ;

/* Control flow assignment*/

6. if( Ψ ) then {
7. if(σ0) then l0 := 1 fi ; ... ;

8. if(σn) then ln := 1 else ℓn = 0 fi ;

9. s := 1
10. } else { s := 0 } fi

11. \ 〉
/* Proof goal assertion*/

12. ) ( (s = 1)→ ψassert )

13. }

Fig. 5. Continuous transition in Quartz together with the corresponding KeYmaera program

3) Since by assumption the continuous transition in Quartz

terminates at finite time t0, according to 2), there exists

exactly one path satisfying s = 1 after executing the

KeYmaera program, which corresponds to the continuous

transition in Quartz. Thus, if the condition s = 1 →
ψassert can be proven by KeYmaera, then ψassert holds

after the continuous transition within Quartz.

�

The first assumption, that the release functions have the

form as given in Figure 3 is not a severe restriction, as this

is the realistic behaviour in most cases and can be checked in

advance. The second assumption, that the continuous transition

terminates in finite time can directly be checked by KeYmaera,

by simply exchanging the proof goal to the existence of a path

satisfying s = 1 at the end (compare line 5 in Table I).

If one is interested in proving the continuous assertions of

Quartz programs, this can be achieved by replacing the proof

goal with the universal path operator as depicted in line 7 in

Table I.

IV. INTERACTIVE VERIFICATION

In this section, we apply the framework as depicted in Figure

2 to an adaptation of the well-known bouncing ball example.

While the bouncing ball itself is a standard example with rel-

atively simple continuous dynamics, the parallel composition

of a number of balls is difficult to model for most tools as

without a suitable compositional semantics the model suffers

severely from state space explosion.

Figures 6 and 7 depict the Quartz code of N parallel balls,

where N is an arbitrary parameter and the balls start from

arbitrary heights. In the main module the observer n_sum

counts the overall number of bounces of all balls, whereas the

module Ball models an individual ball.

The correctness of the implementation of this observer is

proved in two steps: In the first step, the correctness of the

counters of each single ball is proven. As the module Ball

works independently of the rest of the program and is stable

under parallel composition, this goal can be achieved by only

considering that submodule, disregarding of the number of

parallel balls (for more information on the stability of Quartz

programs under parallel composition compare [27]). In the

second step, the only proof goal is the correctness of the

overall observer, i.e. that for all times n_sum is defined as

the sum of the single observers.

A. Verification of a Single Counter

In Quartz programs, it is possible to have several variable val-

ues for the same physical point of time, as the semantics of the

language does not only consist of physical but also of logical

time. Therefore, the event of the ball hitting the floor cannot

simply be described by h ≤ 0. A good alternative is given by

‘the ball reaches the floor during a continuous transition, the

starting point may be in the air or directly after a bounce’.

The latter part is defined by σ := h=0 and v>0 or h>0,

whereas reaching the floor during the continuous transition is

defined by cont(h)<=0 and cont(v)<0. To prove the

correctness of the event description, it suffices to show, that

during any continuous transition satisfying σ, this condition

holds as an invariant for all points except the termination

point of the continuous transition. Thus, the event of hitting

the floor can only be triggered at the end of but not during

the continuous transition. In terms of Quartz, the first prop-

erty is expressed by σ-> constrainSM(cont(σ)). The

corresponding KeYmaera proof for the only flow statement is

depicted in Figure 8.

Define now NEXTSTEP(φ) as a macro for the

macro step following one, where a given condition

φ holds. Then, in a second step the global invariant

NEXTSTEP(h>0 and cont(h)<=0)->next(n)= n+1

is proven. Here, KeYmaera must prove that the release

condition cont(h)<=0 and cont(v)<=0 implies the

condition h>0 and cont(h)<=0, which is obviously the

case and omitted here. The rest of the proof rules will be

done by the AIFProver.
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module Ball(real ? init_h, ? init_v ,int n,) {

hybrid real h, v;

h = init_h ; v = init_v ;

loop{

flow {

drv(h) <- cont(v);

drv(v) <- -9.81;

} until(cont(h) <= 0 and cont(v) <= 0);

next(v) = -v/2.0;

next(n) = n + 1 ;

flow {} until(true);

}

}

Fig. 6. Hybrid Quartz Module One Ball

import BounceBall.*;

macro N = ?;

module NBalls([N]real ? InitH){

hybrid [N]real h, v;

[N]int n; int n_sum;

for(i=0..N-1) {h[i ] = InitH( i ) ; v[ i ] = 0.0; }

/* n parallel balls */

{for(i=0..N-1) do || Ball (h[ i ], v[ i ], n[ i ]) ;}

||

loop{

n_sum = sum(i =0..N-1 ) n[i ];

pause;

}

}

Fig. 7. Hybrid Quartz Module N Balls

1. \programVariables {
2. R h, v ;

3. R s, t ;

4. R l1 ,l2 ;

5. }
6. \problem {
7. (σ) ∧s = −1
8. → \ [

9. {h′ = v, v′ = −9.8, t′ = 1, h ≥ 0 ∨ v ≥ 0};
10. if(h = 0 ∧ v ≤ 0)

11. then l1 := 1; l2 := 0; s := 1
12. else s := 0
13. fi

14. \ ] (( s = 0 ) → ((σ) )

15. }

Fig. 8. KeYmaera Program for only Flow Statement

B. Verification of the Overall Counter

The verification of the overall counter is very simple, as

the single counters work correctly. As the counters are dis-

crete variables, it suffices to show that it holds globally

n_sum = n[1] + ... + n[N], which is easily done by

the AIFProver.

V. CONCLUSION

Quartz is a powerful synchronous language for the modelling

of cyber-physical systems with non-trivial discrete dynamics.

This language provides possibilities for the interactive ver-

ification of purely discrete programs based on the program

structure. In this paper, we presented how to combine the

modelling and discrete verification capabilities of Averest with

the verification capabilities of KeYmaera. To that end, we

interfaced KeYmaera and Averest and showed the capabilities

of this tool combination by interactively verifying a non-trivial

example.
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