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Abstract—Non-Local Means (NLM) algorithm is widely con-
sidered as a state-of-the-art denoising filter in many research
fields. High computational complexity led to implementations
on Graphic Processor Unit (GPU) architectures, which achieve
reasonable running times by filtering, slice-by-slice, 3D datasets
with a 2D NLM approach. Here we present a fully 3D NLM
implementation on a multi-GPU architecture and suggest its high
scalability. The performance results we discuss encourage the
coding of further filter improvements and the investigation of a
large spectrum of applicative scenarios.

I. INTRODUCTION

IMAGE denoising represents one of the most common

tasks of image processing. Several techniques have been

developed in the last decades to face the problem of removing

noise from images, still preserving the small structures from an

excessive blurring [2]. All those schemes share the belief that

an improved value of a given image point can be expressed as

a function of the image itself; each of them diverges in how

the function is defined.
One of the most performing and robust denoising ap-

proaches is the non-local means (NLM) filter, introduced in

[1]. Since its first appearance, the family of NLM algorithm

and implementation variants has enormously grown (just to

mention some of the most relevant improvements, see [5], [6],

[7], [14], [10], [4], [11]); nevertheless, all of them assume that

the restoring function for a given point is a mean of all the

image values, largely weighted according to the radiometric

similarity between values and only weakly tied to a spatial

proximity criterion.
The result is a general-purpose denoising scheme, whose

performances are widely accepted to be better with respect to

the previous state-of-the-art algorithms, such as the total varia-

tion, the wavelet thresholding or the anisotropic filtering [13].

In particular, it has been shown that NLM filter guarantees the

homogeneity of flat zones, preserves edges and fine structures,

and transforms white noise into white noise, thus avoid the

introduction of artifacts and spurious correlated signal [2].
Unsurprisingly, the NLM algorithm is computationally very

heavy, and even some fast versions of the scheme are quite

demanding on 2D images and almost daunting on 3D datasets.

The huge amount of computational demand has been recently

addressed by using accelerated hardware, the Graphic Proces-

sor Units (GPUs) in particular.

In 3D datasets, e.g. in the context of the Magnetic Res-

onance Imaging (MRI), the use of fully 3D filters is more

appropriate than a 2D-based slice-by-slice filtering approach

to exploit all the information contained in the image.

To the best of our knowledge, although there are several

2D GPU-based NLM versions ([9], [3], [8]), the 3D version

of NLM filter has been poorly investigated in terms of both

implementation and performance on GPUs.

In this paper, we present GPU and Multi-GPU versions

of the 3D NLM filter based on Compute Unified Device

Architecture (CUDA) [12]. We report the performance of the

implementation for different 3D synthetic and real datasets.

The parallelization of the filter via GPUs gives clinically-

feasible MRI denoising execution times.

The plan of the paper is as follows. In §II we briefly

describe the NLM algorithm. To follow, in §III we provide

the implementation details. In §IV we present and discuss the

results. Finally, in §V we draw conclusions and future works.

II. THEORY

A. General description

An N -D image X can be considered as a real function
X : RN → R with a bounded support Ω ⊂ R

N . The NLM
filter [1] is a class of endomorphisms of the image space,
identified by 2 parameters (a and h), that acts as follows:

[NLMa,h(X)](~x) = Y (~x) =

∫

Ω
exp

[

−
d2a(~x,~y)

h2

]

X(~y)d~y

∫

Ω
exp

[

−
d2a(~x,~y)

h2

]

d~y
, (1)

where

d
2
a(~x, ~y) ≡

∫

RN

∣

∣X(~x+ ~t)−X(~y + ~t)
∣

∣

2
·
exp−

‖~t‖2

2a2

(2π)n/2 · a
d~t . (2)

The intensity of a given point of the new image is a mean

of the intensities of the original image, according to a weight

function that disregards any explicit criterion of spatial prox-

imity and only considers a measure (ruled by h) of self-

similarity between windows of radius a centered on each point

(radiometric proximity).
If the image is defined on a discrete, regular grid

{

~xi

∣

∣

∣
1 ≤ i ≤

∏N
l=1 Ll

}

,

X(~x) =
∑

i

Xiδ(~x− ~xi) , (3)
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from Eqns. 1–2 it follows that the filtered dataset is given by

Yi =

∑

j exp
[

−
d2a(~xi,~xj)

h2

]

Xj

∑

j exp
[

−
d2a(~xi,~xj)

h2

] , (4)

d
2
a(~xi, ~xj) =

∑

k

∣

∣

∣
X(~xi + ~∆k)−X(~xj + ~∆k)

∣

∣

∣

2

·
exp−

‖~∆k‖
2

2a2

(2π)n/2 · a
.

(5)

Moreover, from Eqns. 4–5 it follows that the complexity of

the filter is O
(

∏N

l=1
L3

l

)

.

B. Actual algorithm

Both computational issues and the convenience to introduce

a geometric proximity criterion in addition to the pure radio-

metric distance measure led to a change in the original version

of the NLM filter [7].
Therefore, given a search radius M , for each voxel i located

at ~xi we define a search box Vi as

Vi ≡
{

~xj ∈ Ω
∣

∣‖~xj − ~xi‖∞ < M
}

. (6)

The search box associated with the i-th voxel defines the

ensemble of voxels whose intensities will be available in the

following for restoring (denoising) of the intensity X(~xi), thus

reducing the search freedom of Eqn. 4 (in that case, Vi ≡ Ω).

The authors of ([7], [10]) suggest that a good choice for M

should guarantee the cardinality of the search box, |Vi|, to be

of the order of 103.
Analogously, given a similarity radius d, for each voxel ~xj

within a given search box Vi, we can define a similarity box

jBi ≡
{

~xk ∈ Ω
∣

∣‖~xk − ~xj‖∞ < d
}

. (7)

In this case, d plays the role of a in Eqn. 4, provided that

the original smooth Gaussian kernel is replaced by a binary

cut-off; a good choice for d should guarantee |jBi| ∼ 30 ([7],

[10]).
Finally, the denoised image is

Yi =

∑

~xj∈Vi
exp

[

−
‖jBi−iBi‖

2

2

h2

]

Xj

∑

~xj∈Vi
exp

[

−
‖jBi−iBi‖

2

2

h2

] , (8)

whence it results that the algorithm complexity is

O
(

|Vi| · |jBi| ·
∏N

l=1
Ll

)

.

The filter strength, which is determined by h, can be
automatically tuned to obtain an optimized denoising, inde-
pendently from the search radius M and the standard deviation
of noise σ:

h
2 = 2βσ2 |Vi| (9)

(β ∼ 1 is an adimensional constant to be manually tuned).

III. IMPLEMENTATION

General Purpose computation on Graphics Processing Units

(GPGPU) is the use of GPUs to perform highly parallelizable

computations that would normally be handled by CPU devices.

Programming with GPUs requires both a deep understanding

of the underlying computing architecture and a massive re-

thinking of existing CPU based algorithms.

A. Architecture

We implement the 3D NLM filter on the NVIDIA parallel

computing architecture, which consists in a set of cores,

or Scalar Processors (SPs), performing simple mathematical

operations.

In the NVIDIA Fermi architecture, each SM has scheduler

and dispatch units, execution units and a configurable memory

of 64KB, which consists of a register file, an internal shared

memory and an L1 cache. This memory is configurable in

16KB (or 48KB) for shared memory and 48KB (or 16KB) for

L1 cache.

B. Mapping the algoritm on GPU

The Algorithm 1 is the pseudo-code of the NLM filter.

Algorithm 1 Pseudo-code of the NLM algorithm

1: for each voxel (i1, i2, i3) of the 3D image to be filtered do

2: Initialize the cumulative sum of weights and the restored value to 0;
3: for each voxel (j1, j2, j3) of the search window V(i1,i2,i3) do

4: for each voxel (k1, k2, k3) of the similarity window

(j1,j2,j3)B(i1,i2,i3) do

5: Cumulate squared Euclidean distance;
6: end for

7: Calculate and cumulate the weight of the voxel in search window;
8: Cumulate the restored value;
9: end for

10: Normalize restored value to the sum of the weights;
11: end for

In details, the statement at line 1 represents a nested iteration

structure. In our GPU version, the loops on line 1 and line 3 in

the Algorithm 1 are logically mapped onto the grid of thread

blocks defined by means of the CUDA framework.

A first implementation in CUDA is presented in the Algo-

rithm 2. Moreover, in order to make this algorithm compatible

Algorithm 2 CUDA code of NLM algorithm

1: int const i_1 = threadIdx.x +

blockDim.x*blockIdx.x;

2: int const i_2 = threadIdx.y +

blockDim.y*blockIdx.y;

3: /* local statements */

4: if ((i_1 ≥ 0) && (i_1 < X_Dim) && (i_2 ≥ 0)

&& (i_2 < Y_Dim)) {
5: for(i_3=0; i_3 < Dim_Z; i_3++) {
6: /* do something on img[i_1 +

i_2*X_Dim + i_3*X_Dim*Y_Dim] */ }}

with multi-GPU architectures, we introduce some improve-

ments. The number of GPU devices is returned by means of

a CUDA library function and stored in the variable n_gpus.

Then, the third dimension of the image is “splitted” between

the available GPUs, setting the first (start_k) and the last

(end_k) slices that each GPU has to manage. We report a

sketch of the GPU implementation in the Algorithm 3.

In order to explore different types of data access, we

test several configurations, both mono- and bi-dimensional,

for the thread block size in which each slice is divided.

Each thread processes sequentially the voxels along the third

dimension. The workload is divided along the third dimension

for multi-GPU configurations. Inside each GPU the workload
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Algorithm 3 CUDA MULTI-GPU code of NLM algorithm

1: int const i_1 = threadIdx.x +

blockDim.x*blockIdx.x;

2: int const i_2 = threadIdx.y +

blockDim.y*blockIdx.y;

3: /* split the image ‘‘img’’ between the

‘‘n_gpus’’ GPUs: each GPU works on the section

of the image ‘‘my_img’’ */

4: /* local statements */

5: for(i_3 = 0; i_3 < Z_Dim/n_gpus; i_3++) {
6: /* do something on my_img[i_1 + i_2*X_Dim +

i_3*X_Dim*Y_Dim/n_gpus] */

7: } }

is divided along the first and second dimensions, in strips

(mono-dimensional configurations) and tiles (bi-dimensional

configurations) of threads. Strip or tile is allowed to cover

entirely or only partially the slice grid.

We test also the impact of L1-cache on performance, using

the binary L1-prefer setting, which allows to choose between

two possible configurations: 48KB of shared memory and

16KB of L1-cache (no L1-prefer), or 16KB of shared memory

and 48KB of L1-cache (L1-prefer).

The computing system is equipped with 2 Intel Xeon CPU

E5620 (2.4 GHz) and an NVIDIA TESLA S2050 card. This

device consists of 4 GPGPU units, each of which with 3GB

of RAM memory and 448 cores at 1.15 GHz. The numerical

code is implemented by using the single precision arithmetic.

The CPU system is equipped with an Intel core i5-2500S

(2.7-3.7 GHz).

IV. RESULTS AND DISCUSSIONS

A. Consistency

As we aim to produce a strictly equivalent GPU imple-

mentation of the sequential NLM algorithm, we check the

implementation consistency by comparing voxel-by-voxel the

images obtained by one-core-CPU and GPU denoising. In

Fig. 1 we show the 3D NLM filtering result on a real 3D

knee MRI dataset. The difference between the GPU and

CPU restored images falls within machine precision order of

magnitude which are likely to be due to the arithmetic logic

unit precision.

B. Performance

In order to investigate cache size impact on the execution

time, we perform several test runs varying L1-prefer switch.

Results are shown in Table I. L1-prefer choice gives a benefit

on lager dataset, with a performance improvement ranging

from fraction of percent in the smallest dataset to some 5% in

the largest ones. These results suggest that the L1 miss rate,

is low enough to have high performance processing even with

old generation cards having small amount of cache.

The strip or tile thread division influences the performance

of the filter in terms of computing time due to the different

type of data access. Experimental results prove that optimal

configuration is given by the strip subdivision. In Table I we

report running times of (128,1,1) configuration on 2-GPU.

Fig. 1. From left to right and from top to bottom, the frames show a central
slice of the original dataset, the GPU restored image, the CPU restored image
and the difference between CPU and GPU filtered images (enhanced by a
scaling factor of 106), respectively.

TABLE I
L1-PREFER SWITCH INFLUENCE ON EXECUTION TIMES FOR (128,1,1)

BLOCK SIZE CONFIGURATION AND 3D RANDOM DATASETS.

Cache configuration
L1-prefer no L1-prefer

64x64x64 8.04 8.55
128x128x64 9.43 9.42

128x128x128 11.2 11.2
256x256x128 19.9 20.2
256x256x256 28.3 29.0
512x512x128 39.5 40.4
512x512x256 71.7 75.0
512x512x512 138 148

In Table II we report a comparison between running times of

CPU, single GPU and multi-GPU implementation of 3D NLM

filter with various thread block size. Reported running times

include the overall data transfer between CPU and GPU and

viceversa, which even for the biggest datasets appears negligi-

ble. Speed-up values suggest that the bigger the dataset to be

filtered, the better the scalability of the implementation, which,

for datasets size typical of MRI clinical practice, is close to be

ideal. Moreover, the optimal thread size seems to be strips of

thread between 128 and 256 elements. This result is consistent

with NVIDIA guidelines [12]. Finally, on large datasets strip

configuration should be prefered to tile configuration of the

same size because more sequential memory access of the

former. In Table III, we investigate the behavior of running

times against the search (|Vi|) and similarity (|jBi|) window

cardinalities. We note an high and almost constant speed-up

among the various experiments, which makes feasible large

window filter testing in a reasonable time.

Finally, in Figure 2 we outline the CPU, single GPU and

multi-GPU GFlops for variable dataset sizes. It should be

remarked that we are able to exploit up to 43.5% of single

precision floating point peak performance of the GPU.
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TABLE II
EXECUTION TIMES AND SPEED-UP VALUES FOR SEVERAL BLOCK SIZE CONFIGURATIONS AND 3D RANDOM DATASETS. SEARCH AND SIMILARITY

WINDOWS HAVE BEEN SET ACCORDING TO |Vi| = 113 AND |jBi| = 33 .

Execution time/Speed-up
Single GPU Multi-GPU CPU

Dataset size (16,16,1) (128,1,1) (256,1,1) (512,1,1) (16,16,1) (128,1,1) (256,1,1) (512,1,1)
643 5.08/4.47 5.73/3.96 5.63/4.03 6.94/3.27 11.7/1.94 8.04/2.82 8.53/2.66 12.6/1.80 22.7

1282x64 6.48/13.6 7.30/12.1 7.08/12.5 10.2/8.61 8.97/9.83 9.43/9.35 9.31/9.47 10.8/8.13 88.2
1283 9.06/19.3 10.8/16.2 10.4/16.9 16.7/10.5 10.3/17.0 11.2/15.7 10.9/16.0 14.0/12.5 175

2562x128 22.1/31.8 24.3/28.9 25.0/28.0 31.0/22.6 16.9/41.6 19.9/35.2 18.6/37.8 21.1/33.2 702
2563 40.5/34.6 44.7/31.3 47.2/29.6 59.4/23.6 26.0/53.8 28.3/49.4 29.5/47.5 35.1/39.9 1400

5122x128 68.8/41.0 67.0/42.1 67.1/42.0 72.7/38.8 40.5/69.6 39.5/71.4 40.0/70.5 42.4/66.5 2820
5122x256 136/41.2 132/42.6 131/42.8 142/39.5 73.8/76.3 71.7/78.5 72.0/78.2 77.5/72.6 5630
5123 277/40.7 268/42.2 264/42.7 285/39.6 142/79.3 138/82.0 137/82.4 148/76.2 11300

TABLE III
EXECUTION TIMES AND SPEED-UP VALUES FOR A 3D RANDOM DATASET (SIZE = 512× 512× 128) FOR SEVERAL WINDOW CONFIGURATIONS.

Execution time / Speed-up

Single GPU Multi-GPU CPU
(|Vi|, |jBi|) (16,16,1) (128,1,1) (256,1,1) (512,1,1) (16,16,1) (128,1,1) (256,1,1) (512,1,1)
(113, 33) 68.8/41.0 67.0/42.1 67.1/42.0 72.7/38.8 40.5/69.6 39.5/71.4 40.0/70.5 42.4/66.5 2820
(213, 33) 447/44.4 434/45.7 434/45.7 467/42.4 228/87.0 222/89.4 221/89.6 239/82.8 19800
(113, 53) 235/34.6 221/36.7 223/36.6 255/31.9 123/61.1 116/69.9 117/69.3 130/62.4 8140
(213, 53) 1650/35.5 1510/38.8 1520/38.7 1820/32.2 817/72.0 757/77.6 764/77.0 906/64.8 58800

Fig. 2. Outline of the CPU, single GPU and multi GPU GFlops values for
different dataset sizes. Please note the logarithmic scale of the axes.

V. CONCLUSIONS

NLM filter is a state-of-the-art denoising algorithm. How-

ever, the huge amount of computational load prevents the

large-scale diffusion of its most common implementations.

To the best of our knowledge, in this paper we presented the

first multi-GPU implementation of a fully 3D NLM filter. We

analyzed several configurations of thread block organization

and data access, thus identifying a set of optimal settings that

guarantee high performance results for a wide spectrum of

application scenarios. The reduction of running times shows

that scalability is close to ideal one for most common dataset

sizes, e.g. those typical of MRI clinical pratice. Speed-up

high values encourage the exploration of more sophisticated

algorithm variants, and reduce the gap between the previous

execution times and acceptable performance for real-time

scenarios.
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