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Abstract—2D color barcodes have been introduced to obtain
larger storage capabilities than traditional black and white
barcodes. Unfortunately, the data density of color barcodes is
substantially limited by the redundancy needed for correcting
errors, which are due not only to geometric but also to chromatic
distortions introduced by the printing and scanning process.
The higher the expected error rate, the more redundancy is
needed for avoiding failures in barcode reading, and thus, the
lower the actual data density. Our work addresses this trade-off
between reliability and data density in 2D color barcodes and
aims at identifying the most effective algorithms, in terms of byte
error rate and computational overhead, for decoding 2D color
barcodes. In particular, we perform a thorough experimental
study to identify the most suitable color classifiers for converting
analog barcode cells to digital bit streams.

I. INTRODUCTION

BARCODES are optical machine-readable representations

of data, capable of storing digital information. Barcode

data are represented as a sequence of bytes, which are then

mapped to analog signals (in this case, barcode elements)

and transmitted over a printing and scanning (Print&Scan)

channel which introduces noise, distortions and interference,

corrupting the transmitted signal (in this case, the barcode

image after scanning). At the receiver, the distorted barcode

is mapped back to bytes. The received binary information is

just an estimate of the transmitted binary information. Indeed,

byte errors may result due to the amount of noise encountered

in the transmission. Because noise and distortions always

occur in practice, as a result barcode reading algorithms have

to cope necessarily with errors, and the trade-off between

reliability and data density of barcodes is a significant design

consideration. To cope with errors, redundancy is added by

channel coding, which is a viable method to increase reliability

in a noisy communication channel (which in our case is rep-

resented by the Print&Scan channel) at the price of reducing

the information rate. The higher the expected number of errors

and the redundancy needed for coping with it, the lower the

actual data rate (in our case, the barcode data density).

Traditional barcodes, referred to as one-dimensional (1D)

barcodes, represent data by varying the widths and spacings

of parallel lines. The amount of digital information stored in

1D barcodes is limited and can be only increased by laying out

multiple barcodes. This approach has many negative effects,

however, such as enlarged barcode areas, more complex read-

ing operations, and increased printing costs. For this reason,

the barcode technology has been deploying geometric patterns

(such as squares, dots, triangles, hexagons) in two dimensions:

such barcodes are referred to as bidimensional (2D) codes.

Both the increasing demand for higher density barcodes and

the wide availability of on-board cameras in mobile devices

has motivated the need for 2D color barcodes, such as the

colored DataGlyphs developed at Xerox Parc [1], the High

Capacity Color Barcode (HCCB) developed at Microsoft Re-

search [2], [3], the high capacity color barcode technique

proposed in [4], and HCC2D, the High Capacity Colored

2-Dimensional code [5], [6]. Color barcodes generate each

module of the data area with a color selected from 2n-ary

schemes (e.g., 4-ary color schemes encoding 2 bit/module or

8-ary color schemes encoding 3 bit/module), where a module

(or cell) is the atomic information unit of a 2D barcode.

Since black and white codes encode 1 bit/module, in

principle the data density of a color barcode can be twice (4

colors) or three times (8 colors) as much as the data density

of the corresponding black and white barcode. However, the

actual capacity depends on the amount of redundancy added

to the barcode data for correcting errors, which occur due to

both geometric and chromatic distortions introduced by the

Print&Scan channel. Since colors are more sensitive to the

distorsions introduced by the channel, the measured error rate

of color barcodes can be significantly larger than the measured

error rate of black and white barcodes, all other conditions

being equal (i.e., when all barcodes are generated, printed

and scanned under same conditions, such as module size,

amount of redundancy, printing and scanning resolutions). In

our experiments, under the same operating conditions, black &

white QR codes had an average byte error rate of roughly 2%

while their 4-color counterpart (HCC2D codes) had an average

byte error rate of roughly 10%. In this framework, the higher

error rates of color barcodes can be mitigated by the use of

larger redundancies in the coding, which in turn may reduce

substantially the higher data densities potentially offered by

color barcodes, thus reducing their benefits. For instance, in

order to tolerate a byte error rate of 2%, we need to reserve

at least 4% of the barcode area for an error correction code

(such as Reed Solomon), thus obtaining less than 96% for its

data density, while a 10% byte error rate implies that at least

20% of the barcode area must be used for error correction,

reducing its data density to less than 80%.

In this paper we tackle this problem by designing and

experimentally evaluating algorithms for retrieving digital data

from color cells undergoing chromatic distorsions (due to

printing and scanning), so as to minimize their error rates. In

particular, we perform an experimental study of the practical

performance of several color classifiers and clusterers for

converting analog barcode cells to digital bit streams. This

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 611–618

978-1-4673-4471-5/$25.00 c© 2013, IEEE 611



allows to identify the most effective algorithms for decoding

color barcodes in terms of their error rate and their total

running times. Moreover, we investigate the trade-off between

redundancy and data capacity for 2D color barcodes. This

allows to optimize the data storage, addressing the need for

high density barcodes (capable of storing as much information

as possible in as small an area as possible).

To accomplish this task, we have developed a prototype

capable of using different algorithms for color classification.

We have chosen algorithms so that they are representative of

general classes, such as minimum distance classifiers, decision

trees, clustering, probabilistic classifiers and support vector

machines. Our experimental findings show that the impact

of different color classifiers on the error rate achieved in

decoding can be significant. Furthermore, the use of more

complex techniques, such as support vector machines, does

not seem to pay off, as they do not achieve better accuracy

in classifying color barcode cells. The lowest error rates

are indeed obtained by means of clustering algorithms and

probabilistic classifiers. From the computational viewpoint,

classification with clustering seems to be the method of choice,

since it is simple and it does not need time consuming training

phases.

II. RELATED WORK

To the best of our knowledge, there is little research in the

literature on the color classification for 2D color barcodes. One

of the first reported attempt to use color in a 2D barcode can

be found in a patent by Han et al. [7], who used reference

cells to provide standard colors for correct indexing. Bulan

et al. [4] proposed to embed data in two different printer

colorant channels via halftone-dot orientation modulation, that

is, to print two colors at the same spatial location. This allows

to nearly double the capacity of black and white barcodes,

which is equivalent to use a 4-ary color scheme for encoding

2 bit/module. This work was extended in [8] by using three

instead of two colorant layers and a interference mitigating

design of the orientations of the three colorants to improve

capacity. Microsoft HCCB uses a grid of colored triangles

to encode data, using a palette of 4 or 8 colors (4-ary color

or 8-ary color scheme). HCC2D, the High Capacity Colored

2-Dimensional Barcode [5] uses a grid of colored squares

(using a palette of 4 or 8 colors) and has a symbol structure

which builds upon a QR code [9] basis for preserving the QR

robustness to distortions. Different color barcode technologies

adopt different stategies for classifying colors, that is, for

converting analog barcode cells to digital bit streams. For

instance, the strategy adopted by the Microsoft HCCB decoder

is to make use of a color palette, while Bagherinia and

Manduchi [10] proposed an algorithm for decoding barcode

elements in a color barcode that does not display its reference

colors.

Despite the increasing interest in color barcodes, we are not

aware of any previous attempt at performing a comparative

analysis of the performance of different methods for color

classification in this framework, which is the main contri-

bution of our work. Experimentation in color classification

has been previously addressed in other domains such as

color recognition of objects in indoor and outdoor images

[11], color recognition of license plates [12] or skin color

detection in face localization and tracking [13] [14], where,

similarly to our problem, there is the need to discriminate

among different classes of color pixels. We emphasize that

results from other domains (e.g., pixel classification into skin

color and non-skin color) do not necessarily carry through the

classification of color cells in barcodes, because the underlying

conditions are rather different. Indeed, color classification in

2D barcodes mainly focuses on classifying color cells with

minimal size (e.g., thousands cells per square inch) after

undergoing a printing and scanning process, while in other

domains color elements have other characteristics (e.g., colors

in video frames representing natural images). Furthermore,

the effective decoding of color barcodes requires much more

accuracy and precision than the other applications considered

for color classification.

III. 2D COLOR BARCODES

In this section, we introduce 2D color barcodes, which take

advantage of colors for achieving higher data density than

black and white barcodes. This is obtained at the price of

coping with chromatic distortions during decoding. In order

to introduce the typical decoding process of a color barcode,

we describe next the HCC2D code, which will be used as

a paradigmatic example throughout the rest of the paper.

We remark that most of the findings reported in this paper

about color classification for HCC2D codes apply to color

classification for other 2D color barcodes as well.

A. The HCC2D code

In this section, we describe our HCC2D code, a 2D color

barcode which is made of a matrix of square color cells,

whose color is selected from a color palette. Figure 1 illustrates

samples of HCC2D codes with 4 and 8 colors.

Fig. 1. Samples of the High Capacity Colored 2-Dimensional code (HCC2D):
(a) 4 colors and (b) 8 colors. Figure taken from [5]. (Viewed better in color).

We have designed the HCC2D format with the main goal of

increasing the data density while preserving the strong robust-

ness to distortions of Quick Response (QR) codes. QR codes

are black and white 2D barcode designed by the Japanese

corporation Denso Wave which are quite widespread among
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Fig. 2. Structure of generic QR codes and HCC2D codes, which inherit all
function patterns of QR codes.

2D barcodes, because their acquisition process appears to be

strongly reliable, and are suitable for mobile environments,

where this technology is rapidly gaining popularity.

Structure of QR codes, and consequently, of HCC2D codes

is illustrated in Figure 2, being composed of Function Patterns

and Encoding Regions. The Position Detection Patterns, the

Alignment Patterns, the Timing Patterns, and the Separators

for Position Detection Patterns support the detection process

in detecting the presence, the proper orientation and the correct

slope of a code into an image. The Format Information

describes the error correction level used in the code. As

previosly introduced, the higher the correction level, the higher

the redundancy and the reliability of the barcode reading

process, but the lower the actual data density rate. The Version

Information represents the code size, that is, the amount of

cells (per side) making up the code. Note that the Version

Information alone does not determine the final print out size

(expressed in inch2 or cm2), which also depends on hardware

parameters, that is, on the printing resolution and on how many

printer dots make up each color cell. Finally the Data and

Error Correction Codewords contains data plus redundancy.

We designed the HCC2D code preserving all the Function

Patterns, the Format Information and the Version Information

defined in the QR code. Maintaining the structure and the

position of such patterns and critical information allows the

HCC2D code to preserve the strong robustness to geometric

distortions of QR code. Because the retrieval of the Format

Information and of the Version Information is a crucial step

during the decoding phase (it may led to reading failures)

and its storage requirement is small, there is no significant

advantage representing it by color cells. The most important

changes are gathered in the Data and Error Correction Code-

words area. The most noticeable difference with a QR code is

that the modules belonging to the Data and Error Correction

Codewords area are of different colors; in a HCC2D code

with a palette composed of 4 colors each module is able to

encode 2 bit/module, while 3 bit/module are stored using 8

colors. Introducing colors in the Data and Error Correction

Codewords area requires to address some issues, which we

have described in details in [5]. Consider that during QR

code reading only the brightness information is taken into

account, while HCC2D codes have to cope with chromatic

distortions during the decoding phase. Since the Encoding

Region is made of color cells, the HCC2D decoder needs

to know the complete color palette in order to decode the

symbol. To consider the color palette as an a priori shared

knowledge between encoding and decoding processes is not a

reliable solution; this is because chromatic distortions would

not be properly taken into account, arising differently in each

printed and scanned image. The processing should be adaptive

to each image for better performance. To make a parallelism

with black and white barcodes, QR codes compute an adaptive

threshold on each image for discriminating dark and light

modules, rather than using static thresholds.

In order to ensure adaptation to chromatic distortions arisen

in each scanned code, we have introduced in the HCC2D code

an additional field, the Color Palette Pattern. This is because

color cells of a Color Palette Pattern are supposed to be

distorted in the same way color cells of the Encoding Region

are. We make use of replicated color palettes either for clus-

ter initialization or for training machine learning classifiers.

Figure 3 illustrates Color Palette Patterns in HCC2D codes,

located at the boundaries. Note that the Color Palette Patterns

are not too close to the three Position Detection Patterns areas

and are far away from each other, thus ensuring that they are

robust to local distortion. Furthermore, Color Palette Patterns

take only 2 rows and 2 columns from a symbol consisting of

between 21 and 177 rows and columns, and thus, the overhead

is small for high density barcodes.

Fig. 3. The four Color Palette Patterns are pointed out in a HCC2D code
using 8 colors. Figure taken from [5]. (Viewed better in color).

IV. COLOR CLASSIFIERS FOR 2D COLOR BARCODES

Since the printing and scanning processes introduce chro-

matic distortions in color barcodes, the decoding success rate

depends on the capacity to correctly classify colors of barcode

cells. A barcode cell is correctly classified if its original color

(before printing) and the class assigned by the classifier to the

cell (after scanning) corresponds to each other. A classifier is

an algorithm that distinguishes between a fixed set of classes

based on labeled training examples. Algorithms reading black

and white barcodes may just use a threshold to separate the

two classes (that is, dark and light elements), while cells of

color barcodes need to be properly classified in many classes,
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depending on the number of colors. We distinguish 4 or 8

classes (each representing a reference color) into which color

pixels may fall, where each pixel is sampled from a cell of

the 2D color barcode to decode. Each class reference color

is associated with either a 2-bit sequence or a 3-bit sequence.

The sequence length depends on how many bits are modulated

into each barcode cell (as previously introduced, 4-ary color

schemes encode 2 bit/module, while 8-ary color schemes

encode 3 bit/module). Because no classifier is perfect, it

is important to know whether a classifier is producing good

results on real data sets.

A color classifier may have a training phase and a classi-

fying phase. In the training phase, the classifier is provided

with known samples. A known sample consists of a region in

the barcode image containing the color to be learned and the

corresponding label for that color. For every sample that is

added during the training phase, the color classifier computes

a color feature and assigns the associated class label to it. A

color feature vector (to which a barcode cell is associated with)

depends on the color space in which the image is encoded.

Usually colors are defined in three dimensional color spaces.

For instance, these could either be RGB (Red, Green and

Blue) or YUV. The Y in YUV stands for “luma”, that is

brightness (for instance, black and white TVs decode only the

Y channel of the signal). U and V provide color information

and are “color difference” signals of blue minus luma (B-Y)

and red minus luma (R-Y). Without loss of generality, assume

that each color feature is a represented as a three-dimensional

vector in the YUV color space, because the high correlation

between RGB channels and the mixing of chrominance and

luminance data does not make RGB a very favorable choice

for color analysis and color-based recognition algorithms [13].

When all the trained samples (color feature with a label) are

added to the classifier, we get a trained color classifier. After

the training phase, barcode cells are classified into their cor-

responding color classes. In the classifying phase, the trained

classifier is used on new observations (color features without

labels). The classification engine calculates color features of

unlabelled samples and classifies them, by associating a label

(in our case, a color class) with each unlabelled color element.

Once the classification is completed, the original bitstream

(which was previously encoded in the 2D barcode) can be

retrieved. This is made by concatenating bits from each bit

sequence associated with a barcode cell, where the mapping

between a barcode cell and a bit sequence is given by the

classification output. For instance, without loss of generality,

assume that a 2D color barcode is encoding 2 bit/cell by

using 4 different reference colors (e.g., black, cyan, magenta

and white). Then, assume that each reference color is mapped

to a binary sequence (e.g., black is mapped to {11}, cyan

to {10}, magenta to {01} and white to {00}). Under these

assumptions, a dark cell carries the bit sequence {11} whether

the cell is labelled with the black class by the color classifier.

Because a percentage of color cells is always misclassified in

real scenarios, bit errors arise, and thus, original bit stream

and decoded bit stream slightly differ from each other.

As previously mentioned, channel coding techiques are

capable of correcting errors and restoring the original bit

streams, under the assumption that the redundancy introduced

in the encoding phase is enough. The main problem considered

here is how much redundancy can be sufficient for 2D color

barcodes. This depends on many parameters, including the

algorithms used for color classification. In order to estimate

the most suitable redundancy rate (RR), we implemented five

different methods for color classification, each of them being

representative of a general class of algorithms (minimum

distance classifiers, decision trees, clustering, probabilistic

classifiers and support vector machines), and measured their

error rates. Next, we briefly describe these five algorithms.

A. Minimum Distance Classifiers (Euclidean distance)

Minimum distance classifiers assign unlabelled samples to

classes which minimize the distance between unlabelled data

and classes in the feature space. The distance is defined as an

index of similarity so that the minimum distance is identical to

the maximum similarity. We have used the Euclidean distance

(in RGB, YUV, ...) for identifying similar colors (that is, colors

with minimum distance), because it is one of the simplest

and most popular distance measures. This can be taken as

a basic reference method in our experiments: it is a very

simple-minded method, and thus we expect all other methods

to produce much lower error rates but to be much slower in

their running times.

B. Decision Trees (LMT)

A decision tree is a classifier in the form of a tree structure,

where each node is either a leaf node (which indicates the

value of the target class) or a decision node, which specifies

some test to be carried out on a single feature value, with

one branch and sub-tree for each possible outcome of the test.

There are a variety of algorithms for building decision trees;

we have used the Logistic Model Trees (LMT), because they

have been shown to be very accurate and compact classifiers.

As in ordinary decision trees, a test on one of the attributes

is associated with every inner node. Unlike ordinary decision

trees, the leaves have an associated logistic regression function

instead of just a class label.

C. Classification using Clustering (K-means)

Clustering is the task of assigning a set of objects into

groups (denoted as clusters) so that the objects in the same

cluster are more similar to each other than to those in other

clusters. Hence, color cells are classified once clustering is

completed. Clustering itself is not one specific algorithm, but

the general task to be solved. It can be achieved by various

algorithms that differ significantly in their notion of what

constitutes a cluster and how to efficiently find them. We

have used the K-means algorithm, which is an unsupervised

learning algorithm that classifies a given data set through a

certain number of clusters (exaclty k clusters) fixed a priori.

Using the K-means algorithm, we can exploit the a priori

knowledge about the number of colors in color palettes, so
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that the algorithm generate exactly 4 or 8 clusters. The starting

points (for centroid initialization) can be taken by averaging

the series of color palettes.

D. Probabilistic Classifiers (Naive Bayes)

A probabilistic classifier is a function that maps an unla-

belled sample to a distribution over class labels. There are a

variety of probabilistic classifiers; we have used the Naive

Bayes algorithm because it only requires a small amount

of training data to estimate the parameters. A Naive Bayes

classifier is a simple probabilistic classifier based on applying

Bayes’ theorem with strong (naive) independence assumptions.

In simple terms, a Naive Bayes classifier assumes that the

presence (or absence) of a particular feature of a class is

unrelated to the presence (or absence) of any other feature.

For example, assume that a color cell (in YUV space) is

represented by luma (Y value) and by chroma (U and V

values). Even if these luma and chroma values depend on each

other, a Naive Bayes classifier considers all of these properties

to independently contribute to the probability that this color

cell is of a given color. The Naive Bayes classifier can be

trained very efficiently in a supervised learning setting, using

in our case a trained set of known samples taken from the

color palette patterns.

E. Support Vector Machines (SVM)

Support vector machines (SVM) are supervised learning

models, that is, machine learning tasks of inferring a function

from labeled training data (in our cases, labelled color cells be-

longing to color palettes). A support vector machine constructs

a hyperplane or set of hyperplanes in a high dimensional space

(in our case, a three-dimensional color space such as RGB

or YUV), which can be used for classification. Intuitively, a

good separation is achieved by the hyperplane that has the

largest distance to the nearest training data point of any class

(denoted as functional margin), since in general the larger

the margin the lower the error of the classifier. We have

used the Sequential Minimal Optimization (SMO) algorithm

for training support vector machines. This is because SMO

efficiently solves the optimization problem which arises during

the training, avoiding the use of time-consuming numerical

optimizations.

V. EXPERIMENTATION

We developed a prototype for generating and acquiring

HCC2D codes. Even if we restricted our experiments to

HCC2D codes only, most of the results (in relative terms) can

be generalized to the color classification of any other color

barcode. This is due the fact that our experiments focused

only on the color classification task.

Barcode reading requires a detection and a decoding phase,

where color classification is only one part of the decoding

phase. The risk is that errors arising in steps other than color

classification may affect the experimental results in an unpre-

dictable way. To prevent this, we proceeded as follows. Even

if many factors other than the classification algorithm affect

the experiment (e.g., the specific hardware involved, routines

for detecting or for sampling color cells which are specific to

HCC2D codes), their impact has been kept constant through

the use of a common set of barcode scans as input for each

classifier, along with the use of common routines for every

processing step other than color classification (such as image

processing, barcode detection or grid sampling routines). For

this reason, even if results of our experiments (in absolute

terms) depend on the hardware involved and on the HCC2D

code, the relative performance of the algorithms considered

seems to be of more general extent.

A metric that we adopt is the byte error rate (ByER). By

definition the byte error rate is the ratio of the number of in-

correctly received bytes compared to the total number of bytes

transmitted. It depends on characteristics of the channel such

as the signal-to-noise ratio (SNR) at the reveiver and on the

accuracy of the “sensors”. In our case, the unreliable channel

is a printing and scanning channel, while the “sensors” are

represented by the classification algorithms and their accuracy

is our parameter of interest. We performed an experiment for

computing performance statistics for byte error rates (ByER)

and computational time of classifier algorithms. By computing

these error rate statistics, we are able to identify the most

effective color classifier and the most suitable redundancy rate

(RR) for it. This allows us to optimize the data rate (DR), that

is, the actual data density of color barcodes.

A. Experimental Set-up

We collected 100 barcode scans which make up the sample

upon which performance statistics (such as the mean error rate)

are computed for each of the 5 methods. Our experimental set-

up is as follows:

• We collected 100 barcode scans from real-life appli-

cations. Each barcode underwent a real printing and

scanning process (i.e., no artificially distorted barcodes).

• Each scan was decoded by each one of the 5 classifiers.

• Color barcodes were printed and scanned at 600 dpi.

• The print out size of each code was 1 square inch.

• The size of each color cell was 4× 4 printer dots.

• Each code was made up of 149 × 149 cells (out of

which we had 512 known color cells to use for training

classifiers and 19,720 color cells to classify).

• Each code stored 4,930 bytes in 1 square inch, consider-

ing data and redundancy from error correction.

• Each code used 4 colors for encoding 2 bit/module.

• Color features were expressed in the YUV space, because

the explicit separation of luminance and chrominance

components makes this colorspace more attractive for

color analysis.

• Codes stored different input data so that results were not

dependent on the specific barcode instance.

All our experiments were run on a low-end machine

equipped with OS Linux Debian 6.0 running on a 1.73 GHz

Intel dual core with 2 GB RAM. Documents were printed and

scanned on low cost color laser multifunction printers.
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TABLE I
SUMMARY STATISTICS FOR BYER CORRESPONDING TO EACH OF THE

STUDIED ALGORITHMS.

Mean 99% Confidence Standard Standard Standard

Interval for Mean Deviation Skewness Kurtosis

Euclidean 0.0956 0.0956± 0.0160 0.0610 5.8994 4.8087
LMT 0.0851 0.0851± 0.0177 0.0675 7.4592 6.9833

K-means 0.0454 0.0454± 0.0097 0.0369 5.7278 4.0926
Naive Bayes 0.0621 0.0621± 0.0124 0.0473 8.0778 8.9108

SVM 0.0809 0.0809± 0.0131 0.0500 3.8256 0.6889

B. Experimental Results

We now turn to the experimental results, by starting with

the analysis of the byte error rates (ByER). We remark that

in the application at hand, the byte error rate (ByER) is more

meaningful than the bit error rate (BER). This is due to the

fact that 2D barcodes use block error correcting codes, such

as Reed Solomon codes (rather than codes protecting against

single bit errors), since they have to withstand accidental

damages such as ink spots, affecting a contiguous portion of

the barcode.

A Box-and-Whisker plot for ByER data is depicted in

Figure 4. Box-and-Whisker plots are convenient way of graph-

ically depicting groups of numerical data through their five-

number summaries: the smallest observation (sample mini-

mum), lower quartile (Q1), median (Q2), upper quartile (Q3),

and largest observation (sample maximum). Quartiles are the

three points that divide the data set into four equal groups, each

representing a fourth of the population being sampled. The red

cross indicates the mean. Outliers, which are observations that

are numerically distant from the rest of the data, are depicted

too. They are often indicative either of measurement error or

that the population has a heavy-tailed distribution.

Fig. 4. Box-and-Whisker plot indicating the smallest observation, lower
quartile (Q1), median (Q2), upper quartile (Q3), and largest observation.
(Viewed better in color).

The shape of each distribution is asymmetric and with

several strong outliers. Table I show summary statistics for

ByER corresponding to each of the studied algorithms. It

includes measures of central tendency, measures of variability

and measures of shape. It turns out that the most effective

algorithm (with the smallest mean and standard deviation)

is the K-means clustering algorithm. The ByER of K-means

is 4.54% on average; this sample mean, which has been

computed on a basis of 100 input images, is close but different

from the true mean of the distribution. We have computed

the 99.0% confidence intervals for the mean of each ByER

distribution, which are reported at the corresponding column

in Table I. The classical interpretation of these intervals is

that, in repeated sampling, these intervals will contain the true

mean of the population from which the data come 99.0%

of the time. In practical terms, we can state with 99.0%

confidence that the true K-means ByER is somewhere between

0.0357 and 0.0551. Even if these intervals assume that the

population from which the sample comes can be represented

by a normal distribution (which is not the case here), the

confidence interval for the mean is quite robust and not very

sensitive to violations of this assumption. Confidence interval

for the standard deviation would be quite sensitive, and thus,

they are not computed. Of particular interest here are the

standardized skewness and standardized kurtosis (reported at

the last columns of Table I), which can be used to determine

whether the sample comes from a normal distribution. Values

of these statistics are outside the range of -2 to +2, indicating

significant departures from normality. Figure 5 illustrates per-

centiles of ByER distributions. Percentiles are values below

which specific percentages of the data are found.

Fig. 5. Percentiles for ByER data of each algorithm. (Viewed better in color).

We can interpret the percentile plot as follows. Consider

the 90-th percentile (the value below which 90% of the cases

fall) for K-means ByER, its value being 0.0971. This means

that 90 barcodes out of 100 would be decoded if the symbols

were robust to ByER up to the 90-th percentile (≈ 9.71%).

If the K-means algorithm is used for color classification, we

may state that Prob(ByER < 10%) ≈ 90%, even if this is

just an estimation of the probability on the basis of ByER data

collected. Consider that if locations of errors are not known in

advance, then a Reed Solomon code can correct half as many

errors as there are redundant symbols. For this reason, in order

to achieve a success rate of 90%, the redundancy rate (RR)

should be around twice the 90-th percentile (RR ≈ 19.42%).

Data Rate (DR) is therefore reduced to the 80.58% of the

overall capacity. Because HCC2D codes are capable of storing

4,930 bytes/inch2 (data plus redundancy), this would results

in an effective data density of 3,972 bytes/inch2 with a

success rate of 90%. Table II shows this trade-off between

data density and reliability (in terms of success rate) for each

method. Error rates to tolerate for achieving the target success

rate are illustated for three levels (80%, 90% and 95%), along

with the corresponding data rate (DR), which is expressed

as ratio of data bytes to overall bytes (data plus redundancy

bytes). Redundancy rate (RR) is omitted being exactly twice
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TABLE II
PERFORMANCE AS FUNCTION OF SUCCESS RATE FOR BARCODE READING.

Error Effective Effective
Rate to Data Data
Tolerate Rate Density
(ByER) (DR) bytes/inch2

85% Success Rate

Euclidean 0.1547 0.6906 3,404.65
LMT 0.1399 0.7202 3,550.58

K-means 0.0837 0.8326 4,104.71
Naive Bayes 0.1081 0.7838 3,864.13

SVM 0.1320 0.7360 3,628.48

90% Success Rate

Euclidean 0.1723 0.6554 3,231.12
LMT 0.1717 0.6566 3,237.03

K-means 0.0971 0.8058 3,972.59
Naive Bayes 0.1190 0.7620 3,756.66

SVM 0.1463 0.7074 3,487.48

95% Success Rate

Euclidean 0.2223 0.5554 2,738.12
LMT 0.2511 0.4978 2,454.15

K-means 0.1126 0.7748 3,819.76
Naive Bayes 0.1755 0.6490 3,199.57

SVM 0.1818 0.6364 3,137.45

the ByER to tolerate (because of the Reed Solomon code). Fi-

nally, barcode data density is expressed in terms of data bytes

per square inch. In order to state that K-means outperforms

the other 4 algorithms, we did not just rely on data shown in

Table II; we have addressed the statistical significance of our

experimental results. Statistical hypothesis testing is used to

determine whether an experiment conducted provides enough

evidence to reject a null hypothesis. We are interested to

reject the null hypothesis for which there is no (statistically

significant) difference among the ByER distributions related to

the 5 classifiers. We can consider ByER distributions two-by-

two as paired samples. “Paired”samples means there are two

measurements on each sample unit, e.g., measurements on the

same subject before and after an intervention. This is the case

here, because there are measurements on the same barcode

scan before and after the “intervention” (i.e., substitution of

the color classifier). We have run paired tests on these samples

such as the sign test and the Wilcoxon signed-rank test, for

testing the null hypothesis that there is “no difference in

medians” between the distributions.

The result of each test is denoted as P-value, which is the

probability of obtaining a test statistic at least as extreme

as the one that was actually observed, assuming that the

null hypothesis is true. If the P-Value is under 0.01, the

medians of the samples are significantly different at the 99.0%

confidence level. For instance, running the Wilcoxon test on

the Naive Bayes ByER distribution and on the K-means ByER

distribution results in a P-Value of 1.03 · (10−9) ≪ 0.01.

Running paired tests on ByER distributions taken two-by-two

as paired samples, we have rejected all null hypotheses but

one; we can say nothing about the performance difference

between logistic model trees and support vector machines.

Values computed on 100 barcode scans suggest that SVM has

smaller average ByER than LMT, but the difference was found

not to be significant (P-value resulting from the Wilcoxon

signed-rank test is 0.7413 ≫ 0.01 and from the sign test is

0.6170 ≫ 0.01). We cannnot use more powerful statistical

tests (parametric tests such as the t-test) because the normality

assumption would be violated. In summary, we can state that,

at the 99.0% confidence level, K-means outperforms Naive

Bayes, which in turn outperforms support vector machines

and logistic model trees, which in turn outperform Euclidean

classifiers.

Finally, we address the computational overhead introduced

by the color classifiers considered. We stress that the overall

running time is important, since in many applications a color

barcode can be decoded on low-end devices, such as mobile

phones or tablets. Figure 6 illustrates the Box-and-Whisker

plot for computational time distributions (the sample size is

100 elements for each method). As expected, the Euclidean

classifier is the simplest and fastest algorithm among the

studied methods; it is capable of classifying 19,720 color

cells in a few milliseconds. In our experiments, the K-means

algorithm was also fast (order of milliseconds), while all other

classifiers had a much higher computational overhead, as they

required up to several seconds for the classification phase.

Fig. 6. Box-and-Whisker plot for computational time. (Viewed better in
color).

C. Experiments with Mobile Phones

In this section we extend the experiments carried out

previously on desktop scanners to other devices, such as

mobile phones. The experimental setup is the same as in our

previous experiment except that we use mobile phones (such

as Samsung Galaxy and Google Nexus 4) for reading color

barcodes and that we increase the print out size to 1.5 inch

per side (with a cell size of 6 × 6 printer dots), in order to

allow the camera focus to work properly.

TABLE III
SUMMARY STATISTICS FOR BYER DATA RELATED TO BARCODE READING

BY MOBILE PHONES.

Mean 99% Confidence Standard Standard Standard

Interval for Mean Deviation Skewness Kurtosis

Euclidean 0.1065 0.1065± 0.0382 0.1457 7.4383 5.4823
LMT 0.0851 0.0851± 0.0294 0.1122 9.3484 11.380

K-means 0.0832 0.0832± 0.0454 0.1729 15.406 31.354
Naive Bayes 0.1293 0.1293± 0.0329 0.1255 6.8177 6.0854

SVM 0.1023 0.1023± 0.0266 0.1016 8.1937 10.373

Table III reports, with exactly the same format used in Table

I, the results of our experiments with mobile phones. It can be

seen that the average error rate and the standard deviation are

larger (in absolute value) for mobile phones than for desktop
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Fig. 7. Box-and-Whisker plot for ByER data related to barcode reading by
mobile phones. (Viewed better in color).

Fig. 8. Percentiles for ByER data related to barcode reading by mobile
phones. (Viewed better in color).

scanners. This is due to the fact that desktop scanners have

controlled light intensity, while pictures taken from phone

cameras present a much larger variation in light conditions.

Beside the absolute values of error rates, which are depen-

dent on the specific devices used for printing and scanning,

it can be seen that, in any case, the choice of the classifier

has a non-negligible impact upon the error rate distribution.

Figure 7 illustrates, similarly to Figure 4, the Box-and-Whisker

plot for byte error rate in mobile environment. The K-means

algorithm is still the most effective, even if not as effective

as in the previous experiment, because there are few cases in

which the initial centers do not allow K-means to converge

to the optimal solution. This situation occurs especially in

case of strongly non-uniform illumination of the barcodes.

Analogously to Figure 5, Figure 8 illustrates percentiles of

ByER distributions, showing that the K-means curve tends

to perform quite well in comparisons with the other curves,

except for the fact that there are few observations with high

error rates (the far right of the curve) in which the algorithm

does not converge to the solution.

VI. CONCLUSIONS AND FUTURE WORK

Our work addressed the trade-off between reliability and

data density in 2D color barcodes, performing an experi-

mental study in both desktop and mobile environments. The

experimentation showed that the impact of the choice of the

color classifier on the error rate is significant and that more

complex classifiers do not necessarily achieve better accuracy

in classifying color barcode cells. By means of this study, we

identified the most suitable ways to convert analog color cells

to digital bit streams. We have so far used the same algorithms
in both desktop and mobile environments; those methods were

found to be more suitable for desktop settings than for mobile

scenarios.

For future work, we see a number of interesting directions

where our study maybe extended, in particular for mobile

devices. An important extension of this work will be to design

specific approaches to decode color barcodes acquired by mo-

bile phones. Optimizations for the mobile scenario will attempt

to minimize the error rate by taking into account models

of light variation for addressing the problem of strong non-

uniform illumination, which is significant in mobile scenarios.

Furthermore, this study could be extended to barcodes that use

8 instead of 4 color classes.
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