
Ontology of architectural decisions supporting

ATAM based assessment of SOA architectures

Piotr Szwed∗, Paweł Skrzynski∗, Grzegorz Rogus∗ and Jan Werewka∗

∗AGH University of Science and Technology

Department of Applied Computer Science

Email: {pszwed,skrzynia,rogus,werewka}@agh.edu.pl

Abstract—Nowadays, Service Oriented Architecture (SOA)
might be treated as a state of the art approach to the design and
implementation of enterprise software. Contemporary software
developed according to SOA paradigm is a complex structure,
often integrating various platforms, technologies, products and
design patterns. Hence, it arises a problem of early evaluation
of a software architecture to detect design flaws that might
compromise expected system qualities. Such assessment requires
extensive knowledge gathering information on various types of
architectural decisions, their relations and influences on quality
attributes. In this paper we describe SOAROAD (SOA Related
Ontology of Architectural Decisions), which was developed to
support the evaluation of architectures of information systems
using SOA technologies. The main goal of the ontology is to
provide constructs for documenting SOA. However, it is designed
to support future reasoning about architecture quality and for
building a common knowledge base. When building the ontology
we focused on the requirements of Architecture Tradeoff Analysis
Method (ATAM) which was chosen as a reference methodology
of architecture evaluation.

Index Terms—software architecture, ontology, SOA, ATAM,
architecture assessment, architecture evaluation, enterprise ar-
chitecture

I. INTRODUCTION

N
OWADAYS, Service Oriented Architecture (SOA) might

be treated as a state of the art approach to the design

and implementation of enterprise software, which is driven

by business requirements. Within the last decade a number

of concepts related to SOA have been developed, including

ESB (Enterprise Service Bus), web services, design patterns,

service orchestration and choreography and various security

standards. Due to the fact that there are many technologies

that cover the area of SOA, the development and evaluation

of SOA compliant architectures is especially interesting.

SOAROAD has been designed as a methodology for the

assessment of software architectures developed according to

SOA principles. It is based on the Architecture Tradeoff Anal-

ysis Method (ATAM) [11], [5], which is a mature, scenario-

based, early method for architecture assessment. ATAM de-

fines a quality model, an organizational framework for evalu-

ation process and expected results: sensitivity points, tradeoffs

and risks. A limitation of the ATAM method is that it depends

on experts knowledge, perception and previous experience. It

This work was supported from AGH University of Science and Technology
under Grant No. 11.11.120.859

may easily happen, that an inexperienced evaluator overlooks

some implicit decisions and risks introduced by them.

In the SOAROAD approach the very basic set of ATAM

terms used to describe architecture is enriched by including

common terminology and relationships between concepts re-

lated to various aspects of service oriented architecture design

and development. The gathered knowledge, formalized as

an ontology, facilitates performing an assessment in more

exhaustive manner, helping to ask questions, revealing implicit

design decisions and obtaining more reliable results.

The contribution of the paper is a proposal of a SOAROAD

ontology as a tool supporting scenario based assessment of

systems following a service-orientation paradigm and service

design, development and deployment.

II. RELATED WORKS

Architecture evaluation has attracted many researchers and

practitioners during the last 20 years. A survey paper on this

topic [18] lists 37 methods of architecture evaluation, classify-

ing them according to two dimensions: location in the software

lifecycle (early vs. late) and element being analyzed (system

architecture, isolated architectural style or a design pattern).

The paper suggests that scenario-based methods, including

SAAM [12] and ATAM [11], [5] can be considered as a

mature, reliable and easy to implement in practical situations.

There are several reports on successful applications of ATAM

for assessment of a battlefield control system [13], wargame

simulation [10], product line architecture [8], control of a

transportation system [3], credit card transactions system[16]

and a dynamic map system [21]. Recently, a few extensions

of ATAM were proposed, including a combination with the

Analytical Hierarchy Process [24] and APTIA [14].

The application of ontologies to provide a systematic and

formal description of architectural decisions was first proposed

by Kruchten in [15]. The ontology distinguished several types

of decisions that can be applied to software architecture and

its development process. Main categories included: Existence,

Ban, Property and Executive decisions. The ontology defined

also attributes, which were used to describe decisions, includ-

ing states (Idea, Tentative, Decided, Rejected, etc.). In [7] an

ontology supporting ATAM based evaluation was proposed.

The ontology specified concepts covering the ATAM model

of architecture, quality attributes, architectural styles and de-

cisions, as well as influence relations between elements of

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 287–290

978-1-4673-4471-5/$25.00 c© 2013, IEEE 287

architectural style and quality attributes. The effort to structure

the knowledge about architectural decisions, was accompanied

by works aimed at a development of tools enabling the edition

and graphical visualization of design decisions, often in a

collaborative mode, e.g. [4], [6], [17].

III. A CONCEPT OF APPLICATION OF SOAROAD

ONTOLOGY

The SOAROAD (SOA Related Ontology for Architectural

Decisions) has four main goals, it should: (1) provide a

comprehensive description of architectural views, i.e. compo-

nents and their connections; (2) gather a domain knowledge

providing a unified vocabulary related to SOA and enterprise

architecture; (3) help to ask question about various properties

of architectural design and decisions; (4) be capable of repre-

senting assignments of properties relevant to SOA compliant

technologies to elements of system architecture.

It was assumed that the ontology would follow a foun-

dational model (ontology skeleton) defining various proper-

ties corresponding to design decisions that can be attributed

to components, connections, interfaces and compositions. If

applicable, these design decisions can be supplemented by

additional relations. The ontology would also specify design

patterns.

Another assumption is related to a distribution of the knowl-

edge between ontology TBox (set of classes, their attributes

and relations) and ABox (individuals, values of their attributes

and relationships). The types of elements appearing in archi-

tectural views are classified in the TBox. Concrete elements,

e.g. those appearing in the diagrams of architectural views, are

represented as individuals in an ABox. The ontology describes

types of design decisions (properties) as classes, whereas their

values as individuals that can be directly assigned to elements

of architectural views or linked to form trees.

The concept of the ontology application is presented in the

Fig. 1 The process of building an architecture description starts

with eliciting Architecture views ABox, i.e. a set of linked

Architecture

Views

(ArchiMate)

Jena

Java

OWL
SOAROAD

ontology

TBox

(OWL)

SOAROAD

ontology

ABox:

predefined

values

(OWL)

Jena

TDB

JSF

Architecture

Views ABox

(OWL)

Architecture

Views ABox

enriched by

desing

decisions

(OWL)

ArchiMate Import Tool

Web based architecture

Description Tool

imports

imports

imports

imports

Designers and development

teams

Fig. 1. A concept of application of SOAROAD ontology

components, interfaces and connections. This model can be

prepared either manually or with the support of dedicated

import tools converting ArchiMate [22] models of Archi editor

[1] or UML [19], e.g. from VisualParadigm.

A web based tool supporting architecture description uses

the classes and individuals defined in the SOAROAD ontology

Domain Description TBox and SOAROAD Architectural deci-

sions ABox to generate forms or questionnaires in which soft-

ware architects or members of development teams can make

assignments of property values to elements of architecture

views.

The resulting Detailed Architecture ABox refers elements

of Architecture views ABox and individuals defined in

SOAROAD ontology (merging two input ontologies and as-

serting additional relations). This ontology serves as a detailed

architecture documentation within a software development

project. It can be examined either manually or with use of

automated tools.

IV. ONTOLOGY DESCRIPTION

The SOAROAD ontology was built in three steps. Firstly,

a foundational model serving as ontology skeleton was pro-

posed. Then we manually gathered and analyzed information

related to service oriented architectures, technologies, archi-

tectural approaches, design patterns, etc. originating from var-

ious sources: books, technical papers, reference manuals and

Internet resources. Finally, the ontology was populated with

this information by translating intermediate textual description

into OWL constructs. At present the ontology consists of 110

classes, 9 object properties and 105 individuals.

The basic model of software architecture used in ATAM

[2] defines it after [20] as a set of components and linking

them connections. We extend this simplistic model by defining

Interfaces and Functions of components as presented in Fig. 2.

A connection links a component having the caller role with an

interface (calee). Components, connections and interfaces can

be attributed with: ComponentProperties, ConnectionProper-

ties and InterfaceProperties respectively (Fig. 3). Examples

of such properties are: platform, web service type, communi-

cation type, queueing and query granularity.

Composition is a coherent set of components and con-

nectors. System architecture is itself a composition. For the

purpose of analysis we may focus on a particular subset of

components and connectors and describe their properties, e.g.

a distribution of queries among several databases building up

a composition or realization of a design pattern.

During the ATAM based evaluation the overall system

architecture and properties of its parts are analyzed to establish

scenario responses and achievements of corresponding quality

attributes. It may be, however, observed that some architecture

properties or their combinations have known influence on

quality attributes, e.g. a use of asynchronous web services or

applying MVC design pattern, which increases modifiability

and a granularity of queries, has an impact on performance.

This kind of knowledge can be expressed via influences

relations.

288 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

Architectural decision is an assignment of a property value

to a component, interface, connection or a composition. In

this context the terms property and architectural decision can

be used to some extent interchangeably. However, it may

happen that certain decisions or components are dependent

on previously assigned properties. An example of such a

dependency is the composition type – a property assigned

to a set (composition) of web service components. Selecting

orchestration as the composition type requires that an orches-

tration component, e.g. BPEL capable module is used. The

required relation or its subproperties in the ontological model

express this dependency.

The assumed foundational model adopts a reification strat-

egy while modeling various properties of an architectural

design. Properties are defined as classes, whose individuals

can be linked by additional relations indicating specific roles.

An example of such a property is MVC design pattern, which

requires the identification of components playing the roles of

a Model (typically a database), a Controller (e.g. an EJB) and

a View (e.g. a set of HTML pages produced by JSP scripts).

For each property, that can be treated as a class of design

decision, a number of individuals (corresponding to decision

values) is defined. They can be selected in assignments, e.g.

JavaEECompliantAS (a subclass of ComponentProperty) has

several predefined individuals: JBoss, Glassfish, WebLogic,

Web-Sphere, ColdFusion, etc.

Example ontology assertions related to component prop-

erties are presented in Table I and Table II. A property (an

ontology class) is followed by property values (individuals in

the ontology) put in parentheses.

Apart from defining design decisions, the ontology specifies

functions of components. Class Function contains classes of

entities such as: Routing, MessageMapping, ProtocolSwitch,

MediationService, MessageValidation, AuditFunction, Datba-

seIntegration, etc.

Component ComponentProperty-property

Connection

ConnectionProperty-property

Composition

QualityAttribute

-i
n
fl
u
e
n
ce
s

-property CompositionProperty

-components

-connections

-i
n
fl
u
e
n
ce
s

-influences

DesignPattern-is_described_by

Interface

Function

InterfaceProperty
-interface

-calee

-caller
-functions

-property

-i
n
fl
u
e
n
ce
s

ApplicationComponent InfrastructureComponent

-i
n
fl
u
e
n
ce
s

Fig. 2. Foundational model of software architecture and its properties

TABLE I
COMPONENT PROPERTIES

Property (values) Description

PlatformTechnology

(CORBA, EJB, JINI,

RMI)

Set of technologies used on the platform.

ComponentLogic (flexible,

fixed, rulebased)

Specifies an approach the component logic implemen-

tation.

Platform Defines the component platform. Has several sub-

classes: ApplicationServer, Hardware, OperatingSys-

tem and VirtualServer

ProgrammingLanguage

(Cpp, Java, Ruby, PHP,

Erlang, Python, C,

C_sharp)

Define programming language used to implement a

component.

StatePersistence

(Stateless, Statefull)

Specifies whether a component saves internal data

during and in between calls of operations on the

client’s behalf.

TABLE II
PROPERTIES DESCRIBING PLATFORM (SUBCLASSES OF Platform).

Property (values) Description

ApplicationServer Subclass of Platform. Defines an application server

on which a component is deployed, can have such

attributes, as: version (string), vendor (string)

JEECompliantAS

(TomEE, Glassfish,

JBoss, Interstage,

JOnAS, Geronimo,

SAPNeatWeaver,

WebSphere, Resin,

ColdFusion, WebLogic)

Subclass of ApplicationServer dedicated to JEE com-

pliant components.

DotNetCompliantAS

(AppFabric, IIS, TNAPS,

Base4, Mono)

Subclass of ApplicationServer; its individuals define

products for .NET enviroment

JavaAS (Jetty, Enhydra,

iPlanet)

Application servers for Java environment

Hardware Subclass of Platform. Used to specify a hardware

configuration on which the component is deployed.

Attributes: memory (double), processor (string), num-

ber_of_cores (int)

OperatingSystem

(Windows, Unix, Linux,

iOS, Android, Bada,

Blackberry)

Subclass of Platform. Defines types of operating sys-

tems on which a component is executed. Attributes:

version (string), vendor (string), product (string)

VirtualServer (no, yes) Subclass of Platform. Specifies whether a component

is deployed on a virtual server

The ontology provides also a taxonomy of quality attributes.

A quality attribute is a nonfunctional characteristic of a

component or a system. It represents the degree to which

software possesses a desired combination of properties, which

are defined by means of externally observable features. Some

of the attributes are related to the overall system design, while

others are specific to run-time or design time.

Fig. 3. Classes of properties

PIOTR SZWED, PAWEŁ SKRZYNSKI ET AL.: ONTOLOGY OF ARCHITECTURAL DECISIONS 289

SOAROAD ontology defines 30 quality attributes including

both terms defined in software quality model by the ISO/IEC

9126-1 norm [9] and those arising directly from requirements

to architectures formulated in the SOA manifesto 1. Examples

of classes belonging to the first group are: Functionality,

Reliability, Usability, Efficiency, Maintainability and Portabil-

ity. The example of classes originating from SOA manifesto

are ServiceAutonomy, PlatformIndependency, LooseCoupling,

Modularity, OpenStandardAdoptation, BusinessAgility, etc.

When designing an applications to meet quality require-

ments, it is necessary to consider a potential impact of design

properties on various quality attributes. SOAROAD ontology

defines influences object property to this kind of relation.

A design pattern can be seen as a structure build of

components of particular types, defining their roles and re-

lations among them together with a set of restrictions on

their usage. Design patterns do not change the functional-

ities of a system but only their organization or structure.

One of the most important benefits of using design pat-

terns is that they constitute standardized software building

blocks with a well defined influence on quality attributes.

In SOAROAD ontology the class DesignPattern has 56 sub-

classes representing patterns dedicated to SOA architecture.

The examples of subclasses are: db.EnterpriseServiceBus,

db.EventDrivenMessaging, db.Orchestration. The relation

is_described_by links a particular CompositionProperty to one

of the defined design patterns.

V. CONCLUSION

This paper describes the SOAROAD ontology and the

concept of a tool supporting documentation of architectures

of SOA-based systems. The proposed approach addresses the

problem that can be encountered during architecture assess-

ment: to be reliable, a reasoning about architecture qualities,

must have solid foundations in a knowledge related to a par-

ticular domain: architectural styles, design patterns, used tech-

nologies and products. The idea behind SOAROAD ontology

is to gather experts knowledge to enable even inexperienced

users performing ATAM-based architecture evaluation. An

advantage of the presented approach is that its result is a joint

representation of architecture views and properties attributed

to design elements formalized in OWL language.

From a software engineering perspective, such centralized

information resource maintained during the software lifecycle

may represent a valuable artifact, which can provide reference

to design decisions throughout integration, testing and deploy-

ment phases.

On the other hand, a machine interpretable representation,

constituting a graph of interconnected objects (individuals),

can be processed automatically to check consistency, detect

potential flaws and calculate metrics. An extensive list of

metrics related to architectural design was defined in [23].

We plan to adapt them to match the structural relations in the

SOAROAD ontology, as well to develop new ones.

1http://www.soa-manifesto.org/

REFERENCES

[1] “Archi, archimate modelling tool,” 2011, [Online; accessed 23-June-
2012]. [Online]. Available: http://archi.cetis.ac.uk/download.html

[2] P. Bianco, R. Kotermanski, and P. Merson, “Evaluating a service-
oriented architecture,” Carnegie Mellon, Technical Report CMU/SEI-
2007-TR-015, September 2007.

[3] N. Bouck’e, D. Weyns, K. Schelfthout, and T. Holvoet, Applying the

ATAM to an Architecture for Decentralized Control of a Transportation

System. Springer, 2006, vol. 4214, pp. 180–198.
[4] R. Capilla, F. Nava, S. Pérez, and J. C. Dueñas, “A web-based tool

for managing architectural design decisions,” ACM SIGSOFT Software

Engineering Notes, vol. 31, no. 5, 2006.
[5] P. Clements, R. Kazman, and M. Klein, Evaluating Software Architec-

tures: Methods and Case Studies. Addison-Wesley Professional, 2001.
[6] R. C. de Boer, P. Lago, A. Telea, and H. van Vliet, “Ontology-driven

visualization of architectural design decisions,” in WICSA/ECSA. IEEE,
2009, pp. 51–60.

[7] A. Erfanian and F. S. Aliee, “An ontology-driven software architecture
evaluation method,” in Proceedings of the 3rd international workshop

on Sharing and reusing architectural knowledge, ser. SHARK ’08. New
York, NY, USA: ACM, 2008, pp. 79–86.

[8] S. Ferber, P. Heidl, and P. Lutz, Reviewing product line architectures:

Experience report of ATAM in an automotive context. Springer, 2001,
vol. 2290, pp. 364–382.

[9] ISO/IEC, “Software engineering – product quality, ISO/IEC 9126-1,”
International Organization for Standardization, Tech. Rep., 2001.

[10] L. G. Jones and A. J. Lattanze, “Using the architecture tradeoff analysis
method to evaluate a wargame simulation system: A case study,”
Technical Report CMUSEI2001TN022 Software Engineering Institute

Carnegie Mellon University Pittsburgh PA, no. December, p. 33, 2001.
[11] Kazman, “Atam:method for architecture evaluation,” CMU-

SEI2000TR004, 2000.
[12] R. Kazman, L. Bass, G. Abowd, and M. Webb, SAAM: a method for

analyzing the properties of software architectures. IEEE Comput. Soc.
Press, 1994, vol. 16pp, no. 5/11/2011, pp. 81–90.

[13] R. Kazman, M. Barbacci, M. Klein, J. Carriere, and S. G. Woods, “Ex-
perience with performing architecture tradeoff analysis,” Proceedings of

the 21st international conference on Software engineering ICSE 99, pp.
54–63, 1999.

[14] R. Kazman, L. Bass, and M. Klein, “The essential components of
software architecture design and analysis,” Journal of Systems and

Software, vol. 79, no. 8, pp. 1207–1216, 2006.
[15] P. Kruchten, An ontology of architectural design decisions in software

intensive systems. Citeseer, 2004, pp. 54–61.
[16] J. Lee, S. Kang, H. Chun, B. Park, and C. Lim, “Analysis of VAN-core

system architecture- a case study of applying the ATAM,” in Proceedings

of the 2009 10th ACIS International Conference on Software Engi-

neering, Artificial Intelligences, Networking and Parallel/Distributed

Computing, ser. SNPD ’09. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 358–363.

[17] L. Lee and P. Kruchten, Visualizing Software Architectural Design

Decisions. Springer-Verlag, 2008, vol. 5292, pp. 359–362.
[18] B. Roy and T. C. N. Graham, “Methods for evaluating software

architecture : A survey,” Computing, vol. 545, no. 2008-545, p. 82, 2008.
[19] J. Rumbaugh, I. Jacobson, and G. Booch, Unified Modeling Language

Reference Manual, The (2nd Edition). Pearson Higher Education, 2004.
[20] M. Shaw and D. Garlan, Software Architecture: Perspectives on an

Emerging Discipline, M. Shaw and D. Garlan, Eds. Prentice Hall,
1996, vol. 123.

[21] P. Szwed, I. Wojnicki, S. Ernst, and A. Glowacz, “Application of new
ATAM tools to evaluation of the dynamic map architecture,” in Multi-

media Communications, Services and Security, ser. Communications in
Computer and Information Science, A. Dziech and A. Czyżewski, Eds.
Springer Berlin Heidelberg, 2013, vol. 368, pp. 248–261.

[22] The Open Group, “Archimate 1.0 specificattion,” 2009. [Online].
Available: http://www.opengroup.org

[23] A. Vasconcelos, P. Sousa, and J. Tribolet, “Information system archi-
tecture metrics: an enterprise engineering evaluation approach,” The

Electronic Journal Information Systems Evaluation, vol. 10, no. 1, pp.
91–122, 2007.

[24] P. Wallin, J. Froberg, and J. Axelsson, “Making decisions in integration
of automotive software and electronics: A method based on ATAM
and AHP,” Fourth International Workshop on Software Engineering for

Automotive Systems SEAS 07, pp. 5–5, 2007.

290 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

